The FRW Universe

Doron Kushnir

Developed by Friedman (22,24), Robertson (36) and Walker (36). I'm loosely following Steven
Weinberg’s Cosmology and Eli Waxman’s notes.

1. Assumptions

We assume that the Universe is isotropic and homogeneous, meaning that we can choose z*
such that the subspaces t = const. are homogeneous and isotropic. We can choose a time such that
all free falling observers can agree on, t(S), where S is some scalar, e.g. t(TcmB)-

2. An example - a 2D space

Let’s discuss a 2D isotropic and homogeneous space, embedded in a 3D KEuclidean space:
ds®> = dx? + dy? + dz?. The simplest case is a flat 2D space, e.g. ds?> = dx? + dy? with some
z = const.. Another possibility is a 2D sphere (S?) with a radius R: 22 +y? + 22 = R2. We define

r=rcosf, y=rsind,

such that
dx = drcosf —rsinfdf, dy = drsinf + rcosfdb,
de® +dy? = dr®+r2de?,
2 = VR2—r2=dz= __rdr = d? = 7r2dr2
- T VR -2 TR
R? dr
2 _ 2, 2302 _ p2 =2 192
= ds—wd'r +Td0 —R <1_f2+7"d0),
where 7=r/R.

How do you know you’re on a sphere? You can take a string with a length [ and measure circle
circumstance. The string is placed from the coordinate r = 0 to some coordinate r with a fixed 6.
The circumstance is given by f027r rdf = 2mr. The length for a flat space is given by [ = [ dr’ =r,
such that 27r = 27l. For S? we get

[ dr’ (TN 1 /r\2 r

5?2 is isotropic and homogeneous. It is also unbounded but finite.
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The last possibility for a 2D isotropic and homogeneous space is (constant negative curvature)

d~2
ds> = R® <1 Tt fF2d02> .

Expansion or contraction of these geometries is changing the scale factor R, but leaving 7,0
fixed = 7,0 are comoving coordinates. Distances between comoving coordinates scale with R. For
flat space R is not a radius, but just scale the physical distance between comoving points.

3. An extension to 3D space + time
The metric in this case is
272 2 1,2 . i At 000
—c“dt = gooc”dt” + 2gocdtdx’ + g;jdx"dx’ .

gio = 0 since otherwise there is a preferred direction. From homogeneity goo(t), so we can scale

time:
—dr? = —d® + gijdxid:vj,
S 2 = 2at - B0 (T 420
1—kr? ’
where k£ = 0 is for Euclidean, k = +1 is for spherical (sometimes called ‘close’), and k = —1 is for

hyper-spherical (sometimes called ‘open’). I'm not proving that these are the only 3 options for
the spatial part. 7 is dimensionless. The 3D spatial curvature is R3p = k/R?. The components of
the metric are:

1

goo = —1,90i = gio =0, gij = R*()Gij» Grr = T2 Goo = 1%, §gg = 17 sin” 0,
. . g 1 .
00 02 20 ) ~1
frg —17 — = 0, J g ].
Note units: [2°] = [¢t] = cm, and 2 is dimensionless, such that goo, g°°, §i; and §* are dimension-

less, [gij] = cm? and [¢¥] = cm™2.

In these coordinates the metric is diagonal. Sometimes it is more convenient to work with
different coordinates:

(M = rsiné cos o, r® = rsinfsin o, r®) = rcos 0,



such that

drV = dr sin 6 cos ¢ + r cos 0 cos ¢pdf — r sin 0 sin ¢do,
dr® = drsinfsin¢ + r cos 0 sin ¢dd + rsin 6 cos ¢pdg,
dr® = drcosf — rsin 0deo,

gt 4 KA L/ dr? + r2df* + r* sin® 0dp* + (rdr)®
1 — kr? 1 — kr?
240 — sdridr Siyridrt)?
T T _”rr+1—kr2(”r )"
. krird
= Gij = 0ij + T2
The inverse metric is §¥ = 6% — krirJ. Let’s verify:
. kripd . .
~ ik k k
gijg] = <5¢j + 11— k‘?"z) (5] — krir >
- ; krird kriri ;
k k k k
= 6ij5j — (Sijk‘TJT‘ + Ty o — =2 krir

krirk k2pipky2
1— kr? 1— kr?

. 1 k?"2
o k ik [ _ — k
= 0; +kr'r ( 1+1—kr2 1—/~c7“2> ;.

