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I’m loosely following Steven Weinberg’s Cosmology and Yossi Nir’s notes.

1. Distribution functions

Particles are in a thermal equilibrium (TE) if the interaction rate is much larger than the

expansion rate of the Universe Γ(T ) � H(T ). Particle of specie A that interact with photons,

with ΓAγ(T ) � H(T ), have the same temperature as the photons, TA = Tγ , so Tγ is called the

temperature of the Universe, T . We can follow the evolution of each specie that once was in TE,

either if it is in TE or in a free expansion. The distribution function of a specie A is fA(~x, ~p, t) such

that the number of particles is dNA = fA(~x, ~p, t)dV d3p = fA(~p, t)dV d3p because of homogeneity.

For a small expansion of the Universe t→ t+ δt we have (recall p ∝ 1/R)

dV → dV

[
R(t+ δt)

R(t)

]3

, [p, p+ δp]→
[
p

R(t)

R(t+ δt)
, (p+ δp)

R(t)

R(t+ δt)

]
⇒ d3p→ d3p

[
R(t)

R(t+ δt)

]3

.

if dNA is a constant during the expansion, then the shape of fA is conserved. Assume that the

specie A decoupled at some time tD with TD and RD (when ΓA = H), then for t < tD we have

fA = fA,eq(~p, t) and for t > tD we have

fA = fA,dec(~p, t > tD) = fA,eq

[
~p
R(t)

R(tD)

]
. (1)

At TE the distribution function is

fA(~p, t) =
gA
h3

1

exp {β [εA(p)− µA]} ± 1
,

where gA is the degeneracy, β = 1/T , εA(p) =
√
c2p2 +m2

Ac
4, µA is the chemical potential, the

plus sign is for fermions and the minus sign is for bosons.
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2. Number density, energy density and pressure

For clarity we drop now the subscript A. The number density, the energy density and the

pressure are given by

n =
4πg

h3

∫ ∞
0

p2dp

exp [β(ε− µ)]± 1
=

4πg

(hc)3

∫ ∞
mc2

√
ε2 −m2c4εdε

exp [β(ε− µ)]± 1

e =
4πg

h3

∫ ∞
0

εp2dp

exp [β(ε− µ)]± 1
=

4πg

(hc)3

∫ ∞
mc2

√
ε2 −m2c4ε2dε

exp [β(ε− µ)]± 1

P =
4πg

3h3

∫ ∞
0

p2vpdp

exp [β(ε− µ)]± 1
=

4πgc2

3h3

∫ ∞
0

p4dp

ε exp [β(ε− µ)]± 1

=
4πg

3(hc)3

∫ ∞
mc2

(ε2 −m2c4)3/2dε

exp [β(ε− µ)]± 1

where we have used for the velocity v = c2p/ε = dε/dp. Note that in the ultra-relativistic (UR)

limit we get v ≈ c and in the non-relativistic (NR) limit we get v ≈ p/m.

For later reference:∫ ∞
0

xne−xdx = Γ(n+ 1), for n > −1,∫ ∞
0

xne−x
2
dx =

1

2
Γ

(
n+ 1

2

)
, for n > −1,∫ ∞

0

xn

ex − 1
dx = n!ζ(n+ 1), for n > 0,∫ ∞

0

xn

ex + 1
dx =

(
1− 1

2n

)
n!ζ(n+ 1), for n > −1.

3. Thermodynamics

Let’s calculate dP/dT :

dP

dT
=

4πgc2

3h3

∫ ∞
0

p4dp

ε

exp [β(ε− µ)]

{exp [β(ε− µ)]± 1}2

[
(ε− µ)β2 + β

∂µ

∂T

]
.

