Galaxy clusters and the Sunyaev-Zel’dovich effect

Doron Kushnir

1. Galaxy clusters

Clusters of galaxies (GC) are configurations containing typically hundreds of galaxies in a
region about r ~ Mpc in size. The radial velocity dispersion of the galaxies is o, ~ 10>kms™!,
suggesting that GC are gravitationally bound, otherwise they would disperse on a crossing timescale
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where o, has been substituted for the radial velocity, v,. The required mass to keep GC bound is

(the binding energy is twice the kinetic energy from the virial theorem):
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where we assumed that the galaxy velocity vector orientations are uncorrelated, (v?) = 302. The
total luminosity from a GC is L ~ 10*3 L, (that is ~ 1000 galaxies with a typical galaxy luminosity
of ~ 1019L,), such that the mass-to-light ratio is M/L ~ 70 M /L. Careful studies that also
take into account the mass profile with the GC suggest M /L ~ 300 My /Le. This can be compared
with the mass-to-light ratio in galaxies, M/L ~ (1 —10) My /L, such that only ~ 10% of the mass
in GC can be accounted for by the galaxies (the "missing mass” problem). The missing mass is
naturally explained in the ACDM model, where the mass of the GC is dominated by DM.

Observation by the X-ray satellite Uhuru (70s) established that

e GC are the most common bright extragalactic X-ray sources, with luminosities Lx ~ 1043 —

10% ergs™!.
e The X-ray sources associated with GC are extended with sized 0.2 — 3 Mpc.

e GC have X-ray spectra that show no strong evidence for low-energy photoabsorption, unlike
the spectra of compact sources.

e The X-ray emission from GC is not time variable, as is the emission from many point sources
of X-rays.

These finding suggest that the emission from GC is diffuse, and not the result of one or many
compact sources. Later spectral X-ray observations with OS0O-8 and Ariel-5 established that the
primary X-ray emission mechanism is thermal emission from diffuse hot intra-cluster gas (ICM).

To appreciate this, we next discuss bremsstrahlung emission.
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2. Bremsstrahlung

Radiation due to the acceleration of charge in the Coulomb field of another charge is called
bremsstrahlung of free-free emission. The ICM should have temperatures such that the thermal ve-
locity of the protons, ~ \/T'/m,, is comparable to the velocity of the galaxies in the GC, as both are
bound by the same gravitational potential. We find T' ~ my02 = my,c?(o,/c)? ~ Gev(1072/3)% ~
10keV, in the X-ray range. The electrons are non-relativistic with 7'/(mec?) ~ 10/500 = 0.02 < 1,
so we focus on non-relativistic bremsstrahlung. Although quantum treatment is required, as the
photons with energies comparable to that of the electrons can be produced, we will use classical
treatment and state the quantum results as corrections (Gaunt factors).

Consider an electron with charge —e that moves in a fixed Coulomb field of an ion with charge
Ze located et the origin (the relative accelerations are inversly proportional to the mass, so we
neglect the acceleration of the ion). We neglect the deviation of the electron’s path from a straight
line (small-angle scattering regime), which has an impact parameter b with the ion. T}}e dipole

moment is d = —eﬁ, where R is the position of the electron. The second derivative is d = —el,
where U is the velocity of the electron. We state a few results from the non-relativistic dipole
approximation for the power emitted into solid angle df2, the total power emitted, and the total
energy per frequency range:
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where © is the angle with the direction of the acceleration (no radiation is emitted along the
direction of the acceleration and the maximum is emitted perpendicular to the acceleration), (i(w)
is the Fourier transform of d(t), d(t) = [~ exp ™! d(w)dw. Note that the dipole moment in an
electron-electron system or in an ion-ion system is zero, justifying out focus on the electron-ion

system. Taking the Fourier transform of d= —e¥, we find

~
=

—wd(w) = —6/ Texp ™ dt. (4)
2 J_

The electron is in close interaction with the ion over a time interval 7 = b/v (the collision time).
For wr > 1 the exponential oscillates rapidly and the integral is small. For wr < 1 the exponential
is unity, so we can write
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where Av is the change of velocity during the collision. Using Equation (3) we find
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dw 0, wT > 1,
Av is almost normal to the path, so we can estimate
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The emission from a single electron is, therefore,
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dw 0, b>v/w.
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For ion density n;, electron density n., and a fixed electron speed v, the flux of electrons per
unit area per unit time on one ion is n.v with the area element of 2wbdb. The total emission per
unit time per unit volume per unit frequency range is then

