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1. Introduction

Since the Universe expands, in the past it was hotter and denser, so atoms were ionized and

free electrons would keep radiation in TE through collisions. The number density of photons is

(µ = 0, g = 2, p = hν/c and BE distribution):

n(ν)dν =
8πν2dν

c3

1

exp
(
hν
T

)
− 1

.

As the Universe expands, the radiation began free expansion. Let’s assume that free expansion

happened suddenly at a time tL (L for last scattering). A photon with ν at some time t > tL had

at tL: ν(tL) = ν(t)R(t)/R(tL), so

⇒ n(ν, t)dν =

[
R(tL)

R(t)

]3

nT (tL)

[
νR(t)

R(tL)

]
d

[
νR(t)

R(tL)

]
,

where the first factor on the rhs is due to the cosmic expansion dilution, so we get

n(ν, t)dν =
8πν2dν

c3

1

exp
(
hν
T (t)

)
− 1

= nT (t)(ν)dν,

where T (t) = T (tL)R(tL)/R(t). The photons keep the blackbody form even after tL but with a

redshifted temperature (we proved this earlier in general).

As long as collision are elastic (with ν = const.), the transition from opacity to transparency

can be over a finite time interval. We’ll show that T (tL) ≈ 3000 K with ∆ν/ν ∼ T/mec
2 ∼ 3×10−7

for elastic collisions. We’ll show that because of the large photon entropy, even this shift and the

inelastic collisions with H atoms had almost no effect of the spectrum.

The CMB was predicted by Gamow (40’). Alper and Herman (50’) estimated TCMB ≈ 5 K,

based on BBN. Peebles (65’) estimated TCMB ≈ 10 K. The CMB was discovered by Penzias and

Wilson (66’) – TCMB = 3.5 ± 1.0 K at λ = 7.5 cm. Roll and Wilkinson (66’) measured TCMB =

3.0± 0.5 K at λ = 3.2 cm. All measurements were for λ > 0.1 cm, which is the wavelength in which

the blackbody distribution is maximal λmax ≈ hc/5T ≈ 0.1(T/3 K)−1 cm (so this is the RJ tail,

where n(ν)hν ≈ 8πν2T/c3). As a results, the measurements do not prove a blackbody radiation,

so measurements at smaller wavelength were required. The problem that for that small wavelength

the detector must be above the atmosphere, but ballon-borne and rocket-borne were not accurate

enough. This was solved with a space mission – FIRAS on COBE (launched on 89’). COBE
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measured an exact blackbody over 0.05 cm ≤ λ ≤ 0.5 cm with TCMB = 2.725 ± 0.002 K. Further

measurements at 3 cm ≤ λ ≤ 75 cm and at λ = 0.03 cm are all consistent with blackbody.

For TCMB = 2.725 K we get

ργ,0c
2 = āBT

4
CMB ⇒ ργ,0 ≈ 4.64× 10−34 g cm−3

⇒ Ωγ ≈ 2.47× 10−5h−2.

We’ll show later that there is a contribution to the radiation field from relic neutrinos and anti-

neutrinos, such that

ρR,0 =

[
1 + 3

(
7

8

)(
4

11

)4/3
]
ργ,0 ≈ 7.80× 10−34 g cm−3

⇒ ΩR ≈ 4.16× 10−5h−2.

This justifies our neglection of ΩR in calculating dL. The number density of photons is high:

nγ,0 =
30

π4
ζ(3)āBT

3
CMB ≈ 410 photons cm−3,

which is much larger than nb,0:

nb,0 =
3ΩbH

2
0

8πGmp
≈ 1.123× 10−5Ωbh

2 ≈ 2.50× 10−7 baryons cm−3.

Since both nb ∝ R−3 and nγ ∝ R−3, the ratio nγ/nb has been the same at least while both were

travelling freely. We define η ≡ nb/nγ ≈ 2.74× 10−8Ωbh
2 ≈ 6.09× 10−10.