= 65 — krirk +

The spatial metric is invariant under quasi translations

= 7 7 [\/1—kr2— (1—,/1—@%) Tﬂ ,
o

which translates the origin to 7. To verify, we need to show that

<

kl 8:6” 8$/j
7 02k Ozl

1ij

Using

ox't P 2kr  2rd 4 7“6
_ = ity ——])/——— — Ap—
oxJ w o 21— kr2 2r OT(Q) ’
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where A9 =1 — /1 — krj (note that AZ =1 —2y/1—kri +1 — krd =2A0 — krd), we get

. krk rk 7 rt
= (5“ k:rkrl) [51 — 7 <+A 0)] [5 <+A 0)}
9 W ey L R W v
. l l . .
_ {5 5( +A0Tg) —krlrl—i—kré( b N ’“Oﬂ
V1—kr? TH V1—kr?
l l
e +A0T‘%>}
—k’l“ L)
J
= Y —7"] ( > + Agl0
1—kr2 1—kr2 07”(2)
i k22 kAoT - 0 A
* TOT[J)(I—ICT2+2 V1—kr? 7(2] ~hr'r?
o kr? TjF'FO
+  krdrt <+A >+kr < )
C\vitwE g ) T
. k2t k‘r T 7_"0)
— krr} +24 pri
TOTO(l—kQ AT k2 o
g o . o k k22 kAT - 7%
= 0 —kr'rd + (r'r) +rr? < + + )
( 0T7o ) V1I—Fkr2 /1 —kr? o
] k27“2 _' 770 A2 k3T4 7“277-770 (777_"0) AO
i..J 2%k A 0 _9p2p. - 7 U 2 9=
+ 7“07“0<1_k2+ OOJWJFT% 1= 72 07‘8 Ty 0 ra r2
The lhs is
g7 =59 —k [ri +rh <\/1 — kr? —AOT;;OH [1"3 + 7 <\/1 — kr? — T';())] ,
0 0

which we can compare term by term. The only nontrivial term is the rérg term, for which we need

to verify that

- = - = \2
—k [1—kr2—2A0mr o 2T 70) ]
T

0 7o
?r? 7 7 A2k 27 7 (7-70)> Ao
= +2k:A7+—0—7—2k:2A — kA2 -2
1= kr? Cr2VT k2 12 1 kr? VI k2 r2

The 6th term on the rhs is the 4th term on the lhs, the 2nd and the 5th terms on the rhs give the
4th term on the lhs, the 3rd and the 7th terms on the rhs give the 1st term on the lhs and the 1st
and the 4th terms on the rhs give the 2nd term on the lhs.
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4. Free falling particle (geodesic)

The equation of motion is

A2zt dx¥ dx®
T =
dr? Nz dr dr ’

where

NG :lgl‘)‘ IGw O9rk vk
VRS2 oxr  dzv  Ox )’

Let’s look on a comoving particle with 7= const.. It follows dx’/dr = 0, and therefore

d?zt - dz0 dad

7

A T

Since

I o (99x . 99x0  Ogoo
I’gozig“ <8x0 + 020 Oz =0

(as gyo is either 0 or —1), we get d?z'/dr? = 0, so 7 = const. is a geodesic. Proper time interval
for this particle:

Adr? = Edt? — giydr'dr! = Edt* = dt = dr,

so t is the time measured in the rest frame of a comoving clock.

5. The rest of the affine connections

Ogxi 39Aj 09ij

1 1 (9g0i | Ogo; 0gi;\ RR._

o = —4% J _ == J U = g
" 27 <8x3 oz’ 356)‘) 2 <3$J T x T 9al ¢ T
o — Loox (990 39,\i _Og0i\ _ 1 (0goo  Ogoi 990i\ _ _ o0
0i 29 ox’ 8:60 OxA oxt 020 029 i0
i _ Lo (99x0 69)\3’ _Og90;\ _ 1 09k _ ﬁ 5i—Ti

0j 29 oz 8:50 ox? 29 920 ~ ¢RI Jo

i 1[99y 1 9gxe  Ogjr\ _ 1.y (99  Ogu.  OGjk\ _ i

gk 29 oxk ~ 9xi Oz 2 oxk = 0x3  0Oxl ) T

Note units: [['};] = cm, [[{;] = cm™" and I‘;k, fé’k dimensionless.
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6. Ricci tensor

_dr, oy,
W 9zr O

A 10 A 1o
+ F,uo vA T F,LLI/F)\J'

Since I' vanishes for two or three time indices, we get:

ork. (ork ory,
Ry = Sk ( 4 5 | 4+ (DD + Tl + Tl ) — (Thry + 10T
. orY.
= Rij — ax}? + T 0 + Tl — T9 Lo,

81”30 o
Roo = TIL‘ZO + FBjF{)iv
and Ry; = R;o = 0 because of isotropy.