aw AW (b)
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min

where by, discussed below. We use (and later justify) the low frequency limit of Equation (8) in
Equation (10) to find
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where bpax is where larger b values satisfy b < v/w and the contribution to the integral is negligible.
Because of the logarithmic dependence we can just take byax = v/w, since for most logarithmic
intervals the low frequency asymptotic limit is applicable. The value of by, can be estimated
11(1 )two ways. The small-angle scattering approximation is invalid when Av ~ v, so we define
briin

The transition between bgi)n and bgi)n happens when mv?/2 ~ Z2Ry, where Ry = a’m.c?/2 =

= 4Z62/7rmev2. The classical treatment is invalid where bmev ~ h, so we define bgi)n = h/mev.

me*/2h? ~ 13.6eV is the Rydberg energy for the hydrogen atom.

The exact results are tabulated in terms of the Gaunt factor, gs¢(v,w):

dW  16me®
dwdVdt — 3y/3c3m2v

neniZQfo(v,w), (11)

where

grr(v,w) = \f In (bmax) : (12)

bmin
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For the thermal emission we need to integrate over the probability than en electron has a speed
in the speed range dv:

2
9 _Mev
dP x v°exp < 5T > dv. (13)

We find
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where vy is set by the condition that at least one photon can be emitted (photon discreteness
effect), hv < mev?/2, or vmin = \/2hv/me. Evaluating Equation (14), we find
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where g¢ (T, v) is the velocity averaged Gaunt factor. We see the T-1/2 dependence and that the
spectrum is flat in log-log up to its exponential cut-off at hv ~ T'. The detection of such spectrum
from GC (together with line emission of highly ionized iron) established that the X-ray emission
is thermal with 7'~ 10keV (we are actually assuming here optically thin plasma, see below). The
values of gss for hv/T > 1 are unimportant because of the exponential cut-off. gg; is of order
unity for hv/T ~ 1 and it is in the range 1 to 5 for 107* < hv/T < 1, such that setting grr = 1
provides a good order of magnitude estimate. Writing Equation (15) in CGS units, we find:

g AW
VT dvdVdt

=6.8 x 10738772, n; 22 exp(—hv/T)gspergs ' em > Hz !, (16)

where T is in K.

The total power per unit volume emitted by thermal bremsstrahlung can be obtained by
integrating Equation (15) over frequency:

dw(T) 297eb 1 o0
:7,/ T -1y, Z2/ —hv /TG d
dVdt 3c3me \ 3me et 0 exp(—hv/T)gysdv
27eb  [27T
= — 77’LeniZ2gB, (17)
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where gp(T') is a frequency average of the velocity averaged Gaunt factor, which is in the range
1.1 to 1.5. Choosing a values of 1.2 will give an accuracy to within about 20%. A more straight
forward way to write Equation (18) is (recall o7 = (87/3)r, ro = €%/mec):
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where the time between collisions is teon ~ (o7vin;) ™! with the thermal velocity vy, ~ /2T /me.
We see that in each collision the electron emits am.c?Z2. Equation (18) in CGS is

aw
S =

= v 1.4 x 10*27T1/2neni22§]3 ergs tem ™3, (19)

where T is in K. We can now estimate the ICM density, assuming it is ionized hydrogen:
4
Lx ~ eV ~ 1.4 x 1072 (108 K)"/?n? x 1.2§(Mpc)3 ~ 2 x 107 n2 ergs™!. (20)

For Lx = 10 ergs™! we find n ~ 1072 ecm™>. The total ICM mass is M, ~ (47/3)Mpc*nm,, ~
10" My, which is comparable to the mass in the galaxies, but is still 10 — 20% of the total GC
mass. This is explained with Q,,/Q ~ 6.5