2. The equilibrium era

We know that in free expansion Tγ ∝ R−1 and Tb ∝ R−2, so in TE who wins? Photons,

because nγ � nb. To see this, we define σ = s/nb, the entropy per baryon, which is conserved,

since both entropy and baryon number are separately conserved. From energy conservation:

dσ =
1

T

[
d

(
e

nb

)
+ Pd

(
1

nb

)]
.

We now consider photons and NR particles with a fixed number N of NR particles per baryon:

e = āBT
4 +

3

2
nbNT + nbmpc

2,

P =
1

3
āBT

4 + nbNT,
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so

dσ =
1

T

[
d

(
āBT

4

nb

)
+

3

2
NdT +

(
1

3
āBT

4 + nbNT

)
d

(
1

nb

)]
=

1

T

[
4

3
āBT

4d

(
1

nb

)
+

1

nB

4āBT
4

T
dT +

3

2
NdT +NTnbd

(
1

nb

)]
=

1

T

āBT
4

nb

(
−4

3

dnb
nb

)
+

3

2
N
dT

T
−N dnb

nb
+

1

nb

4āBT
4

T 2
dT

⇒ σ =
4āBT

3

3nb
+N ln

(
T 3/2

nbC

)
,

where C is a constant of integration. σ remains constant in TE, and we know that the first term

on the rhs in > 108 at present. Let’s assume that it was large in TE as well. So T 3/nb was

very close to a constant at TE unless T 3/2/nb changed by a huge amount. For example, if the

first term on the rhs would change by 0.01%, so to keep σ constant T 3/2/nb should change by

N ln(T 3/2/nb) = 10−4 × 108 ⇒ T 3/2/nb = exp(104/N), therefore T 3/nb is essentially constant. If

we define C to be equal to T 3/2/nb at some typical time in the TE era, we get

σ =
4āBT

3

3nb
=

4

3

nγ,0
nb,0

π4

30ζ(3)
≈ 3.60

nγ,0
nb,0

≈ 1.31× 108
(
Ωbh

2
)−1 ≈ 5.91× 109.

Since nb ∝ R−3, we find T ∝ R−1. Note that if the first term on the rhs was < 10−8 (and not

> 108), then the second term on rhs would dominate and T ∝ n2/3
b ∝ R−2 as expected for NR.

Photons stop exchanging energy with matter when Γγ < H, where Γγ is the rate at which a

photon interchange T energy through scattering on electrons. But Γe, the rate at which electrons

gain/lose T energy through scattering on photons, is larger from Γγ by nγ/nb > 108, so when

Γγ < H we still have Γe � H. This means that the kinetic energy of electrons remains in TE

with photons and do not decrease as R−2. Since Tγ ∝ R−1 in TE and for t > tL, the electrons’

temperature goes as R−1 and the last few exchanges of energy that photons have with electrons do

not affect the photons energy distribution.

3. Matter-radiation equilibrium

We have

ρR
ρM

∝ 1

R
∝ T ⇒ ρR

ρM
=

T

TCMB

ρR,0
ρM,0

=
T

TCMB

ΩR

ΩM

⇒ TEQ =
TCMBΩM

ΩR
= ΩMh

2 6.56× 104 K ≈ 9, 347 K.
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4. Freeze-out time

At high T collisions can change the energy of an individual photon (without changing the distri-

bution of photons). Let’s work out when photons stopped exchanging energies of T with electrons.

The rate at which photons are scattered on electrons is Λγ = σTnec, where σT ≈ 0.66525×10−24 cm

is the Thompson cross-section. We’ll show later that the mass fractions of Hydrogen and Helium

at this era are XH ≈ 0.76 and Yp ≡ XHe ≈ 0.24, respectively. For T & 20, 000 K the plasma is fully

ionized: ne/nb ≈ 0.76 + 0.5× 0.24 = 0.88, so ne ≈ 0.88nb = 0.88nb,0(T/TCMB)3. We find:

Λγ ≈ 0.88nb,0

(
T

TCMB

)3

σT c ≈ 1.97× 10−19Ωbh
2

(
T

TCMB

)3

s−1.