We need to calculate the following terms:

0
S
oI = %@j% = C%QinQ,
Tholgs = %55 Rfféjkzc%ﬁinZa
Yy, = ?Qz‘j% = 35;2%7

oy _ 3d(R
00  2dt\ R’

R R _ 3R

[0 o SO Skl v ,
0% 0i cR7cR™" 2R?
We get:
- 1 ) . ) ) . 1 .. )
R;; = Rij—i_cizgij (—RZ—RR+R2+R2—3R2>:Rij—i—c—Qgij (—RR—QRQ),
R _ 3(R_R RN 3R
W T 2\R R R 2R

Note units: [Roo] = cm™2, R;; and Rij are dimensionless.
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To calculate Rij, note that we need Fé- = f‘;k, calculated with g;; and G. We have

03ij B k i j k2pipd ok
ork 1 —kr2 (5jkr + 0wy ) + (1 — kr2)2 "or
R e

= 12 (5jkr + 5ikrj) + (1 — k’l“2)2r rir®,

0g" S
5 k),
Such that
. 1 ., /0d: 0§ G
l’k _ 7gll gl]z + gll'c . g]lk
J 2 ox oxJ ox
- = 5ll _ k,,rlrl (5'le + 5lkrj + (5]@‘7“1 + 6l'rk _ 5klrj _ ‘lrk + ’f'l’r’j’r’k
2 1—kr2 J J J 1 — kr2
— il i,.l ol LT N
<5 krr)l_kr2<5]kr+1_kr2rrr)
k ) k o . k2 .
= m (5]']@741 + — kTQTZT’JT’k o k(sjkrzr2 _ = erT,zT]TI%ﬂ)
kr! krirk
= T3 |:5Jk(1 kr?) + 13 (1—kr2)}
krirk
= kr' <5gk + 17 2> kvt g
We have
or’ A 95
]k 1~ 7 g]k‘
8{El k(slgjk + k'/" 78.@[
. . k . 2k2 )
= g bt | (B 8) + AP gt
- — KT
such that
_ ork. ork . -
Rij = Om]; - al'k] + 0T —ThHT
k , 2k2 o
= I?~ - k R .. k .t - ki J
k{6]9k1+r [1—kr2 ((52]7“ +6kjr>+(l—kr2)2r 7“7“:|}

N k ; . 2k .
-k {6;:91] + Tk |:1 — k2 (5]kr + 5ik7‘J) + (1 - kT2)2r rjrk:| }

+ KR gagn — K g
(e R ket 2R ket ket 2k
TR T Tk T ) T T Tk T Tk (1= 2

+ KR (Gadie — Gijm)
2
= _ngij + 71 ) (7“2(52‘]‘ — TlTJ) + k27‘l7“k (gikgﬂ - gijgkl) .



The second term is

]{77“251‘]‘ kTiTj k‘T‘2(5ij - 1 ~
For the third term we need
k - k
P _ . 0. k.l
Gij Gkl <5,]+1_kr2rr> <5kl+1—kr2r r),

- ko ik kg
Jikgji = (5ik+ 2" " ) (5jl+ 1_kT2TJT)7

- - k , k ‘ o
= GikGjt — GijGk = Oirdji — 0ij0kl + T35 <5ik7’]7’l - 5z‘j7’k7’l> t e (5jl7'z7'k - 5kl7'z7'])

= E*r'* (Gindin — Gijgm) = K [rirj — 8?4 72 (r*r'rd — §;1%) + 2 (ririr? — rirjr2)]

i kr? k2 i
= R o) (14 ) = s (= ).

Putting these together, we get:

_ ) 1 koo k
Rij = —2kgi; +k (5@1 2 gij + - kT27’ rl — 2 52-]4'2)
E
= _ngij + k <6U + 71 ~ g2 rird — gw> = _2k§ij-

We finally get

I R 282

7. The energy-momentum tensor

T is the energy density e, T is the the energy flux divided by ¢, and T% is the flux in
the j-th direction of the i-th momentum component. We assume that the Universe is full with
ideal fluid in LTE: the relaxation time is < than the expansion time and the diffusion length scale
VD - thow is < than typical length scales L of the problem. Under these assumptions entropy is
conserved ds = 0. In the rest frame of the fluid 7" = diag(e, p, p, p), where p is the pressure. In
Special relativity we can make a tensor out of this with T* = (e + p)u*u”/c? + n*p This is a
tensor, since e and p are defined by their values in locally comoving system, so they are scalars,
and u* is defined to transform as 4-vector and u® = ¢, u’ = 0 in a locally comoving system. This
velocity vector is normalised such that g, u*u” = —c2.

would be TH = (e + p)utu” /¢ + g"p.

