Distribution functions in an expanding Universe

Doron Kushnir

I'm loosely following Steven Weinberg's Cosmology and Yossi Nir's notes.

1. Distribution functions

Particles are in a thermal equilibrium (TE) if the interaction rate is much larger than the expansion rate of the Universe $\Gamma(T) \gg H(T)$. Particle of specie A that interact with photons, with $\Gamma_{A \gamma}(T) \gg H(T)$, have the same temperature as the photons, $T_{A}=T_{\gamma}$, so T_{γ} is called the temperature of the Universe, T. We can follow the evolution of each specie that once was in TE, either if it is in TE or in a free expansion. The distribution function of a specie A is $f_{A}(\vec{x}, \vec{p}, t)$ such that the number of particles is $d N_{A}=f_{A}(\vec{x}, \vec{p}, t) d V d^{3} p=f_{A}(\vec{p}, t) d V d^{3} p$ because of homogeneity.

For a small expansion of the Universe $t \rightarrow t+\delta t$ we have (recall $p \propto 1 / R$)

$$
\begin{aligned}
d V & \rightarrow d V\left[\frac{R(t+\delta t)}{R(t)}\right]^{3},[p, p+\delta p] \rightarrow\left[p \frac{R(t)}{R(t+\delta t)},(p+\delta p) \frac{R(t)}{R(t+\delta t)}\right] \\
& \Rightarrow d^{3} p \rightarrow d^{3} p\left[\frac{R(t)}{R(t+\delta t)}\right]^{3} .
\end{aligned}
$$

if $d N_{A}$ is a constant during the expansion, then the shape of f_{A} is conserved. Assume that the specie A decoupled at some time t_{D} with T_{D} and R_{D} (when $\Gamma_{A}=H$), then for $t<t_{D}$ we have $f_{A}=f_{A, e q}(\vec{p}, t)$ and for $t>t_{D}$ we have

$$
\begin{equation*}
f_{A}=f_{A, d e c}\left(\vec{p}, t>t_{D}\right)=f_{A, e q}\left[\vec{p} \frac{R(t)}{R\left(t_{D}\right)}\right] . \tag{1}
\end{equation*}
$$

At TE the distribution function is

$$
f_{A}(\vec{p}, t)=\frac{g_{A}}{h^{3}} \frac{1}{\exp \left\{\beta\left[\varepsilon_{A}(p)-\mu_{A}\right]\right\} \pm 1},
$$

where g_{A} is the degeneracy, $\beta=1 / T, \varepsilon_{A}(p)=\sqrt{c^{2} p^{2}+m_{A}^{2} c^{4}}, \mu_{A}$ is the chemical potential, the plus sign is for fermions and the minus sign is for bosons.

2. Number density, energy density and pressure

For clarity we drop now the subscript A. The number density, the energy density and the pressure are given by

$$
\begin{aligned}
n & =\frac{4 \pi g}{h^{3}} \int_{0}^{\infty} \frac{p^{2} d p}{\exp [\beta(\varepsilon-\mu)] \pm 1}=\frac{4 \pi g}{(h c)^{3}} \int_{m c^{2}}^{\infty} \frac{\sqrt{\varepsilon^{2}-m^{2} c^{4}} \varepsilon d \varepsilon}{\exp [\beta(\varepsilon-\mu)] \pm 1} \\
e & =\frac{4 \pi g}{h^{3}} \int_{0}^{\infty} \frac{\varepsilon p^{2} d p}{\exp [\beta(\varepsilon-\mu)] \pm 1}=\frac{4 \pi g}{(h c)^{3}} \int_{m c^{2}}^{\infty} \frac{\sqrt{\varepsilon^{2}-m^{2} c^{4}} \varepsilon^{2} d \varepsilon}{\exp [\beta(\varepsilon-\mu)] \pm 1} \\
P & =\frac{4 \pi g}{3 h^{3}} \int_{0}^{\infty} \frac{p^{2} v p d p}{\exp [\beta(\varepsilon-\mu)] \pm 1}=\frac{4 \pi g c^{2}}{3 h^{3}} \int_{0}^{\infty} \frac{p^{4} d p}{\varepsilon \exp [\beta(\varepsilon-\mu)] \pm 1} \\
& =\frac{4 \pi g}{3(h c)^{3}} \int_{m c^{2}}^{\infty} \frac{\left(\varepsilon^{2}-m^{2} c^{4}\right)^{3 / 2} d \varepsilon}{\exp [\beta(\varepsilon-\mu)] \pm 1}
\end{aligned}
$$