We assumed so far that the plasma is optically thin. The thermal free-free absorption coeffi-

cient, a{:f , is related to the emission by Kirchhoff’s law:

i Eff
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the Planck function. We find

off = 3 (2T e 228 (1 exp(—h/T)) g (23)
v 3me o P g
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In CGS units we get
off = 3.7 x 10T 2 nen; 22073 (1 — exp(—hw/T)) Grpem ™t (24)

where T is in K. For any v value of interest 1/ a,ij > Mpec, justifying the thin plasma approximation.
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3. Compton scattering

We next would like to calculate the effect of the scattering of the CMB photons by the ICM.
The electrons are non-relativistic and the energy of the CMB photons is much below the ICM
temperature, hv < T. The optical depth for scattering in the ICM is nopr ~ le — 3 x 6 x 10725 x
Mpc ~ 1073, so we expect a small effect.

We begin by considering Thomson scattering, where the incident photon is described as an
electromagnetic wave. For non-relativistic velocities of the electron we can neglect magnetic fields
(recall that E' = B for an electromagnetic wave), such that the equation of motion due to a linearly
polarized wave is me%’ = ecFysinwyt, where € is the E-field direction. For the dipole moment we

get md = e?¢Ey sinwot. From Equation (3) we find

dpP elEZ .,
bl in2©
s} 8rm2c? S
B2
p = ——0 25
) (25)

where the time average of sin? wot gives a factor 1/2. Defining the differential cross section do for
scattering into df) by

dpP do  cE} do
(g = 207 26
dQ) < >dQ 8r dQ’ (26)
where (S) is the incident flux, we find
da) et 9 . 9
— = sin” © = rsin” ©. (27)
(dQ polarized mgc4
For the total cross-section we integrate over solid angle:
do ! 8T
o= [25= 2mre /_1(1 — p)dp = ?r%. (28)

(Alternatively, we can use P = (S)o).

Note that the scattered radiation is linearly polarized in the plane of € and the direction of the
scattering n. The cross section for scattering of unpolarized light can be obtained by writing the
unpolarized beam as an independent superposition of two linear-polarized beams with perpendicular
axes (€1 in the plane of the incident and scattered direction and €3, perpendicular to this plane).
As before, © is the angle between ¢; and n (the angle between é; and n is 7/2), and we define
0 = 7/2 — © (the angle between the direction of the beam, é; x €3, and n). The unpolarized
differential cross section is the average of the linear-polarized cross-sections through angles © and

/2
<da> 1 <da(@)) N (dU(TF/2)>
dQ unpolarized 2 dQ polarized ds2 polarized

1 1
= 57’8(1 + sin? 0)= 57“3(1 + cos? 0), (29)
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which depends only on the angle between the incident and scattered direction, as should be for

unpolarized radiation. It is also symmetric under reflection (0 — —6) (forward-backward symme-
try). The total cross-section is obtained by integrating over solid angle (note that cosf has a flat
distribution), to obtain ounpolarized = Opolarized = (87/ 3)7"(2). We obtain the same total cross-section
since an electron at rest has no net direction intrinsically defined. Finally, the polarized intensities
in the plane normal to 7 and perpendicular to the plane are in the ratio cos® : 1, such that
the scattered wave has IT = (1 — cos?6)/(1 + cos?#) > 0 degree of polarization. So an electron
scattering of a completely unpolarized incident wave produces a scattered wave with some degree
of polarization (no net polarization for # = 0 and 100% polarization for 6 = 7/2).

The cross sections above are frequency independent and the energy of the photon is unchanged
after scattering, ¢ = €1, so the scattering is coherent or elastic. These results are only valid for
low frequency where we can use the classical description. As hv becomes comparable to m.c? (X-
rays) we must use the quantum mechanical cross sections. We next consider the quantum effects
(Compton scattering), which affect both the kinematics and the cross sections.

The kinematics are altered because a photon has a momentum hv/c and an energy hv, so the
scattering is no longer elastic (€7 # €) because of the recoil of the charge. The initial and final
four-momenta of the photon are P,; = (¢/c)(1,7;) and Pys = (e1/c)(1,7y) with an angle § between
n; and ny. The initial and final four-momenta of the electron are P.; = (mec,0) and Py = (E/c, D).