The generalisation to general relativity



For locally comoving systems:

™" = (e+ p)é*P5*° + g*p,
" = THgy, = —(e+ p)dH%,0 + 0Hp = 1) = 3p—e,
T,uzz = T,i\g)\u = (e +p>5u051/0 + Guvp-
Note units: [T%] = ergem™3, [TY] = ergem ™, [T7] = [TJZ] = ergem 3, [Too] = ergem ™3, and
[T;;] = ergem ™!,
The conservation laws are:
oTH
]:/;V - ang + F':VTKV + FZVTMK =0.
For energy conservations:
oo
St
197%° o . .0 1. RR_ 1 _. 3R
= o TIaTT AT = st = mhi o+ e
1. 3R 3R
= —é _— : i - 0. 1
Set S (etp) > et o (04 e) (1)
This can be written as:
de 3 de e 1 d 3p
_ — _— = — _— = ——— R3 = —
iR B rt r T mar ) =3
d (4m
— [ =R’ | = —4mpR?
dR ( 3 6) R
This is simply dE = —PdV, since dS = 0 for a diagonal T"”. For momentum conservations:
. o1 4 :
oTu S .
- w + Féijk + F?kTZ]
p O3y i D e, ke P
2 g T Ok R ik a0
25 [ (89 + 0307 ) + 3kr" + krta} | = 25 (=07 + 61" =0,

so no useful information here.

Equation (1) can be solved for p = we (w is a constants):

de | 3R i lyemom d6 2 3wtD)

—3—3w
&R iR R CTexE )

1. cold matter: p=0= e ox R
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2. radiation: p =e/3 = eoc R4

J. vacuum energy: p = —e = e const.

As long as there is no interchange of energy between different components, these results hold
separately for each of them.

8. The Einstein field equations
The Einstein field equations are

8rG 8rG 1
RMV + )\g,w = _7*9#” = _CT <TMV — QQMVT)%\> .

Note units: [A] = cm™2. So we need S,

1
Sp,y = (6 +p)(5#05y0 + guvP — §guy(3p — 6)

1
= (6 +p)5,u051/0 + 59#1/(6 - p)?
We find

1 1
Soo = €+p—§(€—p):§(€+3p)a
Soi = Sin=0,
1

1 _
Sij = gle=plgy = 5(e —p)RGy.

The 00 term of Einstein field equations is

3R 87G 1

2y = 2t

2R ct 2 (e+3p)

R 9 ArG
= SE—)\C i (e +3p)
The ij terms of Einstein field equations are
RR _R*\ _ 5 8nG 1 9.
B ) 4
= 2ke® + RR+2R2 — A2R? = WQG (e — p)R2.
c

We can interpret the A\ term as having some energy density ey and pressure py if

4G
2

4G
C—z(e,\+3p,\) = -\

(6/\—]?)\) = )‘62)
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Multiplying by 3 the first equation and adding both equations:

e At
07446/\ = 2)\ = ey = 87TG

First equation minus the second equation:

4G At
—4 = 2\ — _
C4 ( p/\) = Dx e

= —€).

Taking R from the 00 component and substituting into the ij component:

A2 4 . 4
ok 4 Rp2|AC _ATGERI gy ope ATG
3 3c? c?
. 2
= E __]{702_{_1)\62_1_%%
R]  R2 3 2 3

. 2
N E B 1 n Act B kfc2
R|] 32 \“"8:c) R

with

R Ro A2

H = — H = —

R, 0 R07 P 87TG7

and
SHS -29,2 8 Hy
e = —— ~ 1.878 x 107*°h*—=, h =
Pe = 8nG cm? 100 kms—! Mpc~!

is the critical density. We can compare this with the Newtonian approximation:

N
H? = <a> — H2 [p+m+<1—p°—m>a—2}
a Pe Pe Pe Pe
We see that

1. all energy density contributes, p — e/c?.
2. ais R up to a scale factor, a = R(t)/R(to), Ho = (R/R)|i—t,

3. k/R} = —HZ(1 — po/pec — pr/pe)/c?, such that the current curvature radius is of the order
¢/Hy or larger (unless |pg + pa| > pe).
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So the 16 Einstein field equations reduce to 2 equation for the FRW Universe:

kc?
H? = H2< C 4 >
"\pe® " p.  HER?