where we have used for the velocity $v=c^{2} p / \varepsilon=d \varepsilon / d p$. Note that in the ultra-relativistic (UR) limit we get $v \approx c$ and in the non-relativistic (NR) limit we get $v \approx p / m$.

For later reference:

$$
\begin{aligned}
\int_{0}^{\infty} x^{n} e^{-x} d x & =\Gamma(n+1), \text { for } n>-1 \\
\int_{0}^{\infty} x^{n} e^{-x^{2}} d x & =\frac{1}{2} \Gamma\left(\frac{n+1}{2}\right), \text { for } n>-1 \\
\int_{0}^{\infty} \frac{x^{n}}{e^{x}-1} d x & =n!\zeta(n+1), \text { for } n>0 \\
\int_{0}^{\infty} \frac{x^{n}}{e^{x}+1} d x & =\left(1-\frac{1}{2^{n}}\right) n!\zeta(n+1), \text { for } n>-1
\end{aligned}
$$

3. Thermodynamics

Let's calculate $d P / d T$:

$$
\frac{d P}{d T}=\frac{4 \pi g c^{2}}{3 h^{3}} \int_{0}^{\infty} \frac{p^{4} d p}{\varepsilon} \frac{\exp [\beta(\varepsilon-\mu)]}{\{\exp [\beta(\varepsilon-\mu)] \pm 1\}^{2}}\left[(\varepsilon-\mu) \beta^{2}+\beta \frac{\partial \mu}{\partial T}\right] .
$$

Since

$$
\begin{aligned}
& \frac{d}{d p}\left\{\frac{1}{\exp [\beta(\varepsilon-\mu)] \pm 1}\right\}=-\frac{\exp [\beta(\varepsilon-\mu)]}{\{\exp [\beta(\varepsilon-\mu)] \pm 1\}^{2}} \beta \frac{\partial \varepsilon}{\partial p} \\
= & -\frac{c^{2} \exp [\beta(\varepsilon-\mu)]}{\{\exp [\beta(\varepsilon-\mu)] \pm 1\}^{2}} \beta \frac{p}{\varepsilon},
\end{aligned}
$$

we get

$$
\begin{aligned}
& \frac{d P}{d T}=-\frac{4 \pi g}{3 h^{3}} \int_{0}^{\infty} \frac{p^{3} d p}{\beta} \frac{d}{d p}\left\{\frac{1}{\exp [\beta(\varepsilon-\mu)] \pm 1}\right\}\left[\varepsilon \beta^{2}+\frac{\partial}{\partial T}(\beta \mu)\right] \\
= & -\left.\frac{4 \pi g}{3 h^{3}} \frac{p^{3}}{\exp [\beta(\varepsilon-\mu)] \pm 1}\left[\varepsilon \beta+T \frac{\partial}{\partial T}(\beta \mu)\right]\right|_{0} ^{\infty} \\
+ & \frac{4 \pi g}{3 h^{3}} \int_{0}^{\infty} \frac{d p}{\exp [\beta(\varepsilon-\mu)] \pm 1}\left\{3 p^{2}\left[\varepsilon \beta+T \frac{\partial}{\partial T}(\beta \mu)\right]+\frac{c^{2} p^{4} \beta}{\varepsilon}\right\} \\
= & \frac{4 \pi g}{3 h^{3}}\left\{\beta \int_{0}^{\infty} \frac{d p}{\exp [\beta(\varepsilon-\mu)] \pm 1}\left(3 p^{2} \varepsilon+\frac{c^{2} p^{4}}{\varepsilon}\right)+T \frac{\partial}{\partial T}(\beta \mu) \int_{0}^{\infty} \frac{3 p^{2} d p}{\exp [\beta(\varepsilon-\mu)] \pm 1}\right\} \\
= & \beta(e+P)+n T \frac{\partial}{\partial T}(\beta \mu),
\end{aligned}
$$

