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1 Equivalence principle, metrics, Newtonian limit

Much of this chapter can be found in the excellent book Gravitation &
Cosmology of Weinberg.

1.1 The equivalence principle and the concept of a metric

Inertial and gravitational mass equivalence is naturally obtained by
the assumption that the effects of g⃗ is equivalent to measurements in an
”accelerating elevator,” x′i = xi + 1

2g
it2.

The Equivalence principle: For any point xµ = Xµ a locally iner-
tial coordinate system may be constructed, ξµ(xµ;Xµ), in which the laws of
physics in an infinitesimal (space-time) region around Xµ are given by spe-
cial relativity. Inertial and gravitational mass equivalence is automatically
obtained.

The ”photon in elevator” example. ∆hν = −∆Φ(hν/c2). Discuss E and
gravitational mass, clock tick rate (via freq. shift at a stationary system).

If the local coordinate systems are known for every point x = X, the
effects of gravity are completely determined. In what follows we will first
derive the eqs. of physics under the assumption that ξµ(xµ;Xµ) are given.
We will then derive the equations that determine the local inertial coordinate
systems given the distribution of gravitating mass.

Remind special relativity ideas: 4-vectors, ηµν , ds
2 = ηµνdx

µdxν ,
ds2 = −c2dt2 + v⃗2dt2 = −c2(1 − β2)dt2 = −c2dt2/γ2 = −c2dτ2 for massive
particles. The motion of a free particle is described by d2xµ/dτ2 = 0, where
the proper time is determined by c2dτ2 = −ηµνdx

µdxν .
Massive particles: Let us first determine dτ in the general coordinate

system.

−c2dτ2 = ηµνdξ
µdξν = ηµν

∂ξµ

∂xα
∂ξν

∂xβ
dxαdxβ, (1)

i.e.
−c2dτ2 = gαβ(x

µ)dxαdxβ (2)

with

gαβ(X
µ) ≡

[
ηµν

∂ξµ(xµ;Xµ)

∂xα
∂ξν(xµ;Xµ)

∂xβ

]
xµ=Xµ

. (3)

The metric is invariant under Lorentz transformations of the local in-
ertial frames ξµ. Discuss the general relation between metrics in different
coordinate systems, g′(x′) vs. g(x).

2



The motion of a particle under gravity is described in the local inertial
frame by d2ξµ/dτ2 = 0, which may be written as

0 =
d

dτ

(
∂ξµ

∂xν
dxν

dτ

)
=

∂ξµ

∂xν
d2xν

dτ2
+

∂2ξµ

∂xν∂xρ
dxν

dτ

dxρ

dτ
. (4)

multiplying by ∂xα/∂ξµ we have

0 =
d2xα

dτ2
+ Γα

νρ(x
µ)

dxν

dτ

dxρ

dτ
, (5)

with the Christoffel symbol

Γα
νρ(X

µ) ≡
[
∂2ξµ(xµ;Xµ)

∂xν∂xρ
∂xα(ξµ;Xµ)

∂ξµ

]
xµ=Xµ

. (6)

For any given initial conditions, xµ(τ = 0) and dxµ/dτ(τ = 0), the particle’s
trajectory is determined by Γα

νρ(x
µ). Γα

νρ(x
µ) determines therefore the effect

of gravity. Similarly, for massless particles

0 =
d2xα

dσ2
+ Γα

νρ(x
µ)

dxν

dσ

dxρ

dσ
. (7)

g,Γ and the local ”freely falling” frame. Given Γα
νρ(x

µ) and
gαβ(x

µ) at some point xµ = Xµ, the local inertial frame at x = X, ξα(x;X)
is determined in the vicinity of x = X (up to a Lorentz transformation) up
to (and including) (x−X)2. Define

ξµ(x,X) = aµαdx
α +

1

2
bµαβdx

αdxβ, (8)

where dx = x−X. Eq. (3) gives

ηαβa
α
µa

β
ν = gµν(x = X), (9)

and eq. (6) gives

bνβγ =

[
∂ξν

∂xα
Γα
βγ

]
x=X

= aναΓ
α
βγ(x = X). (10)

It is straightforward to verify that if these conditions are satisfied for some
ξµ, they are also satisfied for any other coordinate system obtained by a
Lorentz transformation ξ̃µ = Λµ

νξν .
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The meaning of ”infinitesimal region around X” in the equiv-
alence principle is [

∂gαβ(x
µ;Xµ)

∂xλ

]
xµ=Xµ

= 0, (11)

where gαβ(x
µ;Xµ) is the metric in the coordinate system ξµ(xµ;Xµ) at the

point ξµ(xµ;Xµ). That is, in the local inertial frame associated with the
point x = X the metric is ηαβ at x = X and its first order derivatives at x =
X vanish. Note that ∂ξg(ξ;X) = (∂x/∂ξ)∂xg(ξ(x);X) = (∂x/∂ξ)∂xg(x;X).