é+3H(p+e) = 0,

which are the Friedmann equation and energy conservation, respectively. We have 2 equations for
3 variables e, p, R, so we need one more equation, which is the equation of state (EOS), p(e, s).
Since s = const., we have p(e, sg), where sg is a property of the Universe. We'll see later that
50 ~ 1) = Ny [/ T0p.

We define for the vacuum, matter, radiation, and curvature, respectively:

Qpy = A:&:%m:iz’
pe  3H; 3H;

Qu = MZ%KJMO

pe  3HZ T
Qr = PR :%PRO

pe  3HF"TV

kc?

Qg THIRE

to write the Friedmann equation as

R\ R\ 4 R\ 2
H?>=H? |Quy | — Qp [ — Qp + Qx| =
0[ M<R0> + R<RO> + 825 + K<R0>

and Qs + Qr + Qp + Qg = 1. We can find solutions for k = 0:

1. Matter dominated (Qy; = 1): R = HyR(R/Rg)™3/? x R™'/2 = R o ?/3.
2. Radiation dominated (Qp =1): R = HyR(R/Ry) 2> x R™' = R o t'/2,
3. Vacuum dominated (24 = 1): R = HyR = R o exp(Hot) = exp(Ht).

9. Currents and numbers

From isotropy, the mean value of any 3-vector v’ must vanish. From homogeneity, the mean
value of any 3-scalar (i.e. invariant under spatial translations) can be only a function of time.
Therefore, we have for currents

Ji =0, J" =n(t),
where n(t) is the number per proper volume in a comoving frame. From conservation:
dJ" on . n 3R A 3R

_ _ v o__ % _ _ -3
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10. Distances and redshift
10.1. Proper distance

The distance at time ¢ from the origin to a co-moving object at a radial coordinate 7:

T T d /
op(rot) = [ a0 = RO) [ = RO )
where f(r) = sin~!(r)/r for k = 1, f(r) = 1 for k = 0, and f(r) = sinh~*(r)/r for k = —1. We can
never measure the proper distance. Also,

@mzR@wm:R@ﬁmﬁz(gymm

which can be larger than c.

10.2. Redshift

Light travels along cdm = 0. For a photon emitted at r in the 7 direction and received at r =0
at time t:
dr
Ny

where the minus sign is because r decreases as time increases (the photon is coming to us). The

Adr? = Adi? — grrdr2 = cdt=—R

time t;(r,t) at which the photon was emitted is given by:
tedt! / Tdr!
- = — =rf(r). 3
L. 0= = ®

Consider now 2 signals, emitted at t; and than at ¢; + d¢; (both from r, which is time independent)
and received at r at t, t + §t. Differentiate the last equation wrt ¢:

c c Ot ot R(t)

R(t) ~ R(t;) ot 5~ R A

For frequencies: v/v; = R(t;)/R(t), such that the wavelength is redshifted A — A(1 + z). The
analogy with Doppler (v = cz) only holds for z < 1. In particular, we care about the increase of
R(t) from emission to absorption, and not only on the rate of change of R(¢) at the time of emission
or absorption. Also, p = hv/c for a photon, such that p oc R™.

Going back to Friedmann equation, we can write:
dR

-3 —4 —2
HUR\/QM (&) "+on(£) +oa+9x (&)
—dz
3 4 2
Ho(1+ 2)y/Qur (1+2)° + Qe (1+2)" + Qa4+ Qp (14 2)

dt =

)
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where
_ R 1
v= _R0_1+Z7
dR  dz  (1+z)dz  dz
R oz (1+2?2 14z

If we define the zero of time at infinite redshift, then the time at which light was emitted that
reached us with a redshift z, is given by:

t( ) 1 /1/(1+z) dr
zZ) = — .
HO 0 ‘%‘\/QM$73+QR:C74+QA+QK:L’72

For z = 0, the age of the Universe is

. 1 /1 dx
0 —_ —— .
Ho Jo ov/Qua=3 + Qpa—2 + Qp + Qa2

10.3. Angular distance

Consider a sphere of a diameter D lying at r and 2 photons emitted from the sphere’s edges
reaching to us. They move on a fixed (), such that the size of the object is (assuming D < rR)

D = rR[t(r,t)]d0
= da(r) = R[t;(r,t)]r = (1 + 2) ' R(t)r.

10.4. Luminosity distance

Consider a source with a luminosity L lying at r. Our detector of a diameter D occupies a
solid angle of 7df?/4 = 7[D/(2rR(t))]? as seen by the source. Because the arrival time of photons
is larger by the emission by (1 + z) and the energy of the photons is decreased by another (1 + z),
the observed flux is:

o md6> L 1 L
A x4n7mD?/4 (14 2)2  4nr2R2(t)(1 + 2)2°
Since
f=-t o d =+ 2)RO)r
N 47Td% L= )
Note that

dr = (1+ 2)dprop/ F(r) = (1 + 2)d .



