GR Basics

April 28, 2021

Contents

1

Equivalence principle, metrics, Newtonian limit
1.1 The equivalence principle and the concept of a metric
1.2 Newtonian limit- slow motion in a stationary weak field

The eqgs. of physics with gravity

Gravity

\V)

11



1 Equivalence principle, metrics, Newtonian limit

Much of this chapter can be found in the excellent book Gravitation &
Cosmology of Weinberg.

1.1 The equivalence principle and the concept of a metric

Inertial and gravitational mass equivalence is naturally obtained by
the assumption that the effects of ¢ is equivalent to measurements in an
”accelerating elevator,” 2’ = x* + % g't?.

The Equivalence principle: For any point x* = X* a locally iner-
tial coordinate system may be constructed, £#(z#; X*), in which the laws of
physics in an infinitesimal (space-time) region around X* are given by spe-
cial relativity. Inertial and gravitational mass equivalence is automatically
obtained.

The ”photon in elevator” example. Ahy = —A®(hv/c?). Discuss E and
gravitational mass, clock tick rate (via freq. shift at a stationary system).

If the local coordinate systems are known for every point z = X, the
effects of gravity are completely determined. In what follows we will first
derive the egs. of physics under the assumption that £*(z#; X*) are given.
We will then derive the equations that determine the local inertial coordinate
systems given the distribution of gravitating mass.

Remind special relativity ideas: 4-vectors, 1, ds® = N dxtdx”,
ds? = —c2dt? + 72dt? = —c*(1 — B2)dt? = —c2dt?/v* = —c?dr? for massive
particles. The motion of a free particle is described by d?z*/dr? = 0, where
the proper time is determined by c?dr? = N dxtdz”.

Massive particles: Let us first determine dr in the general coordinate
system.

v 0" 98" | o
—Pdr? = dEMdE” = o2 =25 da da”, (1)
ie.
—2d7? = gop(at)da®da® (2)
with

oM (z; X ) g (ah; XH)
Oz b oI XB

(3)

The metric is invariant under Lorentz transformations of the local in-
ertial frames &*. Discuss the general relation between metrics in different
coordinate systems, ¢'(z') vs. g(x).
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The motion of a particle under gravity is described in the local inertial
frame by d?¢#/dr? = 0, which may be written as

N N i O "
Cdr \ Oz dr ) Oxv dr?  Ox¥OxP dr dr’

multiplying by dx® /9 we have

A2z dz¥ ﬁ

_ ¥ pa(gm
0 dr? (@ )dT dr’ (5)

with the Christoffel symbol

0%¢# (xt; X ) 0 (€43 XH)
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I7,(X") = (6)
For any given initial conditions, z#(7 = 0) and dz*/d7 (T = 0), the particle’s
trajectory is determined by I'y ,(z#). T'j,(z#) determines therefore the effect
of gravity. Similarly, for massless particles

d2z dz¥ dxf
=27 T (g ar
0 do? + ”p(x )da do (7)

g,I' and the local ”freely falling” frame. Given I'j (z*) and
gap(x*) at some point z# = X*, the local inertial frame at z = X, £*(z; X)
is determined in the vicinity of z = X (up to a Lorentz transformation) up
to (and including) (z — X)?. Define

1
Mz, X) = aldz® + 5bgﬁda:%zxﬁ, (8)

where dz =z — X. Eq. (3) gives

Uaﬁaffafj = gw(z = X), (9)
and eq. (6) gives
v 9¢” v
bﬁ'y = |:axarg,y:| = aa g,y(:ﬂ = X) (10)
e

It is straightforward to verify that if these conditions are satisfied for some
&, they are also satisfied for any other coordinate system obtained by a
Lorentz transformation &# = ALEY.



The meaning of "infinitesimal region around X7 in the equiv-
alence principle is

[8901,8(%”;)(#) —0, (11)

A
8.%' :| h=XH

where gog(2*; X#) is the metric in the coordinate system &#(a#; X#) at the

point & (xH; X#). That is, in the local inertial frame associated with the

point = X the metric is 1,4 at = X and its first order derivatives at x =

X vanish. Note that 0zg(&§; X) = (0x/0€)0,9(&(x); X) = (0x/0€)0zg(x; X).
We prove below that this implies

8904,8
Oxt

Adding the permutations with respect to aSu (and multiplying by the in-
verse ¢*? of gag), we find

1 dg Ogvp  Oguw
T — —q% 4 P _ [ . 1
w = 59 (am” + Ozt oxP (13)

= gﬁprﬁa + goapFZB- (12)

This relation implies that the effects of gravity, I'},(z#), are determined by
the metric g,g(z").