Since

d

dp

{
1

exp [β(ε− µ)]± 1

}
= − exp [β(ε− µ)]

{exp [β(ε− µ)]± 1}2
β
∂ε

∂p

= − c2 exp [β(ε− µ)]

{exp [β(ε− µ)]± 1}2
β
p

ε
,
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we get

dP

dT
= −4πg

3h3

∫ ∞
0

p3dp

β

d

dp

{
1

exp [β(ε− µ)]± 1

}[
εβ2 +

∂

∂T
(βµ)

]
= −4πg

3h3

p3

exp [β(ε− µ)]± 1

[
εβ + T

∂

∂T
(βµ)

]∣∣∣∣∞
0

+
4πg

3h3

∫ ∞
0

dp

exp [β(ε− µ)]± 1

{
3p2

[
εβ + T

∂

∂T
(βµ)

]
+
c2p4β

ε

}
=

4πg

3h3

{
β

∫ ∞
0

dp

exp [β(ε− µ)]± 1

(
3p2ε+

c2p4

ε

)
+ T

∂

∂T
(βµ)

∫ ∞
0

3p2dp

exp [β(ε− µ)]± 1

}
= β(e+ P ) + nT

∂

∂T
(βµ) ,

where we integrated by parts and the term on the second line is zero. For instance, we have for

photons P = e/3 and µ = 0, such that we get 4e = Tde/dT ⇒ e ∝ T 4.

We already know dE = −PdV for the expanding Universe:

d
(
eR3

)
= −Pd

(
R3
)
⇒ d

dT

[
(e+ P )R3

]
= R3dP

dT

⇒ d

dT

[
(e+ P )R3

]
=
R3(e+ P )

T
+ nR3T

∂

∂T
(βµ) .

We define s = (e+ P − nµ)/T , for which we get

d
(
sR3

)
= d

[
R3(e+ P − nµ)

T

]
=

1

T
d
[
R3(e+ P )

]
− R3(e+ P )

T 2
dT − nR3d

(µ
T

)
− µ

T
d
(
nR3

)
= −µ

T
d
(
nR3

)
.

So the quantity sR3 is approximately conserved if nR3 is approximately conserved and/or |µ| � T .

In the case |µ| � T we have s ≈ (e+ P )/T , so

Td
(
sR3

)
= Td

(
R3 e+ P

T

)
= d

[
R3(e+ P )

]
− (e+ P )R3dT

T

≈ d
[
R3(e+ P )

]
−R3dP = d

(
R3e

)
+ Pd

(
R3
)
.

Since dE = −PdV +TdS, we see that in thus case s is the entropy density and s ∝ R−3 (it is clear

that the µ part will give µdN in general).
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4. UR with |µ| � T

Here ε = cp and

e =
4πg

h3

∫ ∞
0

cp3dp

exp
( cp
T

)
± 1

=
4πg

(hc)3
T 4

∫ ∞
0

x3dx

exp(x)± 1
=

{
7
8
g
2 āBT

4 fermions
g
2 āBT

4 bosons
,

where we have used ζ(4) = π4/90 and āB = 8π5/15(hc)3 ≈ 2.0822×1049 cm−3 erg−3 is the radiation

constants written for temperature is energy units. For temperature in units of Kelvin, we have

aB = āBk
4
B ≈ 7.56577× 10−15 erg cm−3 K−4. For the number density

n =
4πg

h3

∫ ∞
0

p2dp

exp
( cp
T

)
± 1

=
4πg

(hc)3
T 3

∫ ∞
0

x2dx

exp(x)± 1

=

3
4

16π
(hc)3

ζ(3)g2T
3 = 3

4
30
π4 ζ(3)g2 āBT

3 ≈ 0.2777g2 āBT
3 fermions

16π
(hc)3

ζ(3)g2T
3 = 30

π4 ζ(3)g2 āBT
3 ≈ 0.3702g2 āBT

3 bosons
,

where ζ(3) ≈ 1.202. Finally, P = e/3, s = 4e/3T and the average energy is

〈ε〉 =
e

n
=

7
6

π4

30ζ(3)T ≈ 3.15T fermions

π4

30ζ(3)T ≈ 2.70T bosons
.

We can write the total energy density for many species as:

etot = āB

( ∑
bosons

gi
2
T 4
i +

7

8

∑
fermions

gi
2
T 4
i

)
≡ g

2
āBT

4,

where

g =
∑

bosons

gi

(
Ti
T

)4

+
7

8

∑
fermions

gi

(
Ti
T

)4

.