We prove below that this implies

∂gαβ
∂xµ

= gβρΓ
ρ
µα + gαρΓ

ρ
µβ. (12)

Adding the permutations with respect to αβµ (and multiplying by the in-
verse gαβ of gαβ), we find

Γα
µν =

1

2
gαρ

(
∂gµρ
∂xν

+
∂gνρ
∂xµ

− ∂gµν
∂xρ

)
. (13)

This relation implies that the effects of gravity, Γα
νρ(x

µ), are determined by
the metric gαβ(x

µ).
Proof: Consider a coordinate system xµ with metric gαβ(x

µ). Let us
define gαβ(x

µ;Xµ) as the metric in the coordinate system ξµ(xµ;Xµ). We
know that gαβ(x

µ = Xµ;Xµ) = ηαβ . We will now show that eq. (11) leads
to eq. (12).

The metrics are related through

gαβ(x
µ) = gµν(x

µ;Xµ)

[
∂ξµ(x′µ;Xµ)

∂x′α
∂ξν(x′µ;Xµ)

∂x′β

]
x′µ=xµ

. (14)

Taking the derivative with respect to xµ and setting xµ = Xµ we obtain[
∂gαβ(x

µ)

∂xλ

]
xµ=Xµ

=

[
∂gµν(x

µ;Xµ)

∂xλ
∂ξµ(xµ;Xµ)

∂xα
∂ξν(xµ;Xµ)

∂xβ

]
xµ=Xµ

+ ηµν

[
∂2ξµ(xµ;Xµ)

∂xα∂xλ
∂ξν(xµ;Xµ)

∂xβ
+

∂ξµ(xµ;Xµ)

∂xα
∂2ξν(xµ;Xµ)

∂xβ∂xλ

]
xµ=Xµ

= ηµν [Γ
ρ
αλ(X

µ)
∂ξµ(xµ;Xµ)

∂xρ
∂ξν(xµ;Xµ)

∂xβ

+Γρ
βλ(X

µ)
∂ξν(xµ;Xµ)

∂xρ
∂ξµ(xµ;Xµ)

∂xα
]xµ=Xµ

= Γρ
αλ(X

µ)gρβ(X
µ) + Γρ

βλ(X
µ)gρα(X

µ).

Two important points should be explained here.
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• The condition c2 = −gαβ(x
µ)(dxα/dτ)(dxβ/dτ), with gαβ(x

µ) ≡ gαβ(x
µ;Xµ =

xµ), can be chosen to hold at τ = 0. Eq. (12) ensures that if it holds
at τ = 0 it holds also at τ > 0:

d

dτ

[
gαβ

dxα

dτ

dxβ

dτ

]
=

∂gαβ
∂xµ

dxα

dτ

dxβ

dτ

dxµ

dτ
+ gαβ

d2xα

dτ2
dxβ

dτ
+ gαβ

dxα

dτ

d2xβ

dτ2

=
∂gαβ
∂xµ

dxα

dτ

dxβ

dτ

dxµ

dτ
− gαβΓ

α
µν

dxµ

dτ

dxν

dτ

dxβ

dτ
− gαβΓ

β
µν

dxµ

dτ

dxν

dτ

dxα

dτ

=

(
∂gαβ
∂xµ

− gβρΓ
ρ
µα − gαρΓ

ρ
µβ

)
dxα

dτ

dxβ

dτ

dxµ

dτ
. (15)

• The equation of motion (5) can be obtained using eq. (13) by requiring∫ B
A dτ , with τ given by eq. (2), to be stationary.