The rate for energy transfer is

Γγ ≈
(

T

mec2

)
Λγ ≈ 9.0× 10−29Ωbh

2

(
T

TCMB

)4

s−1.

For H we’ll assume radiation dominated:

H = H0

√
ΩR

(
T

TCMB

)4

≈ 2.1× 10−20

(
T

TCMB

)2

s−1

⇒ Tfreeze ≈
√

2.1× 10−20

9.0× 10−29

(
Ωbh

2
)−1/2

TCMB ≈ 4.16× 104
(
Ωbh

2
)−1/2 ≈ 2.8× 105 K,

so the assumption that the Universe is radiation dominated is justified. For T . 105 K, photons

still have a lot of scattering, since Γγ � H. For example, at T = 104 K, we have

Λγ
H
≈ 1.97× 10−19Ωbh

2

2.1× 10−20

(
T

TCMB

)
≈ 765,

so for T � 104 K, when the Universe is matter dominated, we can calculate the temperature of last

scattering:

H = H0

√
ΩM

(
T

TCMB

)3

≈ 3.2× 10−18
√

ΩMh2

(
T

TCMB

)3/2

s−1

⇒ T ≈

(
3.2× 10−18

1.97× 10−19

√
ΩMh2

Ωbh2

)2/3

TCMB ≈ 17.5

(
ΩMh

2
)1/3

(Ωbh2)2/3
K ≈ 116 K.

This is not what actually happens because of recombination, leading to a sharp drop in Λγ at

∼ 3000 K. The different timescales are plotted in Figure 1.

5. Recombination and last scattering

We begin the calculation at early enough times, where p, e, H and He are in TE with Tγ . We

consider the Hydrogen atoms in any bound state: 1s, 2s, 2p, etc. Although ∼ 24% of the mass is

in the form of Helium, for T . 4, 400 K Helium is neutral so does not play a role here. We have

gp = ge = 2 and since for 1s there are 2 hyperfine states with S = 0, 1 we have g1s = 1 + 3 = 4.
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Fig. 1.— 1/H (blue), T (red), Xeq (solid black), X (dashed black), eM/eR (green), 1/Λγ (brown)

and 1/Γγ (orange) as a function of the redshift for ΩMh
2 = 0.1427, Ωbh

2 = 0.0222 and Yp = 0.24.

The freeze-out time (Γγ = H), the equilibrium time (eM = eR) and the time of last scattering

without recombination (Λγ = H) are indicated.
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5.1. Saha’s equation

At first p+e↔ 1s happens rapidly through cascades of radiative transfers from excited states,

so µp + µe = µ1s. Using

µi = T ln

[
ni
gi

(
2πmiT

h2

)−3/2
]

+mic
2,

we get

np
2

(
2πmpT

h2

)−3/2

exp

(
mpc

2

T

)
ne
2

(
2πmeT

h2

)−3/2

exp

(
mec

2

T

)
=
n1s

4

(
2πmHT

h2

)−3/2

exp

(
mHc

2

T

)
⇒ n1s

npne
=

(
2πmeT

h2

)−3/2

exp

(
B1

T

)
, (1)

where we took mp ' mH outside the exponent and B1 = (mp +me−mH)c2 ≈ 13.6 eV. Because of

charge neutrality np = ne. The number density of excited states is less from n1s by exp(−∆E/T ),

where ∆E is the excitation energy (∆E ≥ B1(1− 1/4) ' 10.2 eV). For T < 4, 200 K this exponent

is < 6× 10−13 so we can neglect the excited states as long as there is TE (note that excited states

have the same µ, since the atom can go between states by emitting or absorbing photons). Since

we have np + n1s ' 0.76nb and X = np/(np + n1s) satisfies

X

[
1 +X

n1s

n2
p

(np + n1s)

]
= 1,

we get X(1 +XS) = 1, where

S =
n1s

n2
p

(np + n1s) ≈ 0.76nb

(
2πmeT

h2

)−3/2

exp (B1/T ) .