Proof: Consider a coordinate system z# with metric gog(z*). Let us
define gop(z#; X*) as the metric in the coordinate system & (z#; X*). We
know that gag(a* = X*; X#) = 1. We will now show that eq. (11) leads
to eq. (12).

The metrics are related through

OEr (' X 1) O€Y (a'M; X
gaﬂ(mu) = g/.tl/(xu;XM) |: ((9(13/0‘ ) (81'/6 ) , °

(14)

Taking the derivative with respect to z* and setting z*# = X* we obtain

09ap(zt) _ Oguw (zt; XH) OEH (s XH) 0¥ (zt; XH)
oz | L yu Ox? ox® 0xP ol XH

=l o P AT) 6T XT)

oxr OxP
o8” (xt; XH) OH (aH; X*)
—l—Fg)\(Xu) 9P pyws ]xu:)(u

= T2, (X*)gp8(X") + T (XM) g (XP).

Two important points should be explained here.
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e The condition ¢2 = —g,p(z#)(dz®/d7)(dz? /dT), with gap(zH) = gag(at; XH =

x#), can be chosen to hold at 7 = 0. Eq. (12) ensures that if it holds
at 7 =0 it holds also at 7 > 0:

A ] et d et i
dr 9% ar dar | T ok dr dr dr 9P a2 ar T Tgr are
R R
9zt dr dr dr Y™ v dr dr dr Gop dr dr dr
0903 dz® dxP dxt
- SIS M N R 15
(8:6'“ 960 o gp“B) dr dr dr (15)

e The equation of motion (5) can be obtained using eq. (13) by requiring
ff dr, with 7 given by eq. (2), to be stationary.
1.2 Newtonian limit- slow motion in a stationary weak field

Slow motion implies that dz’/cdr ~ v/c < da®/cdr = dt/dr ~ 1. The
equation of motion is therefore approximately given by

d2z® dz0\ 2
2T e ety [ )
dr? + Too(z") ( dr >

Weak field implies g, = 1, + hy with b < 1. Since the field is stationary
we have

(16)

1 dgop | Og0p  9goo 1 ;9900
0 _ = Op 4 P _ _ =0 _ 2
Too = 29 <8x0 T o0 " 0w ) T 29 ow T o), {17
; 1 ,, (9090, = Ogop Ogo0o 1 ;9900 1 Ohgo
L 7 4 P LY B R ' 2. 1
007 9 (83:0 0x0  Oxr 29" Bai 2 Oxt +O(R7). (18)

Egs. (17) and (16) imply dt/dr = const., which allows replacing 7 with ¢ in
eq. (16) leading to, using eq. (18),
d2.CCi 1 2 8h00
=—c =,
dat2 2 Oxt

(19)

In order to obtain the Newtonian limit we must have hgg = —2®/ c?+const..
Defining ® to vanish at infinity (far away from sources) the constant must

vanish and we have 5
goo = — <1 + cQ(I)) . (20)



e Discuss meaning of weak field: Earth, Sun.

e Discuss time: For a stationary clock dr = /—goodt = (1 + ®/c?)dt.
Connect to redshift, Doppler in ”elevator”. Discuss ¢ as determined by
a clock at infinity, with ® = 0, and ”broadcasted” to all other points.



2 The eqgs. of physics with gravity

The laws of physics are written in special relativity (SR) as equalities be-
tween tensors and their derivatives. Recall vectors and tensors.

e Scalars- unchanged under coordinate transformation. dr, proper den-
sity po-

e Contra-variant vector- transforms like the coordinates, da’# = (92" /dx®)dx®:

VE = (92’ 02*) V™ = ALV ®, example ut = dx*/dr.

e Covariant vector, V; = (02%/0x),)Va, example Of/dxt. If V# is
contra-variant, V,, = g, V" is covariant

Vi— g v =g oz _ 0x® 0xY 0x" s OxP
w = Juv

- I 9ge Ve= 987 gai oav gz V0 T Gain V-

(21)
e Tensor Tflyaﬁ = .... Examples: g,,, 0,V* in SR.

e Product, contraction, lowering/rasing of indices of a tensor give a ten-
sor, g/, T = (0a'® /927 ) g,sT 5.