where we integrated by parts and the term on the second line is zero. For instance, we have for photons $P=e / 3$ and $\mu=0$, such that we get $4 e=T d e / d T \Rightarrow e \propto T^{4}$.

We already know $d E=-P d V$ for the expanding Universe:

$$
\begin{aligned}
d\left(e R^{3}\right) & =-P d\left(R^{3}\right) \Rightarrow \frac{d}{d T}\left[(e+P) R^{3}\right]=R^{3} \frac{d P}{d T} \\
& \Rightarrow \frac{d}{d T}\left[(e+P) R^{3}\right]=\frac{R^{3}(e+P)}{T}+n R^{3} T \frac{\partial}{\partial T}(\beta \mu) .
\end{aligned}
$$

We define $s=(e+P-n \mu) / T$, for which we get

$$
\begin{aligned}
& d\left(s R^{3}\right)=d\left[\frac{R^{3}(e+P-n \mu)}{T}\right] \\
= & \frac{1}{T} d\left[R^{3}(e+P)\right]-\frac{R^{3}(e+P)}{T^{2}} d T-n R^{3} d\left(\frac{\mu}{T}\right)-\frac{\mu}{T} d\left(n R^{3}\right) \\
= & -\frac{\mu}{T} d\left(n R^{3}\right) .
\end{aligned}
$$

So the quantity $s R^{3}$ is approximately conserved if $n R^{3}$ is approximately conserved and/or $|\mu| \ll T$.
In the case $|\mu| \ll T$ we have $s \approx(e+P) / T$, so

$$
\begin{aligned}
T d\left(s R^{3}\right) & =T d\left(R^{3} \frac{e+P}{T}\right)=d\left[R^{3}(e+P)\right]-(e+P) R^{3} \frac{d T}{T} \\
& \approx d\left[R^{3}(e+P)\right]-R^{3} d P=d\left(R^{3} e\right)+P d\left(R^{3}\right) .
\end{aligned}
$$

Since $d E=-P d V+T d S$, we see that in thus case s is the entropy density and $s \propto R^{-3}$ (it is clear that the μ part will give $\mu d N$ in general).

4. UR with $|\mu| \ll T$

Here $\varepsilon=c p$ and

$$
e=\frac{4 \pi g}{h^{3}} \int_{0}^{\infty} \frac{c p^{3} d p}{\exp \left(\frac{c p}{T}\right) \pm 1}=\frac{4 \pi g}{(h c)^{3}} T^{4} \int_{0}^{\infty} \frac{x^{3} d x}{\exp (x) \pm 1}=\left\{\begin{array}{ll}
\frac{7}{8} \frac{g}{2} \bar{a}_{B} T^{4} & \text { fermions } \\
\frac{g}{2} \bar{a}_{B} T^{4} & \text { bosons }
\end{array},\right.
$$

where we have used $\zeta(4)=\pi^{4} / 90$ and $\bar{a}_{B}=8 \pi^{5} / 15(h c)^{3} \approx 2.0822 \times 10^{49} \mathrm{~cm}^{-3} \mathrm{erg}^{-3}$ is the radiation constants written for temperature is energy units. For temperature in units of Kelvin, we have $a_{B}=\bar{a}_{B} k_{B}^{4} \approx 7.56577 \times 10^{-15} \mathrm{erg} \mathrm{cm}^{-3} \mathrm{~K}^{-4}$. For the number density