The pre-factor of the exponent is a small number:

S ≈ 0.76
nb
nγ

16πζ(3)

(
T

hc

)3(2πmeT

h2

)−3/2

exp (B1/T )

= 0.76
nb
nγ
ζ(3)

8√
2π

(
T

mec2

)3/2

exp (B1/T )

≈ 2.92η

(
T

mec2

)3/2

exp (B1/T )

≈ 8.0× 10−8

(
T

mec2

)3/2

exp (B1/T ) Ωbh
2.

Recombination happens where S is of order unity, which requires T < B1 to compensate for the

small pre-factor (we get the transition at T ≈ 0.3− 0.35 eV, see Figure 2).
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Fig. 2.— The solution of the Saha’s equation (Xeq, black), the more accurate values of the ion-

ization fraction (X, red), the redshift (blue) and the time to drop from 106 K as a function of the

temperature for ΩMh
2 = 0.1427, Ωbh

2 = 0.0222 and Yp = 0.24.
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5.2. A more accurate calculation

The result from the previous section is not correct in detail, because equilibrium was not

maintained for low ionization levels. For example, a photon emitted after electron capture to the

ground level can easily ionize another Hydrogen atom (recall that at this era photons almost do not

lose energy during scatterings), such that there is no net change in ionization. Similarly, a photon

from n ≥ 3 decay to the ground level can excite another atom from n = 1 to n = 2 so no net change

in atoms at the ground level. However, a photon from 2p → 1s transition (Lyman α photon) can

excite another atom only until it is redshifted away from the absorption resonance. Nevertheless,

this is so inefficient that we must consider the transition 2s→ 1s+ 2γ as well (here the energy of

each photon is low, so they cannot excite from 1s).

We make the following assumptions:

1. Collisions between Hydrogen atoms and radiative transitions between Hydrogen levels are

rapid, do they are in TE with Tγ , except the 1s level, which is reached only by slow or

inefficient processes. The other levels satisfy nnl = (2l + 1)n2s exp[(B2 − Bn)/T ], where

Bn = B1/n
2 is the binding energy of the nth level (this is true for n not too large, where the

radii of the atoms become large).

2. The net rate of change of n1s is given by radiative decays from 2s and 2p minus the inverse

rates. All other processes are assumed to be cancelled by reionization or reexcitation of other

atoms by the emitted photons. Recombination decreases the number neR
3 in a comoving

volume R3 at a rate α(T )npneR
3, where α(T ) do not include recombination directly to 1s -

“Case B recombination coefficient”). Ionization from excited states increase neR
3 by a sum

of terms proportional to nnlR
3 (n > 1). Since nnl ∝ n2s, the ionization increases neR

3 by a

rate β(T )n2sR
3:

d

dt

(
neR

3
)

= −αn2
eR

3 + βn2sR
3.

Dividing by the constant nR3, where n = np + nH = np +
∑

nl nnl = 0.76nb, we get

d

dt

(ne
n

)
= −αn

2
e

n
+ β

n2s

n
. (2)

A relation between the forward and backward rates can always be obtained by considering

equilibrium (where the time derivative in the lhs is zero). So in equilibrium of e+ p↔ 2s we

have

n2s

n2
e

=

(
2πmeT

h2

)−3/2

exp

(
B2

T

)
(same derivation as Equation (1)), and we get

β

α
=

(
n2
e

n2s

)
eq

=

(
2πmeT

h2

)3/2

exp

(
−B2

T

)
.
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A fit to numerical calculations of α(T ) is given by

α(T ) =
1.4377× 10−10 (T [K])−0.6106

1 + 5.085× 10−3 (T [K])0.5300 cm3 s−1.