If all species have Ti = T , then

g =
∑

bosons

gi +
7

8

∑
fermions

gi ≡ gB + gF .

Similarly for the total entropy density

stot =
4

3
āB

( ∑
bosons

gi
2
T 3
i +

7

8

∑
fermions

gi
2
T 3
i

)
≡ 4

3

q

2
āBT

3,

where

q =
∑

bosons

gi

(
Ti
T

)3

+
7

8

∑
fermions

gi

(
Ti
T

)3

.
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If all species have Ti = T , then q = g. Note that qT 3R3 is conserved during expansion. Finally for

the number density

ntot =
30

π4
ζ(3)āB

( ∑
bosons

gi
2
T 3
i +

3

4

∑
fermions

gi
2
T 3
i

)
≡ 30

π4
ζ(3)

r

2
āBT

3,

where

r =
∑

bosons

gi

(
Ti
T

)3

+
3

4

∑
fermions

gi

(
Ti
T

)3

.

If all species have Ti = T , then s ∝ n. Also, since for photons gγ = 2, then

nγ =
30

π4
ζ(3)āBT

3 ⇒ s =
4

3

q

2
nγ

π4

30ζ(3)
≈ 1.801qnγ .

5. NR

Here ε ≈ mc2 + p2/2m� T and we further assume ε− µ� T . In this case

1

exp [β (ε− µ)]± 1
≈ exp [−β(ε− µ)] ,

regardless of the nature of the particle (a boson or a fermion). We get for the number density (note

that Γ(3/2) =
√
π/2)

n =
4πg

h3

∫ ∞
0

p2 exp
[
−β
(
mc2 − µ

)]
exp

(
−βp

2

2m

)
dp

=
4πg

h3
exp

[
−β
(
mc2 − µ

)](2m

β

)3/2 ∫ ∞
0

x2 exp
(
−x2

)
dx

= g

(
2πmT

h2

)3/2

exp
[
−β
(
mc2 − µ

)]
,

and for the energy density e ≈ mc2n. We see that in a radiation dominated Universe, the number

(and energy) density of non-relativistic particles with |µ| � T are exponentially suppressed by

exp(−mc2/T ) compared with relativistic particles.

For the pressure we get (note that Γ(5/2) = 3
√
π/4)

P ≈ 4πg

3mh3
exp

[
−β
(
mc2 − µ

)](2m

β

)5/2 ∫ ∞
0

x4 exp
(
−x2

)
dx

= g

(
2πmT

h2

)3/2

exp
[
−β
(
mc2 − µ

)]
T = nT � e.
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6. t > tD

After decouple, the distribution is given by Equation (1).

6.1. TD � mc2

For particles that decouple while they are relativistic, the shape of the distribution remains

the same if T (t) = TD[R(tD)/R(t)]. In free expansion these particles are not in TE, but we can

still define a temperature, which follows ‘T ’∝ R−1. The entropy of these A particles, SA = sAR
3,

is separately conserved. For particles still in TE the conserved entropy is qT 3R3 so T ∝ q−1/3R−1,

which falls more slowly then R−1 (since q(t) is decreasing with decreasing temperature). The

number density of the decoupled particles is

n(t > tD) =


3
4

30
π4 ζ(3)g2 āBT

3
D

[
R(tD)
R(t)

]3
fermions

30
π4 ζ(3)g2 āBT

3
D

[
R(tD)
R(t)

]3
bosons

,

which is comparable to nγ at any given time. Specifically, relic background of decoupled particles

is present today with n ∼ nγ .

The distribution is of UR particles, i.e. at decouple ε(tD) ∼ TD ∼ cp(tD), but the momen-

tum is redshifted as the Universe expands, and it is possible to get to the point where T (t) =

TDR(tD)/R(t) ∼ mc2 ≡ TNR. Then the energy of each particle becomes ε(t) =
√
c2p2(t) +m2c4 ∼

mc2, so e ∼ nmc2 where n is UR.