$$
\begin{aligned}
n & =\frac{4 \pi g}{h^{3}} \int_{0}^{\infty} \frac{p^{2} d p}{\exp \left(\frac{c p}{T}\right) \pm 1}=\frac{4 \pi g}{(h c)^{3}} T^{3} \int_{0}^{\infty} \frac{x^{2} d x}{\exp (x) \pm 1} \\
& = \begin{cases}\frac{3}{4} \frac{16 \pi}{(h c)^{3}} \zeta(3) \frac{g}{2} T^{3}=\frac{3}{4} \frac{30}{\pi^{4}} \zeta(3) \frac{g}{2} \bar{a}_{B} T^{3} \approx 0.2777 \frac{g}{2} \bar{a}_{B} T^{3} & \text { fermions } \\
\frac{16 \pi}{(h c)^{3}} \zeta(3) \frac{g}{2} T^{3}=\frac{30}{\pi^{4}} \zeta(3) \frac{g}{2} \bar{a}_{B} T^{3} \approx 0.3702 \frac{g}{2} \bar{a}_{B} T^{3} & \text { bosons }\end{cases}
\end{aligned}
$$

where $\zeta(3) \approx 1.202$. Finally, $P=e / 3, s=4 e / 3 T$ and the average energy is

$$
\langle\varepsilon\rangle=\frac{e}{n}=\left\{\begin{array}{ll}
\frac{7}{6} \frac{\pi^{4}}{30 \zeta(3)} T \approx 3.15 T & \text { fermions } \\
\frac{\pi^{4}}{30 \zeta(3)} T \approx 2.70 T & \text { bosons }
\end{array} .\right.
$$

We can write the total energy density for many species as:

$$
e_{\text {tot }}=\bar{a}_{B}\left(\sum_{\text {bosons }} \frac{g_{i}}{2} T_{i}^{4}+\frac{7}{8} \sum_{\text {fermions }} \frac{g_{i}}{2} T_{i}^{4}\right) \equiv \frac{g}{2} \bar{a}_{B} T^{4},
$$

where

$$
g=\sum_{\text {bosons }} g_{i}\left(\frac{T_{i}}{T}\right)^{4}+\frac{7}{8} \sum_{\text {fermions }} g_{i}\left(\frac{T_{i}}{T}\right)^{4} .
$$

If all species have $T_{i}=T$, then

$$
g=\sum_{\text {bosons }} g_{i}+\frac{7}{8} \sum_{\text {fermions }} g_{i} \equiv g_{B}+g_{F} .
$$

Similarly for the total entropy density

$$
s_{\text {tot }}=\frac{4}{3} \bar{a}_{B}\left(\sum_{\text {bosons }} \frac{g_{i}}{2} T_{i}^{3}+\frac{7}{8} \sum_{\text {fermions }} \frac{g_{i}}{2} T_{i}^{3}\right) \equiv \frac{4}{3} \frac{q}{2} \bar{a}_{B} T^{3},
$$

where

$$
q=\sum_{\text {bosons }} g_{i}\left(\frac{T_{i}}{T}\right)^{3}+\frac{7}{8} \sum_{\text {fermions }} g_{i}\left(\frac{T_{i}}{T}\right)^{3} .
$$

If all species have $T_{i}=T$, then $q=g$. Note that $q T^{3} R^{3}$ is conserved during expansion. Finally for the number density

$$
n_{t o t}=\frac{30}{\pi^{4}} \zeta(3) \bar{a}_{B}\left(\sum_{\text {bosons }} \frac{g_{i}}{2} T_{i}^{3}+\frac{3}{4} \sum_{\text {fermions }} \frac{g_{i}}{2} T_{i}^{3}\right) \equiv \frac{30}{\pi^{4}} \zeta(3) \frac{r}{2} \bar{a}_{B} T^{3},
$$

where

$$
r=\sum_{\text {bosons }} g_{i}\left(\frac{T_{i}}{T}\right)^{3}+\frac{3}{4} \sum_{\text {fermions }} g_{i}\left(\frac{T_{i}}{T}\right)^{3} .
$$