3. The total number of excited Hydrogen atoms in a comoving volume, 1/n, changes slower than

individual radiative processes, such that the net increase in this number by recombination

and ionization is balanced by the net decrease by transition to and from 1s:

αn2
e − βn2s = (Γ2s + 3PΓ2p)n2s − εn1s

⇒ n2s =
αn2

e + εn1s

Γ2s + 3PΓ2p + β
, (3)

where Γ2s ≈ 8.22458 s−1 and Γ2p ≈ 4.699 × 108 s−1 are the rates for the radiative decay

processes 2s → 1s + 2γ and 2p → 1s + γ, respectively (2p → 1s + 2γ can be neglected),

the factor 3 is because n2p = 3n2s, P is the probability that a Lyman α photon will escape

without exciting 1s to 2p, and ε is the rate at which 1s → 2s or 1s → 2p, not including

1s+ γ → 2p with a Lyman α photon from 2p→ 1s+ γ, which is included in P . We consider

T � (B2−B3) ≈ 2.2×104 K, so all nnl with n > 2 are� n2s such that nH ≈ n1s+n2s+n2p =

n1s + 4n2s. Using this in Equation (3) we get

n2s =
αn2

e + εnH
Γ2s + 3PΓ2p + β + 4ε

. (4)

At equilibrium the rhs of the first line in Equation (3) is zero:

ε

Γ2s + 3PΓ2p
=

(
n2s

n1s

)
eq

= exp

(
−B1 −B2

T

)
≡ E . (5)

Using Equations (4) and (5) in Equation (2) with the definitions Γ ≡ Γ2s + 3PΓ2p, ε =

Γ exp[−(B1 −B2)/T ] = ΓE we get:

d

dt

(ne
n

)
= −αn

2
e

n
+
β

n

(
αn2

e + εnH
Γ + β + 4ε

)
= α

n2
e

n

(
β

Γ + β + 4ε
− 1

)
+

εβnH
n (Γ + β + 4ε)

= −αn
2
e

n

Γ + 4ε

Γ + β + 4ε
+

εβnH
n (Γ + β + 4ε)

=
1

n (Γ + β + 4ΓE)

[
−αn2

e (Γ + 4ΓE) + ΓEβnH
]

=
Γ

Γ(1 + 4E) + β

[
− (1 + 4E)

αn2
e

n
+ E βnH

n

]
Since 1 + 4E ≈ 1 for the temperature range that we consider and

E β
αn

= E
(
n2
e

n2s

)
eq

1

n
=

(
n2
e

n1s

)
eq

1

n
=

1

S
,
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we get

dX

dt
=

Γ2s + 3PΓ2p

Γ2s + 3PΓ2p + β
αn

[
−X2 +

1−X
S

]
, (6)

where, as a reminder, X = ne/n = np/n = 1 − nH/n. Note that for a constant temperature, any

solution of the Saha’s equation, Xeq, will satisfy Equation (6). In fact, it turns out that always

X > Xeq, so we always get dX/dt < 0. The first term on the rhs of Equation (6) is the suppression

of the recombination rates, since the transitions 2s, 2p→ 1s are slower than the ionization.

We still need to calculate P :

P (t) =

∫ ∞
−∞

dωP(ω) exp

[
−
∫ ∞
t

dt′n1s(t
′)cσ

(
ωR(t)

R(t′)

)]
,

where P(ω)dω is the probability that a photon from the 2p→ 1s transition has an energy between

~ω and ~(ω + dω), normalized such that
∫
P(ω)dω = 1:

P(ω) =
Γ2p

2π

1

(ω − ωα)2 +
Γ2
2p

4

,

ωα = ckα, kα = (B1−B2)/~c, σ(ω) is the cross-section for the transition 1s→ 2p by a photon with

an energy ~ω:

σ(ω) =
3

2

2π2Γ2p

k2
α

P(ω)

(Breit-Wigner formula) and R(t)/R(t′) is to take care of the redshift. If a photon did not manage

to escape, then the capture must be at a time much less than the expansion time, so n1s(t
′) ≈

n1s(t) and we can also approximate R(t)/R(t′) ≈ 1 − H(t)(t′ − t). Now we change variables to

ω′ = [1−H(t)(t′ − t)]ω ⇒ dω′ = −H(t)ωdt′ to get

P (t) =

∫ ∞
−∞

dωP(ω) exp

[
−3π2Γ2pn1s(t)c

ωH(t)k2
α

∫ ω

−∞
dω′P(ω′)

]
.