1.2 Newtonian limit- slow motion in a stationary weak field

Slow motion implies that dxi/cdτ ∼ v/c ≪ dx0/cdτ = dt/dτ ∼ 1. The
equation of motion is therefore approximately given by

0 =
d2xα

dτ2
+ Γα

00(x
µ)

(
dx0

dτ

)2

. (16)

Weak field implies gµν = ηµν + hµν with h ≪ 1. Since the field is stationary
we have

Γ0
00 =

1

2
g0ρ

(
∂g0ρ
∂x0

+
∂g0ρ
∂x0

− ∂g00
∂xρ

)
= −1

2
g0i

∂g00
∂xi

= O(h2), (17)

Γi
00 =

1

2
giρ

(
∂g0ρ
∂x0

+
∂g0ρ
∂x0

− ∂g00
∂xρ

)
= −1

2
gij

∂g00
∂xj

= −1

2

∂h00
∂xi

+O(h2). (18)

Eqs. (17) and (16) imply dt/dτ = const., which allows replacing τ with t in
eq. (16) leading to, using eq. (18),

d2xi

dt2
=

1

2
c2
∂h00
∂xi

. (19)

In order to obtain the Newtonian limit we must have h00 = −2Φ/c2+const..
Defining Φ to vanish at infinity (far away from sources) the constant must
vanish and we have

g00 = −
(
1 +

2

c2
Φ

)
. (20)
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• Discuss meaning of weak field: Earth, Sun.

• Discuss time: For a stationary clock dτ =
√
−g00dt = (1 + Φ/c2)dt.

Connect to redshift, Doppler in ”elevator”. Discuss t as determined by
a clock at infinity, with Φ = 0, and ”broadcasted” to all other points.

6



2 The eqs. of physics with gravity

The laws of physics are written in special relativity (SR) as equalities be-
tween tensors and their derivatives. Recall vectors and tensors.

• Scalars- unchanged under coordinate transformation. dτ , proper den-
sity ρ0.

• Contra-variant vector- transforms like the coordinates, dx′µ = (∂x′µ/∂xα)dxα:
V ′µ = (∂x′µ/∂xα)V α = Λµ

αV α, example uµ = dxµ/dτ .

• Covariant vector, V ′
µ = (∂xα/∂x′µ)Vα, example ∂f/∂xµ. If V µ is

contra-variant, Vµ = gµνV
ν is covariant

V ′
µ = g′µνV

′ν = g′µν
∂x′ν

∂xα
V α = gβγ

∂xβ

∂x′µ
∂xγ

∂x′ν
∂x′ν

∂xα
gαδVδ =

∂xβ

∂x′µ
Vβ.

(21)

• Tensor T ′αβ
γ = .... Examples: gµν , ∂νV

µ in SR.

• Product, contraction, lowering/rasing of indices of a tensor give a ten-
sor, g′µνT

′µνα = (∂x′α/∂xβ)gγδT
γδβ .

Example: EM.Maxwell’s eqs.: ∇B = 0, ∇E = 4πρ, ∇×E = −(1/c)∂tB, ∇×
B = (1/c)∂tE + (4π/c)j. We can write B = ∇ × A (∇B) and E =
−(1/c)∂tA−∇Φ (∇×E). Defining Aµ = {Φ,A} we have

Fµν = ∂µAν − ∂νAµ =


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

 , (22)

where ∂µ ≡ ∂/∂xµ. The eqs. for ∇B and ∇×E are

∂αFβγ + ∂γFαβ + ∂βFγα = 0. (23)

Defining jµ = {cρ, j} = {c,v}ρ = {c,v}γρ0 = uµρ0 where ρ0 is the proper
charge density, the eqs. for ∇E and ∇×B are

∂νF
να = −4π

c
jα. (24)

These eqs. define F in any coordinate system. Since jµ is a vector (and
derivation in SR, contraction and lowering/rasing of indices of a tensor give
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a tensor) F is a tensor- if Fµν is the solution at coordinate system x, then
F ′µν = Λµ

αΛν
βF

αβ is the solution at x′ = Λx,

∂′
νF

′να = (Λ−1)γν∂γΛ
ν
µΛ

α
βF

µβ = Λα
β∂µF

µβ = −4π

c
Λα
βj

β = −4π

c
j′α . (25)

The eqs. for particle acceleration, dp/dt = q(E + c−1v × B), may be
written as

m
duµ

dτ
= fµ =

q

c
ηναF

µνuα. (26)

This eq. is the same in all systems (related by Lorentz transformations)
since it is an equality between tensors and their contractions, multiplications
and derivatives. In the particle’s rest frame, where uµ = {c,0}, the rhs is
fµ = −qFµ0 = {0, qE} as required.