Conservation of momentum and energy is P,; + P; = Py + Py, so we get:
2 2
[Fefl” = [Pyi+ Pei — Pyl
= [(Bfe,p)l> = |(me+efc—eifeens/c—eiy/c))’
= —F*/ 4+ = —(mP 43/ + 3/ + 2mee — 2meer — 2ee1 /)
+ /P +€1/c? — 2ee; cos B/ c?
2
% (cos@ —1) = 2mcer —2mee
€
= €1 = . 30
1+ <5 (1 —cosb) (30)

In terms of wavelength, A\ = hc/e, we get
A1 — A=A (1 —cosb), (31)

where Ao = h/mec =~ 0.02426 A is the Compton wavelength. So there is a wavelength change of
order ). in scattering. For A > A\, (hv < mec?) the scattering is elastic with no net change of the
photon energy in the rest frame of the electron.

The quantum effect on the cross section for unpolarized radiation is given by the Klein-Nishina
formula (given here without a proof)

do r3el (e €
dQ 2 ¢

— + L —sin? e> . (32)

€1 €
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For € ~ ¢; we get the classical expression. The effect is a reduction in the cross section for high
energies, making Compton scattering less efficient. The total cross section can be shown to be

1+ 3z
(1+2x)2]°

3 [l—i—x (23:(1—1—3:) (33)

7=y 1+ 2z

1
1 —In(1 + 2m)> + o In(1 + 2z) —

2
where © = hv/m.c?. In the non-relativistic regime (z < 1) we get o ~ op(1 — 2z + 2622/5 + ...)
and in the ultra relativistic regime (z > 1) we have 0 = (3/8)or(In2x 4 1/2) /.

We next consider the case that the electron is in motion, with some 8 (and Lorentz factor 7).
We assume that in the rest frame of the electron hv < m.c?, so that we can neglect the relativistic
correction in the Klein-Nishina formula. This is obviously the case for the CMB photons and the
thermal electrons in the ICM, but even for relativistic electrons in the ICM the condition is fulfilled
for v < mec?/Toms ~ 107, which is larger than expected for the relativistic electron population in
the ICM. We get in the rest-frame of the electron

/ ¢ ’ ¢
€ = ; ~e |l— 5
1+ <% (1—cosO) MeC

Mec?

(1 —cos©)], (34)

where © is related to the angels in the lab frame (see below). Note that for relativistic electrons,
the energies of the photon before scattering, in the rest frame of the electron, and after scattering
are in the approximate ratios 1 : v : 2, allowing to convert a low-energy photon to a high-energy
one by a factor of 42 (limited by ymec? from energy conservation). In such a case the scattering
process is called inverse Compton. Before the availability of GC X-ray spectrum observations, it was
suggested that the X-ray emission is inverse Compton from a population of relativistic electrons.
The energy density of relativistic electrons in the ICM is in fact much smaller than the thermal
energy density, and can be probed with radio (and possibly ~-ray) observations. In what follows,
we focus on the non-relativistic electrons in the ICM.

4. The Kompaneets equation

Consider the isotropic photon phase space density, n(w), due to scattering from electrons. The
Boltzman equation for n(w) is

) . / &p / 2 9 [foFnlen) (14 n()) — L @n(@)(1 + @), (35)

where we consider the scattering events p + w <> p; + w1 over electrons, with the phase density of
momentum p’ given by fe(p), including the effect of stimulated scattering with the 1 + n factors.
We next expand the Boltzman equation to second order in the small fractional energy transfer per
scattering, yielding an approximation called the Focker-Planck equation. For photons scattering off
a non-relativistic, thermal distribution of electrons with temperature 7', the Focker-Planck equation
is known as the Kompaneets equation. We define the dimensionless energy transfer to the photons
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hMw) — w)
T

A <1, (36)

and expand n(w;) and f.(E1), where fo(E) = ne(2rm.T) %2 exp(—E/T), E = p*>/2m.. The
second order expansion for n(w) is

on(w) 1 0*n(w
n(w)) = nw)+ (w1 —w) 8(w ) + §(w1 —w)? 3w(2 )
= n+An + %AQTL”—F...? (37)

where n/ = On/0z, n" = 8°n/0z?, x = hw/T. The second order expansion for f.(E;) is

E,—F 1(E; — E)?

fe(B1) = fe(E)— T fe(E)‘FE T2

= fetAfo+ %Nfe. (38)

fo(B) + ..