From Equation (3) we get:

/t cdt! /1 cd ]
r=28 S ,
ti(r,t) R(t ) 1/(1+=) R0H0$2 \/QM.%'_3 + QRZL'_4 + Qp + Qa2

where S[y] = siny for k =1, S[y| = y for k = 0, and S[y] = sinhy for K = —1. This can be written

as
1
c . 1/2 dx
Ror(z) = ——=sinh |Q / ,
(2) HOQ}(/2 K 1/(14+2) 224/ Q=3 4+ Qpa—4 + Qp + QKz_2]
for all possible k values, by noting that sinh(iz) = ¢ sinx and that sinh x — x for  — 0. We finally
get
(1+2)c . 1/2 dx
dr(z) = (1+ 2)Ror(2) = —— sinh [Q .
HOQ}(/2 K 1/(1+4z) T2 \/QM:U—3 + Qpar~4+ Qp + Qa2

It is instructive to expand dp(z) for small z. For small z we can expand around Ry:

. . Ry 9 RoRy AR 2
R(R) = Ry+ —AR+O(AR*) = RygHyp |1+ ———— + O (AR
(R) = ot FZARO(ARY) = Rofly |1+ gt G040 (AFF)
= RoH() [1—QQAOL+O(ACL2)],
where
R 1 RoRy
“ Ry 1+z’q0 g 0 24T a

0
Note that @ = Hy[l — goAa + O(Aa?)]. We now expand both sides of equation (3):

rf(r) = r+ ékr?’ +0(r9),

/f cdt! 1 1cda_c/0 da
ti(rt) R(t,) Ro a(r) a a Ro Aa(r) (1 + x)Ho [1 — gox + O (:6'2)] ’
where £ = a — 1 = Aa. We can further evaluate the last expression as
c 0 dx c /Aa(r)
=— 1+ — 1)z +0(2?)] dz
R oy TF = a0e 7O~ oy 11 (0= D+ 06
c

_ [Aa + Yg-1)Ad® +0 (Aa?’)] .

" RoHy 2
So up to second order in Aa we have
c 1
= —Aa — =(qo — 1)Ad? Aad?
r ROHO[ a 2(qo )Aa +O( a)]

= dp(z) =1+ 2)Ror = 6(1};{_) ?) [—Aa - %(qo —~1Ad® +0 (Aa3)

= dL(Z) = Hio |:Z+;(1—q0)2«2+0(23):| . (4)
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11. The deceleration parameter ¢

Writing the 00 component of the Einstein equation for ¢y we get

Ry RO A2 4nG

_ A 3
R2 RO 3 3c2 (€0 +3po)
A2 AnG AnG
eo + 3po + 2p

= 2,0—02 (QM—l-ZQR—QQA)

We see that if matter (radiation, vacuum) dominates today than k is determined by whether qp is
larger or smaller than 1/2 (1, —1). For the justified approximation 2r = 0 we can write

3 1

Some observation are more sensitive to Q37+, (like CMB) and some are more sensitive to Qp; —Qp
(like type Ia SNe).

12. The fate of the Universe

The expansion can stop is there is a real root to the cubic equation (it is safe to ignore radiation
here):

R
QAUS+QKU+QM=0, u=—>1.
Ry
for u = 1, we have Qp + Qg + Qp = 1. For Q) < 0, the expression will become negative for
large u, meaning that the expansion will stop for some u. Even for 2y > 0 it is possible to stop, if
Qr =1—Qp — Q) is sufficiently negative (which requires k = 1).

13. Massive particles

A massive particle leaves r = 0 at ¢ with v. In the local inertial frame around {¢,r = 0} there
is no acceleration (I' = 0), such that the particle reaches Az at At = Az/v with a constant v (to a
first order in At). A comoving observer at {At, Az} has a velocity AzR(t)/R(t) = HAz (to first
order in Az) and therefore measures the particle velocity:

2
, v— HAx N , <%_1>HA°T Yy 2HAx
v_l_,UHAm vV=Uv U= HAx - HAw'

1—w 1—1}
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The particle momentum p = vyfSmc is changed by

Ap = mcA(yB) = mecA (\/72 — 1) =mcB Ay = mey) AB

L Mp_ A8 HAL
» B T T 1-pB2HA
A AR
= ?p%——R =px R (5)