If all species have $T_{i}=T$, then $s \propto n$. Also, since for photons $g_{\gamma}=2$, then

$$
n_{\gamma}=\frac{30}{\pi^{4}} \zeta(3) \bar{a}_{B} T^{3} \Rightarrow s=\frac{4}{3} \frac{q}{2} n_{\gamma} \frac{\pi^{4}}{30 \zeta(3)} \approx 1.801 q n_{\gamma} .
$$

5. NR

Here $\varepsilon \approx m c^{2}+p^{2} / 2 m \gg T$ and we further assume $\varepsilon-\mu \gg T$. In this case

$$
\frac{1}{\exp [\beta(\varepsilon-\mu)] \pm 1} \approx \exp [-\beta(\varepsilon-\mu)]
$$

regardless of the nature of the particle (a boson or a fermion). We get for the number density (note that $\Gamma(3 / 2)=\sqrt{\pi} / 2)$

$$
\begin{aligned}
n & =\frac{4 \pi g}{h^{3}} \int_{0}^{\infty} p^{2} \exp \left[-\beta\left(m c^{2}-\mu\right)\right] \exp \left(-\frac{\beta p^{2}}{2 m}\right) d p \\
& =\frac{4 \pi g}{h^{3}} \exp \left[-\beta\left(m c^{2}-\mu\right)\right]\left(\frac{2 m}{\beta}\right)^{3 / 2} \int_{0}^{\infty} x^{2} \exp \left(-x^{2}\right) d x \\
& =g\left(\frac{2 \pi m T}{h^{2}}\right)^{3 / 2} \exp \left[-\beta\left(m c^{2}-\mu\right)\right],
\end{aligned}
$$

and for the energy density $e \approx m c^{2} n$. We see that in a radiation dominated Universe, the number (and energy) density of non-relativistic particles with $|\mu| \ll T$ are exponentially suppressed by $\exp \left(-m c^{2} / T\right)$ compared with relativistic particles.

For the pressure we get (note that $\Gamma(5 / 2)=3 \sqrt{\pi} / 4$)

$$
\begin{aligned}
P & \approx \frac{4 \pi g}{3 m h^{3}} \exp \left[-\beta\left(m c^{2}-\mu\right)\right]\left(\frac{2 m}{\beta}\right)^{5 / 2} \int_{0}^{\infty} x^{4} \exp \left(-x^{2}\right) d x \\
& =g\left(\frac{2 \pi m T}{h^{2}}\right)^{3 / 2} \exp \left[-\beta\left(m c^{2}-\mu\right)\right] T=n T \ll e .
\end{aligned}
$$

6. $t>t_{D}$

After decouple, the distribution is given by Equation (1).

6.1. $T_{D} \gg m c^{2}$

For particles that decouple while they are relativistic, the shape of the distribution remains the same if $T(t)=T_{D}\left[R\left(t_{D}\right) / R(t)\right]$. In free expansion these particles are not in TE, but we can still define a temperature, which follows ' T ' $\propto R^{-1}$. The entropy of these A particles, $S_{A}=s_{A} R^{3}$, is separately conserved. For particles still in TE the conserved entropy is $q T^{3} R^{3}$ so $T \propto q^{-1 / 3} R^{-1}$, which falls more slowly then R^{-1} (since $q(t)$ is decreasing with decreasing temperature). The number density of the decoupled particles is

$$
n\left(t>t_{D}\right)= \begin{cases}\frac{3}{4} \frac{30}{\pi^{4}} \zeta(3) \frac{g}{2} \bar{a}_{B} T_{D}^{3}\left[\frac{R\left(t_{D}\right)}{R(t)}\right]^{3} & \text { fermions } \\ \frac{30}{\pi^{4}} \zeta(3) \frac{g}{2} \bar{a}_{B} T_{D}^{3}\left[\frac{R\left(t_{D}\right)}{R(t)}\right]^{3} & \text { bosons }\end{cases}
$$

which is comparable to n_{γ} at any given time. Specifically, relic background of decoupled particles is present today with $n \sim n_{\gamma}$.