Using these expansion in Equation (35) we find:

10n(w)
c Ot

//d3 do —dQfe [(1 + A+ 1AQ)(n + An' + %A2n")(1 +n)—n(l+n+An' + %AQn")

%

(n'(14n) +n(l+n) —nn/ //d3 —dee

+ (; (1+n)+;n(1+n)+n(1+n)—nn)//d3dede6A2

1 1
(n' +n(l+n)) + (277,” + in(l +n)+n'(1+ n)) L. (39)
The I term gives the ”secular” shift in energy, and the I term gives the ”random walk” change

in energy. We next calculate these terms.

Suppose the electron is traveling in the z-direction with four-momentum P,; = (E/c,0,0,p)
and the photon is moving with polar and azimutal angles 1 and ¢, respectively, such that P,; =
€/c(1,sinn cos ¢, sin 7 sin ¢, cosn), and after the scattering P,y = €1 /c(1,sinn; cos ¢y, sinn; sin ¢1, cos 7).
We perform a Lorentz transformation to a frame of reference in which the electron is initially at
rest, in which the cross section takes the simple form. In the electron rest-frame, the initial and
final photon four-momenta are LP,; and LP,, where LY is the Lorentz transformation

vy 00 =By
1
|0 0 0 | (40)
0 01 0
By 0 0 ~«
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where 3 = cp/F and v = (1 — 52)71/2. We define LP,; = ¢ /c(1,sin 5’ cos ¢/, sinn’ sin ¢/, cos ') and
LP,; = € /c(1,sinn] cos ¢/, sinn) sin ¢}, cosn;), and we find

¢ = e(y—Bycosn),
¢ = ey~ Pycosm),
¢ € cosn—f3
cosf = (=By+ycosn)7 =T Beosn’
cosn — cosn + 8
T = 11 Bcos n'’
, cosm — f3 cosny +
= 2n-Z =2 hTE 41
o5, 1—Bcosm’ oS 1+ Bcosn (41)
From symmetry, the azimuthal angles do not change, but also easy to directly verify:
sinn’cos¢’ = sinncos qbi,
€
S ocosd = e,s%n 77/ _ cos ¢sinn
esinn’\/(y — Bycosn)® — (=B + ycosn)?
_ : ;osés;nn S (42)
VAL = B%) =21 = §%) cos? )
The angle cos © in the rest frame of the electron (Equation (34)) is given by:
cos® = ﬁ . ﬁ = cosn’ cosny + sinn’ sinnj(cos ¢’ cos ¢ + sin ¢’ sin ¢))
= cosn' cosny + sinn’ sinn] cos(¢’ — ¢}). (43)

The fractional change in the photon energy in the original frame of reference can then be expressed
as

5 cosn'+f_

a-e¢ _ an-Preosn y alT ey
B "y — 5 cosn+8
€ € v — Bycosm 1_61+6closn
/ / ,
€] 1+ Bcosn) 1
= ST T heey T lE i 1 — 1=
€ 1+ Bcosn 1+ Beosn/ ( + B cosn)) Bcosn’
¢ B(COSnl—cosn)
¥ im0 44
me02( c0s©) + 1+ Beost/ (44)

where we neglected €3 terms or higher.

We next integrate over solid angle in the rest-frame of the electron, using Thomson cross-section
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(Equation (29)) :

30 1 21
(e —€) = 167::/1 d(cosny) ; de) (e1 — €)(1 + cos? )
3o 1 ’ 2 , ec’ Gﬁ(COS ni — oS 77/) ,
167 J1 feos 771)/0 “ mec2( cos®) + 1+ Bcosn/ (1 + cos” O)
efcosn’ 3or /1 / /27r / ,
- d d¢' (1 + cos? ©
T+ Boosry 16n ), eosm) | doh(l 4 cos™6)
e’ 3or /1 d( 2 /27r deh (1 O)(1 + cos? ©)
T T 2 A cos — cos
mec? 16w J_4 T 0 1 cos
_orefcosy  ored -

1+ Bcosny  mec?’

where in the transition from the second to third line we used that the cosn} term is multiplying an
even function so the integral over this term is zero, and the geometrical integrals in the third and
forth line are analytical.

