Distribution functions in an expanding Universe

Doron Kushnir

I’'m loosely following Steven Weinberg’s Cosmology and Yossi Nir’s notes.

1. Distribution functions

Particles are in a thermal equilibrium (TE) if the interaction rate is much larger than the
expansion rate of the Universe I'(T") > H(T'). Particle of specie A that interact with photons,
with I'4,(T") > H(T), have the same temperature as the photons, T4 = T, so T}, is called the
temperature of the Universe, T. We can follow the evolution of each specie that once was in TE,
either if it is in TE or in a free expansion. The distribution function of a specie A is f4 (&, p,t) such
that the number of particles is dN4 = fa(Z, 9, t)dVd®p = fa(p,t)dV d>p because of homogeneity.

For a small expansion of the Universe t — ¢ 4 §t we have (recall p < 1/R)
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if dN4 is a constant during the expansion, then the shape of f4 is conserved. Assume that the
specie A decoupled at some time tp with Tp and Rp (when I'y = H), then for ¢t < tp we have
fa = faeq(p,t) and for t > tp we have
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At TE the distribution function is
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where g4 is the degeneracy, B = 1/T, ca(p) = \/c?p? + m?c*, pa is the chemical potential, the
plus sign is for fermions and the minus sign is for bosons.
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2. Number density, energy density and pressure

For clarity we drop now the subscript A. The number density, the energy density and the
pressure are given by
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where we have used for the velocity v = ¢?p/e = de/dp. Note that in the ultra-relativistic (UR)
limit we get v ~ ¢ and in the non-relativistic (NR) limit we get v ~ p/m.

For later reference:
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3. Thermodynamics

Let’s calculate dP/dT":
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where we integrated by parts and the term on the second line is zero. For instance, we have for
photons P = ¢/3 and p = 0, such that we get 4e = Tde/dT = e o< T*.

We already know dE = —PdV for the expanding Universe:
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We define s = (e + P — nu) /T, for which we get
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So the quantity sR? is approximately conserved if nR? is approximately conserved and/or |u| < T
In the case |u| < T we have s ~ (e + P)/T, so

set P 3dT

T

Td(sR*) = Td (R ) =d[R*(e+P)] - (e+ P)R
~ d[R*(e+ P)] — R*dP =d(R’) + Pd (R®).

Since dE = —PdV + TdS, we see that in thus case s is the entropy density and s o R=3 (it is clear
that the p part will give udN in general).
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4. UR with |y < T

Here ¢ = ¢p and
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where we have used ((4) = 74/90 and ap = 87°/15(hc)? ~ 2.0822 x 10* cm~3 erg =3 is the radiation
constants written for temperature is energy units. For temperature in units of Kelvin, we have
ag = ELBk:4B A 756577 x 107 % ergem ™3 K%, For the number density
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where ((3) ~ 1.202. Finally, P = ¢/3, s = 4¢/3T and the average energy is
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We can write the total energy density for many species as:
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Similarly for the total entropy density
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If all species have T; = T, then ¢ = g. Note that ¢T3 R? is conserved during expansion. Finally for
the number density
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If all species have T; = T', then s o< n. Also, since for photons g, = 2, then
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5. NR

Here € ~ mc? + p?/2m > T and we further assume € — p > T. In this case
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regardless of the nature of the particle (a boson or a fermion). We get for the number density (note

that I'(3/2) = /7/2)
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and for the energy density e ~ mc?n. We see that in a radiation dominated Universe, the number
(and energy) density of non-relativistic particles with |u| < T are exponentially suppressed by
exp(—mc?/T) compared with relativistic particles.

For the pressure we get (note that I'(5/2) = 3y/7/4)
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6. t>1tp

After decouple, the distribution is given by Equation (1).

6.1. Tp > mc?

For particles that decouple while they are relativistic, the shape of the distribution remains
the same if T'(t) = Tp[R(tp)/R(t)]. In free expansion these particles are not in TE, but we can
still define a temperature, which follows ‘I’ R~!. The entropy of these A particles, Sy = saR>,
is separately conserved. For particles still in TE the conserved entropy is ¢T°R? so T « ¢ Y/3R™!,
which falls more slowly then R~! (since ¢(t) is decreasing with decreasing temperature). The
number density of the decoupled particles is
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which is comparable to n, at any given time. Specifically, relic background of decoupled particles
is present today with n ~ n,.

The distribution is of UR particles, i.e. at decouple e(tp) ~ Tp ~ ¢p(tp), but the momen-
tum is redshifted as the Universe expands, and it is possible to get to the point where T'(t) =

TpR(tp)/R(t) ~ mc? = Tg. Then the energy of each particle becomes e(t) = /c2p?(t) + m2ct ~

mc?, so e ~ nmc? where n is UR.

6.2. Tp < mc?

Here for |uu| < T the shape of the distribution remains the same if T'(t) = Tp[R(tp)/R(t)]>.
The number density is given in this case by
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son x R™3 and e ~ mc?n.

7. Excess of fermion over their antiparticles

Assume some fermions are able to annihilate through f + f < 7’s, then in TE ftup=0.
The number density excess of f over f is given by
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and the total energy density in these particles is given by
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Here € = ¢p and
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The total energy density in these particles is

o° 1
eftef = ; cdep{

exp [ (cp —

1
u>]+1+expw<cp+m1+1}

B T\, [® 1 1
a 4wg<ch> T/o $dm[exp(w—BM)Jrl+exp(ﬂf+ﬁu)+1]

where

We have P(0) = 771/60, and
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The rightmost term is —2sinh(z) + 2exp(2y) sinh(x) = 2sinh(x)[exp(2y) — 1], which is positive
for x > 0, so we have P'(z) > 0 for x > 0. Since P(z) is symmetric, we have P(z) > P(0), and
P(z) = P(0) only for x = 0.

In the limit x > 1 we have

such that

7.2. NR

Here & ~ mc? + p?/2m and we further assume |u| < . We have
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