The distribution is of UR particles, i.e. at decouple $\varepsilon\left(t_{D}\right) \sim T_{D} \sim c p\left(t_{D}\right)$, but the momentum is redshifted as the Universe expands, and it is possible to get to the point where $T(t)=$ $T_{D} R\left(t_{D}\right) / R(t) \sim m c^{2} \equiv T_{N R}$. Then the energy of each particle becomes $\varepsilon(t)=\sqrt{c^{2} p^{2}(t)+m^{2} c^{4}} \sim$ $m c^{2}$, so $e \sim n m c^{2}$ where n is UR.

6.2. $T_{D} \ll m c^{2}$

Here for $|\mu| \ll T$ the shape of the distribution remains the same if $T(t)=T_{D}\left[R\left(t_{D}\right) / R(t)\right]^{2}$. The number density is given in this case by

$$
n\left(t>t_{D}\right)=g\left(\frac{2 \pi m T_{D}}{h^{2}}\right)^{3 / 2}\left(\frac{R\left(t_{D}\right)}{R(t)}\right)^{3} \exp \left(-\frac{m c^{2}}{T_{D}}\right)
$$

so $n \propto R^{-3}$ and $e \sim m c^{2} n$.

7. Excess of fermion over their antiparticles

Assume some fermions are able to annihilate through $f+\bar{f} \leftrightarrow \gamma^{\prime} s$, then in $\mathrm{TE} \mu_{f}+\mu_{\bar{f}}=0$. The number density excess of f over \bar{f} is given by

$$
n_{f}-n_{\bar{f}}=\frac{4 \pi g}{h^{3}} \int_{0}^{\infty} p^{2} d p\left\{\frac{1}{\exp [\beta(\varepsilon-\mu)]+1}-\frac{1}{\exp [\beta(\varepsilon+\mu)]+1}\right\},
$$

and the total energy density in these particles is given by

$$
e_{f}+e_{\bar{f}}=\frac{4 \pi g}{h^{3}} \int_{0}^{\infty} \varepsilon p^{2} d p\left\{\frac{1}{\exp [\beta(\varepsilon-\mu)]+1}+\frac{1}{\exp [\beta(\varepsilon+\mu)]+1}\right\} .
$$

7.1. UR

Here $\varepsilon=c p$ and

$$
\begin{aligned}
n_{f}-n_{\bar{f}} & =\frac{4 \pi g}{h^{3}} \int_{0}^{\infty} p^{2} d p\left\{\frac{1}{\exp [\beta(c p-\mu)]+1}-\frac{1}{\exp [\beta(c p+\mu)]+1}\right\} \\
& =4 \pi g\left(\frac{T}{c h}\right)^{3} \int_{0}^{\infty} x^{2} d x\left[\frac{1}{\exp (x-\beta \mu)+1}-\frac{1}{\exp (x+\beta \mu)+1}\right] \\
& =4 \pi g\left(\frac{T}{c h}\right)^{3} \mathcal{M}\left(\frac{\mu}{T}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\mathcal{M}(x) & =\int_{0}^{\infty} y^{2} d y\left[\frac{1}{\exp (y-x)+1}-\frac{1}{\exp (y+x)+1}\right] \\
& =\frac{x}{3}\left(\pi^{2}+x^{2}\right),
\end{aligned}
$$

such that

$$
n_{f}-n_{\bar{f}}=\frac{4 \pi g}{3}\left(\frac{T}{c h}\right)^{3} \frac{\mu}{T}\left[\pi^{2}+\left(\frac{\mu}{T}\right)^{2}\right] .
$$