We next need to integrate over the electron direction of motion (or over 7). Note that cosn has
a flat distribution (and not cosn’). Also, we must take into account the relative velocity between
the photon and the electron in the lab frame, which changes the rate of collisions:

2|PeiP’yi’ f(E/C—pCOSU) cp 1_62
U=t c Te 7 CO87 B cosn T+ Boosty (46)
Hence the average energy change is
Y (e — eud cosn
((e1 =€) : : (47)

f_ll ud cosn

Since dcosn = dcosn/'(1 — 82)/(1 + Bcosn')?, the denominator is

! (1 - 62)2 /I
/_1 —(1 —i—ﬂcosn’)?’dcosn =2, (48)

so we get

1t (1-p2)? oreBcosn  opee ,
(e —e) = 2/_1 (14 Bcosn')? <_1 + Beosny m602> deost. (49)

The first order terms in 8 make no contribution to the integral over 7'. so the leading terms are
second order in 3 or first order in €/(mec?):

/ 1 !
oT€e 1 9 2/ cos ,
— ~ — - = 1-— —d
(a—a) ~ —T0 — Jored(L= ) | e deosn
/ 2
oree 4 9 oTe€ 4 9
~ — — ~ — — . 50
MeC? 30T65 mec? +3UT6ﬁ (50)
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Since the mean photon fractional energy change contains terms of order 32 and €/mec?, we are
interested in any terms in the average squared fractional energy change of the same order. Inspection
of Equation (44) shows that to this order, we have:

2
@ ~ 3% (cosn) — cos 77’)2. (51)
€

To this order we can neglect the difference between v and unity and between dcosn and dcos7/,
so that

307622 1 1 2
UTB&/ dcos n’/ d cos ) / do (cos n] — cos 77’)2 (1 + cos? @)2
32m 1 -1 0

({(er = )%)
207

= = [2e? (52)

The last step is integrating over f., so we get

€2 _3/92 [
I, = 47rneaTﬁ(27rmeT) 3/23/ pPdp exp(—p*/2m.T) 5>
0

8 _ ©

= WneaT:c2(27rmeT) 3/2/0 pdp exp(—p®/2m.T)
16T o [ 4 2

_ 2

= 2z neaTmec2 (53)

and
€ —3/2 > 2 4 9 €
I, = 47T7’LeO'TT(27TmeT) ; p“dpexp(—p~/2meT) gﬁ Tl
o, 4 e [®, ,
€ T
= Adxn.or s xneJTW = zneor(4 — ) vt (54)

We see that energy is gained or lost depending on the sign of 4 — z. We substitute these into
Equation (39) to finally find the Kompaneets equation:

0 T 1 1
aTn = (n’—l—n—l—n2)x(4—x)m C2+2<2n"—|—2n(1—|—n)—i—n/(1+n))a}2m =
(& e e
T 10
= 2 op 0 )], (55)
e

where t. = (neopc)t is the time measured in units of mean time between scatterings.
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The steady-state solution of the Kompaneets equation is given by

0 = n'+n+n?
N dn 9
— =—-n—n
dzx

S
dn— n(l+n) n n+l

<1+n>
= x—290=1In
n

1
= 14+ — =exp(z — )
n
1 1

= n= = -
exp(z — g) — 1 exp(%) -1

(56)

We see that the spectrum reaches equilibrium after photons have been scattered up to energies
forming the Bose-Einstein distribution with finite chemical potential, Equation (56). We have
that 4 = 0 for photons only when we can create and destroy photons, but here p # 0 because
the number of photons is conserved when only Compton scattering is allowed. The steady state,
"saturated” spectrum is approximated by Wien law, n(z) « exp(—x), when the occupation number
is small (—p/T > 1). The number of photons conservation is directly obtaine from the Kompaneets
equation:

d d o) 00 oo 2
%N < an(w)dw:/o wga%(tw)dwoc/o 226(1 (w(n' +n +n?)) dw

— w4(n’+n+n2)’? =0, (57)

4

as long as w?n and wn/ vanish at 0 and at oo.