Covariant derivatives.
In SR, the physics eqs. are the same in all systems (related by Lorentz

transformations) since they are expressed as equalities between tensors and
their derivatives, and the derivatives of tensors (as well as their contractions)
are also tensors. This, however, is no longer true in GR. If V µ is a vector
then

∂V ′µ

∂x′ν
=

∂xβ

∂x′ν
∂

∂xβ

(
∂x′µ

∂xα
V α

)
=

∂xβ

∂x′ν
∂x′µ

∂xα
∂V α

∂xβ
+

∂xβ

∂x′ν
∂2x′µ

∂xβ∂xα
V α. (27)

The second term of the RHS destroys the tensor behavior (in special relativ-
ity the transformations are linear, and this term vanishes). We may obtain
the tensor that reduces to the regular derivative in the local inertial frame
in the following way. Taking x′ to be the inertial frame at X, ξ(x;X), we
have

∂V Xµ

∂ξν
=

∂xβ

∂ξν
∂ξµ

∂xα
∂V α

∂xβ
+

∂xβ

∂ξν
∂2ξµ

∂xβ∂xα
V α. (28)

Multiplying by (∂ξν/∂xγ)(∂xδ/∂ξµ),

∂ξν

∂xγ
∂xδ

∂ξµ
∂V Xµ

∂ξν
=

∂V δ

∂xγ
+

∂xδ

∂ξµ
∂2ξµ

∂xγ∂xα
V α, (29)

which implies

∂ξν

∂xγ
∂xδ

∂ξµ

[
∂V Xµ

∂ξν

]
ξ(x=X;X)

=
∂V δ

∂xγ
+ Γδ

γαV
α. (30)

We therefore define the covariant derivative as

DV δ

Dxγ
≡ ∂V δ

∂xγ
+ Γδ

γαV
α. (31)
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This derivative reduces to the regular derivative in the local inertial frame,
and the derivative of the vector yields a tensor,

DV ′δ

Dx′γ
=

∂x′δ

∂ξµ
∂ξν

∂x′γ
dV Xµ

dξν
=

∂x′δ

∂xα
∂xα

∂ξµ
∂ξν

∂xθ
∂xθ

∂x′γ
dV Xµ

dξν
=

∂x′δ

∂xα
∂xθ

∂x′γ
DV α

Dxθ
.

(32)
For a covariant vector we have

DVδ

Dxγ
≡ ∂Vδ

∂xγ
− Γα

γδVα. (33)

This can be shown using a similar derivation as for the contra-variant vector,
choosing this time x as the inertial ξ system.

Consider next a vector defined along a path, V µ(p) where p is a param-
eter along the path (e.g. particle momentum).

dV ′µ(p)

dp
=

d

dp

[
∂x′µ

∂xα
V α(p)

]
=

∂x′µ

∂xα
dV α

dp
+

∂2x′µ

∂xβ∂xα
dxβ

dp
V α. (34)

Again, choosing the primed system to be the local inertial frame,

dV Xµ(p)

dp
=

∂ξµ

∂xα
dV α

dp
+

∂2ξµ

∂xβ∂xα
dxβ

dp
V α, (35)

and multiplying by ∂xγ/∂ξµ,

∂xγ

∂ξµ
dV Xµ(p)

dp
=

dV γ

dp
+ Γγ

αβ

dxβ

dp
V α. (36)

We therefore define
DV δ

Dp
≡ dV δ

dp
+ Γδ

γα

dxγ

dp
V α. (37)

Similarly, we define
DVδ

Dp
≡ dVδ

dp
− Γα

γδ

dxγ

dp
Vα. (38)

The covariant derivative of the metric vanishes,Dµgαβ = ∂µgαβ−Γν
αµgνβ−

Γν
βµgνα = 0, since we require the metric derivatives to vanish in the local

inertial frame. This implies that contraction (and lowering and raising of
indices) and covariant derivation are commutative.