«

Example: EM. Maxwell’seqs.: VB =0, VE = 47p, VXE = —(1/¢)9;B, VX

B = (1/¢)0E + (47/c)j. We can write B = V x A (VB) and E =
—(1/c)0tA — V@ (V x E). Defining A* = {®, A} we have

0 —-Ey —Ey —Ej3
Ey 0 By —DBy

F,, =0,A, —0,A,= B —By 0 B, , (22)
Es By —-B; 0
where 0, = 0/0z". The eqgs. for VB and V x E are
aaFﬁ'y + 8fyFo¢,B + 85nya =0. (23)

Defining j* = {¢p,j} = {c,v}p = {c,v}ypo = utpo where pg is the proper
charge density, the eqs. for VE and V x B are

1
g, Fve = — L jo (24)
C

These eqgs. define F' in any coordinate system. Since j* is a vector (and
derivation in SR, contraction and lowering/rasing of indices of a tensor give



a tensor) F' is a tensor- if F/” is the solution at coordinate system x, then
F'mv — AZAEFO‘B is the solution at 2’ = Az,

ra — v « « 47T o 47'(' -/
O F"* = (A1) 0, ALAGFHP = A5G0, PP = —7Aﬂjﬂ = —7;’ . (25)

The eqgs. for particle acceleration, dp/dt = q(E + ¢~ 'v x B), may be

written as
dut

m

dr
This eq. is the same in all systems (related by Lorentz transformations)
since it is an equality between tensors and their contractions, multiplications
and derivatives. In the particle’s rest frame, where u* = {c, 0}, the rhs is
f# = —qF" = {0,¢E} as required.

Covariant derivatives.

In SR, the physics egs. are the same in all systems (related by Lorentz
transformations) since they are expressed as equalities between tensors and
their derivatives, and the derivatives of tensors (as well as their contractions)
are also tensors. This, however, is no longer true in GR. If V# is a vector
then

oVt 9aP 0 (0 Vo) - oz’ Ox't OV N oz’ 9%a'm
oz Qx 0xP \ Oz Oz 0z 9B Oz QxPox

= fH= g77,,04F’”’u0‘. (26)
c

Ve (27)

The second term of the RHS destroys the tensor behavior (in special relativ-
ity the transformations are linear, and this term vanishes). We may obtain
the tensor that reduces to the regular derivative in the local inertial frame
in the following way. Taking 2’ to be the inertial frame at X, &(x; X), we
have
ovXnr B o0xP oer gV 928 9rer

06~ 0¢ 0z° 0aP | 08¥ 92P0ze

Multiplying by (9¢”/027)(02° JOEM),

ogv 0x° VAR 9V 9xd 9K e

Ve, (28)

gy — = 29
07 DEr 0&r  ox7 | ogr dmoze | (29)
which implies
oEv 00 {8VX“] ove
g =—+I°, Ve 30
(933'7 85“ 85” 5(1’=X;X) aﬂ:’y v ( )
We therefore define the covariant derivative as
DvVe _ove s
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This derivative reduces to the regular derivative in the local inertial frame,
and the derivative of the vector yields a tensor,
DV’ 92 ¢ dVX* 02" 0z 9¢” da? VXK 020 92 DV
Dxr  O&r Oz dEv Qx® O&r Oxb Oy dEv Ox® Oz’ Daf

(32)
For a covariant vector we have
DVs  0V;s
Dt = 97 F%Va- (33)

This can be shown using a similar derivation as for the contra-variant vector,
choosing this time = as the inertial £ system.

Consider next a vector defined along a path, V#(p) where p is a param-
eter along the path (e.g. particle momentum).

av'e d [ox'* ox'H AV 0?x'm daxP
W) _ d [0y 0| = 0 o Syel (34
dp dp | 0x* oz dp 0xBoz> dp
Again, choosing the primed system to be the local inertial frame,
dVXE(p) _ograve 02¢H ﬁ o (35)
dp Oz~ dp ~ 0xzPox> dp
and multiplying by 0x7/0&H,
oxY dVXi(p)  dV7 dz?
= . —ve 36
oE*  dp dp tlas dp (36)

We therefore define s 5
DV dVv 5 dx”
_— =41 — Ve, 37

Similarly, we define

DVs  dVs dz?