The total energy density in these particles is

$$
\begin{aligned}
e_{f}+e_{\bar{f}} & =\frac{4 \pi g}{h^{3}} \int_{0}^{\infty} c p^{3} d p\left\{\frac{1}{\exp [\beta(c p-\mu)]+1}+\frac{1}{\exp [\beta(c p+\mu)]+1}\right\} \\
& =4 \pi g\left(\frac{T}{c h}\right)^{3} T \int_{0}^{\infty} x^{3} d x\left[\frac{1}{\exp (x-\beta \mu)+1}+\frac{1}{\exp (x+\beta \mu)+1}\right] \\
& =4 \pi g\left(\frac{T}{c h}\right)^{3} T \mathcal{P}\left(\frac{\mu}{T}\right),
\end{aligned}
$$

where

$$
\mathcal{P}(x)=\int_{0}^{\infty} y^{3} d y\left[\frac{1}{\exp (y-x)+1}+\frac{1}{\exp (y+x)+1}\right] .
$$

We have $\mathcal{P}(0)=7 \pi^{4} / 60$, and

$$
\begin{aligned}
\mathcal{P}^{\prime}(x) & =\int_{0}^{\infty} y^{3} d y\left\{\frac{\exp (y-x)}{[\exp (y-x)+1]^{2}}-\frac{\exp (y+x)}{[\exp (y+x)+1]^{2}}\right\} \\
& =\int_{0}^{\infty} \frac{y^{3} d y}{[\exp (y-x)+1]^{2}[\exp (y+x)+1]^{2}}[\exp (-x)+\exp (2 y+x)-\exp (x)-\exp (2 y-x)]
\end{aligned}
$$

The rightmost term is $-2 \sinh (x)+2 \exp (2 y) \sinh (x)=2 \sinh (x)[\exp (2 y)-1]$, which is positive for $x>0$, so we have $\mathcal{P}^{\prime}(x)>0$ for $x>0$. Since $\mathcal{P}(x)$ is symmetric, we have $\mathcal{P}(x) \geq \mathcal{P}(0)$, and $\mathcal{P}(x)=\mathcal{P}(0)$ only for $x=0$.

In the limit $x \gg 1$ we have

$$
\mathcal{P}(x) \approx \int_{0}^{\infty} \frac{y^{3}}{\exp (y-x)+1} d y \approx \frac{x^{4}}{4},
$$

such that

$$
e_{f}+e_{\bar{f}} \approx \pi g\left(\frac{T}{c h}\right)^{3} T\left(\frac{\mu}{T}\right)^{4}=\pi g \frac{\mu^{4}}{(c h)^{3}} \gg \bar{a}_{B} T^{4} .
$$

7.2. NR

Here $\varepsilon \sim m c^{2}+p^{2} / 2 m$ and we further assume $|\mu| \ll \varepsilon$. We have

$$
\begin{aligned}
n_{f}-n_{\bar{f}} & =\frac{4 \pi g}{h^{3}} \int_{0}^{\infty} p^{2} d p\{\exp [-\beta(\varepsilon-\mu)]-\exp [-\beta(\varepsilon+\mu)]\} \\
& =\frac{4 \pi g}{h^{3}} \int_{0}^{\infty} p^{2} d p \exp \left(-\frac{m c^{2}}{T}\right) \exp \left(-\frac{p^{2}}{2 m T}\right)\left[\exp \left(\frac{\mu}{T}\right)-\exp \left(-\frac{\mu}{T}\right)\right] \\
& =g\left(\frac{2 \pi m T}{h^{3}}\right)^{3 / 2} \exp \left(-\beta m c^{2}\right) 2 \sinh \left(\frac{\mu}{T}\right)
\end{aligned}
$$