The prescription for writing the eqs. of physics:

1. Write special relativity eqs. in tensor form;

2. Replace ∂ with D and ηµν with gµν .
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This gives eqs. that are the same in all frames, and reduce to SR in the
local inertial frames. For EM we have

DνF
να = −4π

c
jα, m

Duµ

Dτ
=

q

c
gναF

µνuα. (39)

For the motion of a particle under gravity we have

Duµ

Dτ
= 0, i.e.

duµ

dτ
+ Γµ

αβu
αuβ = 0. (40)
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3 Gravity

We define the parallel displacement of a Sµ by DSµ/Dp = 0,

dSµ

dp
= −Γµ

αβ

dxα

dp
Sβ. (41)

It is straightforward to show that for a closed infinitesimal path around some
point Xµ,

∆Sµ =
1

2
Rα

µβγ(X
µ)

∮
dxβxγSα, (42)

where the Riemann-Christpffel tensor is

Rα
βγδ ≡

∂Γα
βγ

∂xδ
−

∂Γα
βδ

∂xγ
+ Γα

δµΓ
µ
βγ − Γα

γµΓ
µ
βδ. (43)

The Riemann-Christoffel tensor is the only tensor that can be formed from
the metric and its 1st and 2nd derivatives, and is linear in the second deriva-
tives. The Ricci tensor is Rβδ ≡ gαγRαβγδ and the curvature scalar is
R ≡ gαβRαβ . A useful (Bianchi) identity

Dµ

(
Rµν − 1

2
gµνR

)
= 0. (44)

A necessary and sufficient condition for the existence of a flat coordinate
system (where the metric is ηµν) is that Rα

βγδ = 0 everywhere (and that
there is a point where gµν has 1 negative and 3 positive eigenvalues). This
tensor is therefore called the curvature tensor.

The result for weak field, g00 = −(1 + 2Φ/c2), may be written, recalling
∇2Φ = 4πGρ, as

∇2g00 = − 2

c2
∇2Φ = −8πGρ

c2
= −8πG

c4
T00. (45)

[Recall SR energy momentum tensor- what the different components are,
the example of an ideal fluid.] We therefore guess that the field eqs. are

Gµν = −8πG

c4
Tµν , (46)

where Gµν is a tensor composed of gµν and its 1st and 2nd derivatives.
The requirements from Gµν are: (i) Symmetric tensor; (ii) Each of its terms
contains 2 derivatives in order for the dimensions to be L−2 (unless there is a
new constant with dimensions of length in the theory); (iii) gµαDαGµν = 0
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to conserve energy; (iv) G00 = ∇2g00 in the Newtonian limit (stationary
weak field produced by non-relativistic matter).

Requirement (ii) implies that Gµν = c1Rµν + c2gµνR. (iii) determines
c2/c1 = −1/2,

DµG
µν = c1DµR

µν + c2g
µνDµR =

(
1

2
c1 + c2

)
gµνDµR = 0 (47)

(gµνGµν = (c1 + 4c2)R so that DµR = 0 everywhere only if DνT
µ
µ = 0

everywhere, which does not hold for an arbitrary mass distribution). The
Newtonian limit determines c1 = 1. In this limit, |Tij | ≪ |T00| so that
|Gij | ≪ |G00| implying Rij ≃ 1

2gijR ≃ 1
2δijR, and R ≃ ηµνRµν = −R00+

3
2R,

so that R = 2R00 and G00 = 2c1R00. For a weak field, R00 =
1
2∇

2g00 hence
c1 = 1.

Thus, the field equations are

Rµν −
1

2
gµνR = −8πG

c4
Tµν . (48)

Contraction with gµν gives

R =
8πG

c4
gµνTµν , (49)

which may be used to write the field eqs. as

Rµν = −8πG

c4

(
Tµν −

1

2
gµνg

αβTαβ

)
. (50)

If we allow a constant with the dimensions of length, we may have Gµν =
Rµν − (1/2)gµνR − λgµν (where the dimensions of λ are L−2). This would
not give the correct Newtonian limit, so λ must be small enough. In this
case we have

Rµν −
1

2
gµνR− λgµν = −8πG

c4
Tµν . (51)

Contraction with gµν gives

R =
8πG

c4
gµνTµν − 4λ, (52)

which may be used to write the field eqs. as

Rµν + λgµν = −8πG

c4

(
Tµν −

1

2
gµνg

αβTαβ

)
. (53)
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