—=— -T%—V,. 38

Dp dp Wogp (38)

The covariant derivative of the metric vanishes, Dy,gaps = Opugap—1"0, 905~

I‘féugua = 0, since we require the metric derivatives to vanish in the local
inertial frame. This implies that contraction (and lowering and raising of
indices) and covariant derivation are commutative.

The prescription for writing the eqs. of physics:
1. Write special relativity eqs. in tensor form;

2. Replace 0 with D and 7, with g,,.



This gives eqs. that are the same in all frames, and reduce to SR in the
local inertial frames. For EM we have
47 Du* ¢

D, F'* = ——j4% m D = =gy F*u”. (39)
c T ¢

For the motion of a particle under gravity we have

Dut . dut " 3
D7- = 0, 1.€. ? + Faﬂuau =0. (40)
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3 Gravity

We define the parallel displacement of a S* by DS*/Dp = 0,

ds* dz®
R gy S 41
dp af dp ( )
It is straightforward to show that for a closed infinitesimal path around some
point X*#,

1
ASy = S Ryg (X") 7{ dxPz7 S, (42)

where the Riemann-Christpffel tensor is

oG, g

oxd oxY

— " I
Rg.5 = + 1“50‘#1“/[%Y — F%Fﬁé. (43)
The Riemann-Christoffel tensor is the only tensor that can be formed from
the metric and its 1st and 2nd derivatives, and is linear in the second deriva-
tives. The Ricci tensor is Rgs = g“7Ragys and the curvature scalar is

R = g*®R,p. A useful (Bianchi) identity

1
D, <RW - QQWR> — 0. (44)

A necessary and sufficient condition for the existence of a flat coordinate
system (where the metric is 7)) is that Rj 5 = 0 everywhere (and that
there is a point where g,, has 1 negative and 3 positive eigenvalues). This
tensor is therefore called the curvature tensor.

The result for weak field, gog = —(1 4 2®/c?), may be written, recalling
V20 = 4nGp, as

8rG 8rG
P Ty (45)

2
Vigoo = — 5 V2@ =
&

C C

[Recall SR energy momentum tensor- what the different components are,
the example of an ideal fluid.] We therefore guess that the field egs. are

8rG
G/»“’ - _7T'LLI/7 (46)

A
where G, is a tensor composed of g,, and its 1st and 2nd derivatives.
The requirements from G, are: (i) Symmetric tensor; (ii) Each of its terms
contains 2 derivatives in order for the dimensions to be L2 (unless there is a
new constant with dimensions of length in the theory); (iii) g**DaGpn =0

11



to conserve energy; (iv) Goo = VZ2ggo in the Newtonian limit (stationary
weak field produced by non-relativistic matter).

Requirement (ii) implies that G, = c1 R, + cagu R. (iil) determines
02/01 = —1/2,

1
D,G" = c1D,R" + cag"" DR = <201 + C2> 9" DR =0 (47)

(9" G = (c1 + 4c2)R so that D, R = 0 everywhere only if D, T}/ = 0
everywhere, which does not hold for an arbitrary mass distribution). The
Newtonian limit determines ¢; = 1. In this limit, |T;;| < |Tpo| so that
‘GZJ| < |G00| implying Rij ~ %gin ~ %5in, and R ~ nIWR/“, = —ROQ—I-%R,
so that R = 2Ry and Gy = 2¢1Rgg. For a weak field, Rgg = %VZQQO hence
Cc1 = 1.

Thus, the field equations are

1 8tG
R;uz - iguuR = _7Tuu~ (48)
Contraction with g"” gives
811G
R = CTg'uVTl“” (49)

which may be used to write the field egs. as

&G 1 o
R, = i (T;w — §gwg ﬁTa5> . (50)

If we allow a constant with the dimensions of length, we may have G, =
Ry — (1/2)g, R — Mg (where the dimensions of A are L~2). This would
not give the correct Newtonian limit, so A must be small enough. In this
case we have

1 8rG
R#l/ — ig“yR — Ag#y = _CTT'U‘V' (51)
Contraction with g"” gives
8tG
R = CTQMVT/_“/ — 4)\, (52)

which may be used to write the field egs. as

8tG 1 o
RNV + )‘QW = —CT (TNV — 5gw/g ﬁTaﬁ) . (53)
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