6.2. TD � mc2

Here for |µ| � T the shape of the distribution remains the same if T (t) = TD[R(tD)/R(t)]2.

The number density is given in this case by

n(t > tD) = g

(
2πmTD
h2

)3/2(R(tD)

R(t)

)3

exp

(
−mc

2

TD

)
,

so n ∝ R−3 and e ∼ mc2n.

7. Excess of fermion over their antiparticles

Assume some fermions are able to annihilate through f + f̄ ↔ γ′s, then in TE µf + µf̄ = 0.

The number density excess of f over f̄ is given by

nf − nf̄ =
4πg

h3

∫ ∞
0

p2dp

{
1

exp [β (ε− µ)] + 1
− 1

exp [β (ε+ µ)] + 1

}
,
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and the total energy density in these particles is given by

ef + ef̄ =
4πg

h3

∫ ∞
0

εp2dp

{
1

exp [β (ε− µ)] + 1
+

1

exp [β (ε+ µ)] + 1

}
.

7.1. UR

Here ε = cp and

nf − nf̄ =
4πg

h3

∫ ∞
0

p2dp

{
1

exp [β (cp− µ)] + 1
− 1

exp [β (cp+ µ)] + 1

}
= 4πg

(
T

ch

)3 ∫ ∞
0

x2dx

[
1

exp (x− βµ) + 1
− 1

exp (x+ βµ) + 1

]
= 4πg

(
T

ch

)3

M
(µ
T

)
,

where

M(x) =

∫ ∞
0

y2dy

[
1

exp (y − x) + 1
− 1

exp (y + x) + 1

]
=

x

3

(
π2 + x2

)
,

such that

nf − nf̄ =
4πg

3

(
T

ch

)3 µ

T

[
π2 +

(µ
T

)2
]
.

The total energy density in these particles is

ef + ef̄ =
4πg

h3

∫ ∞
0

cp3dp

{
1

exp [β (cp− µ)] + 1
+

1

exp [β (cp+ µ)] + 1

}
= 4πg

(
T

ch

)3

T

∫ ∞
0

x3dx

[
1

exp (x− βµ) + 1
+

1

exp (x+ βµ) + 1

]
= 4πg

(
T

ch

)3

TP
(µ
T

)
,

where

P(x) =

∫ ∞
0

y3dy

[
1

exp (y − x) + 1
+

1

exp (y + x) + 1

]
.

We have P(0) = 7π4/60, and

P ′(x) =

∫ ∞
0

y3dy

{
exp(y − x)

[exp (y − x) + 1]2
− exp(y + x)

[exp (y + x) + 1]2

}
=

∫ ∞
0

y3dy

[exp (y − x) + 1]2 [exp (y + x) + 1]2
[exp(−x) + exp(2y + x)− exp(x)− exp(2y − x)] .
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The rightmost term is −2 sinh(x) + 2 exp(2y) sinh(x) = 2 sinh(x)[exp(2y) − 1], which is positive

for x > 0, so we have P ′(x) > 0 for x > 0. Since P(x) is symmetric, we have P(x) ≥ P(0), and

P(x) = P(0) only for x = 0.

In the limit x� 1 we have

P(x) ≈
∫ ∞

0

y3

exp (y − x) + 1
dy ≈ x4

4
,

such that

ef + ef̄ ≈ πg

(
T

ch

)3

T
(µ
T

)4
= πg

µ4

(ch)3 � āBT
4.

7.2. NR

Here ε ∼ mc2 + p2/2m and we further assume |µ| � ε. We have

nf − nf̄ =
4πg

h3

∫ ∞
0

p2dp {exp [−β (ε− µ)]− exp [−β (ε+ µ)]}

=
4πg

h3

∫ ∞
0

p2dp exp

(
−mc

2

T

)
exp

(
− p2

2mT

)[
exp

(µ
T

)
− exp

(
−µ
T

)]
= g

(
2πmT

h3

)3/2

exp(−βmc2)2 sinh
(µ
T

)
.