5. The Compton y parameter

A convenient way to measure the importance of repeated Compton scattering is with the
Compton y parameter, defined by y = (average fractional energy change per scattering) x (mean
number of scatterings). For y = 1 the total photon energy and spectrum will be significantly
altered; whereas for y < 1, the total energy is not much changed. The average energy change per
scattering is given by I;T/neor (remember that I; is the average of A = A¢/T), so we find for the
right parentheses (47 — €)/mcc?. Energy is gained or lost depending on the sign of 4T — . The
mean number of scattering is Ny ~ max(7s, 72) ~ 75(1 + 75), where 75 ~ neorr (~ 1073 for GC, as
we showed above). The 74 term described the chance to collide, while the 72 is diffusion-like term.
The final expression is

AT —« 4T

y= Ts(l + Ts) ~ WTs(l + Ts)7 (58)

MeC2
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where the last approximation is when the energy transfer in the rest frame of the electron is
negligible (7' > €). Note that for 73 < 1, we have y < [n.Tdr [ Pdr, so an observation of y
allows to estimate the column pressure.

For a given y parameter, the final energy of a photon €; is given by

Ae
e =11 <1 + 6) € (59)

No = ¢,

where ¢; is the initial photon energy. For T >> € we find €; = ¢;(1 + Ae/e) exp(y). For the

total energy of the photos:

de d
— = neopc—A 3
; NeoTC tc /0 w n(w)dw

oo oo, .3
= neaTcA/ w36L)dw = neaTChA/ w9 (w'(n' +n+n?))dw. (60)
0 0

(w
Ot meC?

We can integrate by parts to find

/ wi(w4(n’+n+n2))dw = w5(n’+n+n2)‘oo—/ Wt/ 4+ n 4 n?)dw
0 ow 0 0

T o0
R —/ win/dw = — = w4@dw
0 h 0 ow
T oo AT [
= —ﬁofln‘o + 7, windw
: (61)
where we assumed n,n? < n’ (T > €). We find
@ _ neaTchAg oow3ndw _ 4Tneorc
dt mecz h 0 m602
4Tn.orc
= e X exp <mecgt> =exp (y). (62)

6. The Sunyaev-Zel’dovich effect

We are interested in the change of the CMB due to scattering by the ICM (The SZ effect). We
rewrite the Kompaneets equation as:

on(w,l) ne()orT 1 0

ol mec2 12 Ox

ne(l)orT 1 0

mec? 2 Ox

[x4(n' +n+ n2)]

(:c4n’), (63)

where [ is the proper distance coordinate along the line of sight through the ICM, and we used
n,n? < n' (T > ¢). For y <1 we get

An(w) = aam(a;‘ln’) = 328?0 <w4 a?)(;)> , (64)

~
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where §j = y/4. For a black-body with temperature Teyg, n = (exp(Aw/Tems) — 1)1, we find

—F + (#2/4) coth<ir/2)> , (65)

Anfw) = g( sinh?(z/2)

where & = hw/Tcump. The characteristic dependance on w makes it possible to distinguish between
CMB anisotropies due to the SZ effect and the primary anisotropies discussed before.

In the Rayleigh-Jeans part ( < 1), we find An — —2¢/% and n — 1/, such that ATcymp/Tovs =
—2¢. The "reduction” in temperature in the Rayleigh-Jeans part is compensated by the part of
the spectrum with & > 3.830, where An > 0, and the asymptotic behavior An/n — §22. The
scatterings with the hot electron gas transfer low photon energy to high energy (recall that the
number of photons is conserved). The change of the spectrum is plotted in Figure 1.

A measurement of the y parameter constrain n.l. Since for [ we would need the angular distance
of the GC, the constrain on n, would scale like Hy. This can be compared to the bremsstrahlung
emission that constrain n2dl, such that the constrain on n. would scale like v/Hy. Requiring the
same value of n, from both observation allows to estimate Hy. In practice, the assumptions involve
in this process for the shape of the GC profiles add a too large systematic uncertainty for a useful
determination of Hy. The SZ effect adds correlations to the CMB fluctuations at very small angular
separation. If combined with a model of structure formation, they can provide useful cosmological
information.
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Fig. 1.— |An|/ng from Equation (65) as a function of & = hw/TomB.-
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