For relativistic particles E = pc = E o R~!. For non-relativistic particles, the kinetic energy is
E=p?/2m = FE x R™2

Let’s derive this result in a different way. Consider the expression

dxt dxt
P =m0\ gij (6)

where c?dr? = 2dt? — gijdxidxj. In a local inertial Cartesian coordinate system g;; = d;;, such

that
1 /dz\*
cdr = cdty/1-— pr = dr = dt\/1 — 32
c

d—f T Bmgc
dr ‘/1_52_7 0%

= p=my = moyv
which is the momentum. Since Equation (6) is invariant under changes in spatial coordinates we
can evaluate it for comoving FRW coordinates. Let’s look on particle position near the origin 2 = 0
with g;; = dij + O(#?). In this case we can ignore the spatial F;k so the geodesic equation is
d*z ; dxtdx” 2R dx* d(ct)

_ )

dr2 ~ ™ dr dr ~ cRdr dr

Multiplying by dr/dt we get

d (da'\ _ 2Rda’ _ dx' 1
dat \dr R dr  dr " R?

dx® dzd 1 _

This hold for any nonzero mass, so also in the limit of massless particle, mg — 0, d7 — 0, we still
have p o R~L.

14. The current status

From CMB (mostly Planck 2015) Qx = —0.0057001%. Adding BAO improves this to Qx =
0.000 £ 0.005. Assuming a flat Universe, CMB constrains 3, = 0.31540.013, 2 = 0.685+0.013,
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Qph? = 0.02222+0.00023, Hy = 67.3140.96 kms~* Mpc ™, tg = 13.813+£0.038 Gyr, 2.4 = 3393449.
For p) = wey, CMB constrains w = —1.54J_r8:gg, and adding BAO and Type Ia SNe the constraint
improves w = —1.019f8:8gg. These values indicate that ¢y ~ —0.55 = R > 0 such that the
expansion of the Universe is accalerating.

Note that the value of 2y is extremely small. From zero point energy fluctuations of some
field of mass m up to some cutoff energy A > m, the vacuum energy density is ~ A*/h3¢®. For
A = 300GeV we get ~ 10?” g/cm? which is some 56 orders of magnitudes larger than py ~ p. ~
10729 g/em3. For the Planck energy scale, A ~ \/hc®/G ~ 10 GeV, the situation is much worse.

Distances and the age of the Universe as a function of z for Qy; = 0.3, Qy = 0.7 and h = 0.67
are plotted in Figure 1.

15. The age of the Universe for different Cosmologies

Before the exact measurements of the CMB, it was reasonable to consider the following 3
cosmologies:

1. Qpr = 0.3, Qx = 0.7: This roughly corresponds to the directly observed mass density in the
Universe, (237 < 0.3), with nothing else.

2. Qur = 1: This could be the case if we are missing some mass from direct observations, and
we have a strong prior for a flat Universe.

3. Qpr =0.3, Qp = 0.7: Here we trust the directly observed mass estimation and we are having
a strong prior for a flat Universe.

The age of the Universe can be calculated for the above possibilities (and others possibilities).

.1 ( [a
_1/1 de 9 sinh ( ﬁ)
Ho Jo z/Quz=3+Qy, 3Ho VAN '

In the limit Qs — 1 we get toHp = 2/3 and in the limit 23, — 0 we get ty) — oo. For Qp; = 1 we get
to ~ 9.68 Gyr, which is too short compared with stellar ages of ~ 13 Gyr, although the discrepancy

For Qi = 0 we get

to

is not huge and maybe can be resolved with systematic errors in Hy or in the stellar ages estimation.
For Q3 = 0.3 we find ty ~ 14 Gyr, which agrees with stellar ages. For Qp; + Qg = 1 we find

24+2/Q -0
t—l/l o _ L b QM]Og( s M>
*" Ho Jo o/ Qur3 4+ Qra—2  Ho | Ok 2(2?(/2

In the limit Qs — 1 we get toHp = 2/3 and in the limit Qy; — 0 we get toHy = 1. For Qu =0
we get tog ~ 14.5 Gyr, which agrees with stellar ages. For Q,; = 0.3 we find ¢y ~ 0.81/Hy ~ 12 Gyr,
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Q,, = 0.3, Qy = 0.7, h = 0.67

10° '

d[Mpc]|, t[Myr]

102

0 | . |
10
1072 10° 102
Z

Fig. 1.— dr (blue), dprop (red), da (black) and time (green) as a function of the redshift for
Qp =0.3, Qxy = 0.7 and h = 0.67.
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which also roughly agrees with stellar ages. This means that Q) = 0 with a small Q3; 2 0 is not
contradicted by stellar ages.