P(ω) is negligible expect near ωα, so we can change ω → ωα in the 1/ω pre-factor to get

P (t) =

∫ ∞
−∞

dωP(ω) exp

[
−A

∫ ω

−∞
dω′P(ω′)

]
= − 1

A

∫ ∞
−∞

dω
d

dω

{
exp

[
−A

∫ ω

−∞
dω′P(ω′)

]}
= − 1

A
exp

[
−A

∫ ω

−∞
dω′P(ω′)

]∣∣∣∣∞
−∞

=
1− exp(−A)

A
,

where A = 3π2Γ2pn1s(t)c/[ωαH(t)k2
α]. This can be written as

P (t) = F

(
3π2Γ2pn1s(t)c

ωαH(t)k2
α

)
, F (x) =

1− exp(−x)

x
.
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It turns out that the argument of F is large, so that

P ≈ ωαH(t)k2
α

3π2Γ2pn1s(t)c
=

8πH(t)

3λ3
αΓ2pn1s(t)

,

where λα ≈ 1215.682× 10−8 cm is the Lyman α wavelength. Using 3PΓ2p = 8πH/(λ3
αn1s) we get

from Equation (6)

dX

dt
=

Γ2s + 8πH
λ3αn1s

Γ2s + 8πH
λ3αn1s

+ β
αn

[
−X2 +

1−X
S

]
.

It also turns out that n1s/n2s � 1 (although not as large as would be in equilibrium), so n1s ≈
nH = (1 − X)n and we use dt/dT = −1/(HT ) (note that T ∝ R−1 ⇒ Ṫ /T = −Ṙ/R = −H) to

finally get

dX

dT
= − αn

HT

[
1 +

β

Γ2s + 8πH
λ3αn(1−X)

]−1 [
−X2 +

1−X
S

]
. (7)

For H it is justified to take H = H0

√
ΩM (T/TCMB)3 + ΩR (T/TCMB)4. Equation (7) can be

integrated from high enough temperature, such that Xeq is a good approximation to X (since

Xeq < X < 1 and for high enough temperatures Xeq ≈ 1) but low enough such that all Helium

is neutral (all Helium is doubly ionized until T ∼ 20, 000 K and there is still some single ionized

Helium for 4, 400 K). A good choice is T = 4, 260 K (z = 1550). The result is plotted in Figure 2.

Large deviations from Xeq begin as soon as Xeq is dropping significantly below 1. In particular,

X has as asymptotic value (X ≈ 2.40 × 10−4 at z = 10), which plays an important role in the

formation of the first stars. The treatment here is quite accurate, expect for T > 4, 300 K, where

contribution of electrons from Helium cannot be ignored.

6. Opacity

The probability that a photon present at a time t(T ) will undergo at least one more scattering

before the present is given by

O(T ) = 1− exp

[
−
∫ t0

t(T )
cσTne(t)dt

]
.

This rises from 0 at low T to near 1 at high T . We can use dt/dT = −1/(HT ) to write

O(T ) = 1− exp

[
−cσT

∫ T

TCMB

ne(T
′)

dT ′

T ′H(T ′)

]
.

When analysing CMB anisotropies, we’re interested in when photons observed today were last

scattered. The probability that the last scattering of a photon was before the temperature dropped
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to T is 1 − O(T ) and the probability that the last scattering was after the temperature dropped

further to T − dT is O(T − dT ), so the probability that the last scattering was in [T, T − dT ]

is 1 − [1 − O(T )] − O(T − dT ) = O′(T )dT . Since O(T ) increases monotonically from O = 0 at

T = TCMB to O = 1 at T =∞, then O′(T ) is a positive normalized probability distribution with a

unit integral. If we write O(T ) = 1− exp(−τ) then O′(T ) = τ ′ exp(−τ). The distribution O′(T ) is

peaked around TL ≈ 2, 945 K with σ ≈ 250 K.