For Q2 = 0 we have the general expression

o alQp
1 [1/(+2)=a sinh™! (/%5
0 X

FO —

VOyr3+Qy 3Ho Vs

[Q 3 28
M .
QiAslnh <2H[) QAt)] .

16. Luminosity distance for different Cosmologies

= a=

For Qpr =1 we get

. _ (142 [ de _ (I+2z)c 1 2] - 2 L 2
a(z) = 5 /1/(1+z)\/5_ T 2[1-(1+2) }_HO(H Vita).

For Q) =1 we get

2)e (1 r c
dL(Z):(l—i_)/1 dw [(1—{—2)2—1—2]:—(22—1—2),

Hy 4 22 Hy Hy
for which the second order approximation, Equation (4), is accurate. For Q5 = 0 (k = —1) we have
1 d
dp(z) = 4F f}; sinh | Q2 / v
HoQyt 1/(142) 227/ Q=3 + Qa2

= (1 +f)2c sinh [2sinh™! Q—K — 2sinh™! ULQ—K
HOQK/ QM 1+=2 QM

For Qg =1 (k= —1) we have

1 1
dr(z) = (1+2)c sinh / d—x
Hy 1/(1+2) ©

1
_ Z,OZ)C sinh [log(1 + 2)] = 2—;0 (22 +22),

for which the second order approximation, Equation (4), is accurate. The case Qs + Q5 = 1 has
to be calculated numerically in general. These models are compared in Figure 2.

At z = 1 the 3 cosmologies from Section 15 give dr(z = 1) = ¢/Hy(1.37,1.17,1.54), respec-
tively. So there is a ~ 10% effect at z = 1. The second order approximation, Equation (4), gives
dr(z = 1) = ¢/Hp(1.42,1.25,1.77), so it is not accurate enough for z = 1. The second order
approximation is useful up to z ~ 0.5 (for the cases in which Equation (4) is not exact).
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Fig. 2.— dp(z) for different cosmologies. Solid lines are the exact integrals, and dashed lines are
the second order approximation, Equation (4).
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The ~ 10% difference at z = 1 can be measured with Type Ia SNe, since their intrinsic
luminosity can be calibrated to this accuracy by using the Phillips relation. Note that without the
Phillips relation the scatter in the peak luminosity is a factor of a few, meaning that type Ia SNe
are not standard candles (so it is hard to imagine that all are explosions of the same star, as in the
popular Chandrasekhar model). The measurement with Type Ia SNe established that 25 > 0 and
that the expansion of the Universe is accelerating.

17. Horizons
17.1. Particle horizon

Particle horizon is the limit on distances at which past events can be observed. Observer at a
time ¢ is able to receive signals only from r < rpyax(t):

toedt! Tmax (t) dr'
/0 R(t) _/0 Vi (e ()

There is an horizon if the lhs converges. For radiation dominated Universe we get R(t) o< t'/2 and
the lhs converges. The proper distance of the horizon is:

toedt!
R(t)

dmax(t) = R(t)Tmax f ("max) = R(t) /0

For radiation dominated Universe we have R(t) = At'/? = dyax(t) = ct'/?2t1/? = 2¢t = ¢/ H, since
H = R/R = 1/(2t). For matter dominated Universe, R  t%/3, we have dmax(t) = ct?/33t1/3 =
3ct = 2¢/H, since H = 2/(3t). In general, the particle horizon today is given by

d (1:)—6/1 d
e Hy Jy $2\/QMLE73+QRCC*4+QA+QKLE72.

If Q) dominates in the early Universe then dpax(to) — oo.

17.2. Event horizon

Event horizon is the limit on distances at which it will ever be possible to observe future events.
Observer at a time ¢ will be able to observe events only for r < ryax(t):

© cdt! B Tmax(t) dr’ B
BN /0 ﬁ = Tmaxf(rmax)‘

it R()
The proper distance to the event horizon is given by:

dmax(t) = R(t)rmaxf(rmax) = R(t) /too }:C;(if//)
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If Qp = 0 then R(t) x t2/3 and the integral diverges, so there is no event horizon. With Q, >
0, eventually H = HOQ}\/2 = R(t) x exp(Ht) = dmax(t) = cexp(Ht) [ exp(—Ht) = ¢/H,
which is = 5.2 Gpc for the current Universe. Every object which is further from this will become
unobservable in the future (since signals from there are redshifted indefinitely, we never ’see’ they
are lost). This is also the largest distance we will ever be able to travel.



