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Developed by Friedman (22,24), Robertson (36) and Walker (36). I’m loosely following Steven

Weinberg’s Cosmology and Eli Waxman’s notes.

1. Assumptions

We assume that the Universe is isotropic and homogeneous, meaning that we can choose xµ

such that the subspaces t = const. are homogeneous and isotropic. We can choose a time such that

all free falling observers can agree on, t(S), where S is some scalar, e.g. t(TCMB).

2. An example - a 2D space

Let’s discuss a 2D isotropic and homogeneous space, embedded in a 3D Euclidean space:

ds2 = dx2 + dy2 + dz2. The simplest case is a flat 2D space, e.g. ds2 = dx2 + dy2 with some

z = const.. Another possibility is a 2D sphere (S2) with a radius R: x2 + y2 + z2 = R2. We define

x = r cos θ, y = r sin θ,

such that

dx = dr cos θ − r sin θdθ, dy = dr sin θ + r cos θdθ,

dx2 + dy2 = dr2 + r2dθ2,

z =
√
R2 − r2 ⇒ dz = − rdr√

R2 − r2
⇒ dz2 =

r2dr2

R2 − r2

⇒ ds2 =
R2

R2 − r2
dr2 + r2dθ2 = R2

(
dr̃2

1− r̃2
+ r̃2dθ2

)
,

where r̃=r/R.

How do you know you’re on a sphere? You can take a string with a length l and measure circle

circumstance. The string is placed from the coordinate r = 0 to some coordinate r with a fixed θ.

The circumstance is given by
∫ 2π

0 rdθ = 2πr. The length for a flat space is given by l =
∫ r

0 dr
′ = r,

such that 2πr = 2πl. For S2 we get

l =

∫ r

0

dr′√
1− r′2/R2

= R sin−1
( r
R

)
= r

[
1 +

1

6

( r
R

)2
+O

(
r4

R4

)]
⇒ 2πr < 2πl.

S2 is isotropic and homogeneous. It is also unbounded but finite.
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The last possibility for a 2D isotropic and homogeneous space is (constant negative curvature)

ds2 = R2

(
dr̃2

1 + r̃2
+ r̃2dθ2

)
.

Expansion or contraction of these geometries is changing the scale factor R, but leaving r̃, θ

fixed ⇒ r̃, θ are comoving coordinates. Distances between comoving coordinates scale with R. For

flat space R is not a radius, but just scale the physical distance between comoving points.

3. An extension to 3D space + time

The metric in this case is

−c2dτ2 = g00c
2dt2 + 2gi0cdtdx

i + gijdx
idxj .

gi0 = 0 since otherwise there is a preferred direction. From homogeneity g00(t), so we can scale

time:

−c2dτ2 = −c2dt2 + gijdx
idxj ,

⇒ c2dτ2 = c2dt2 −R2(t)

(
dr2

1− kr2
+ r2dΩ

)
,

where k = 0 is for Euclidean, k = +1 is for spherical (sometimes called ‘close’), and k = −1 is for

hyper-spherical (sometimes called ‘open’). I’m not proving that these are the only 3 options for

the spatial part. r is dimensionless. The 3D spatial curvature is R3D = k/R2. The components of

the metric are:

g00 = −1, g0i = gi0 = 0, gij = R2(t)g̃ij , g̃rr =
1

1− kr2
, g̃θθ = r2, g̃φφ = r2 sin2 θ,

g00 = −1, g0i = gi0 = 0, gij =
1

R2(t)
g̃ij .

Note units: [x0] = [ct] = cm, and xi is dimensionless, such that g00, g00, g̃ij and g̃ij are dimension-

less, [gij ] = cm2 and [gij ] = cm−2.

In these coordinates the metric is diagonal. Sometimes it is more convenient to work with

different coordinates:

r(1) = r sin θ cosφ, r(2) = r sin θ sinφ, r(3) = r cos θ,
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such that

dr(1) = dr sin θ cosφ+ r cos θ cosφdθ − r sin θ sinφdφ,

dr(2) = dr sin θ sinφ+ r cos θ sinφdθ + r sin θ cosφdφ,

dr(3) = dr cos θ − r sin θdθ,

⇒ d~r2 +
k (~r · d~r)2

1− kr2
= dr2 + r2dθ2 + r2 sin2 θdφ2 +

k

1− kr2
(rdr)2 =

dr2

1− kr2
+ r2dΩ,

⇒ dr2

1− kr2
+ r2dΩ = δijdr

idrj +
k

1− kr2

(
δijr

jdri
)2
,

⇒ g̃ij = δij +
krirj

1− kr2
.

The inverse metric is g̃ij = δij − krirj . Let’s verify:

g̃ij g̃
jk =

(
δij +

krirj

1− kr2

)(
δjk − krjrk

)
= δijδ

jk − δijkrjrk +
krirj

1− kr2
δjk − krirj

1− kr2
krjrk

= δki − krirk +
krirk

1− kr2
− k2rirkr2

1− kr2

= δki + krirk
(
−1 +

1

1− kr2
− kr2

1− kr2

)
= δki .

The spatial metric is invariant under quasi translations

~r′ = ~r + ~r0

[√
1− kr2 −

(
1−

√
1− kr2

0

)
~r · ~r0

r2
0

]
,

which translates the origin to ~r0. To verify, we need to show that

g′ij = gkl
∂x′i

∂xk
∂x′j

∂xl
.

Using

∂x′i

∂xj
= δij + ri0

(
− 2kr

2
√

1− kr2

2rj

2r
−A0

rj0
r2

0

)
,

= δij − ri0

(
krj√

1− kr2
+A0

rj0
r2

0

)
,
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where A0 = 1−
√

1− kr2
0 (note that A2

0 = 1− 2
√

1− kr2
0 + 1− kr2

0 = 2A0 − kr2
0), we get

g′ij =
(
δkl − krkrl

)[
δik − ri0

(
krk√

1− kr2
+A0

rk0
r2

0

)][
δjl − rj0

(
krl√

1− kr2
+A0

rl0
r2

0

)]
=

[
δli − ri0

(
krl√

1− kr2
+A0

rl0
r2

0

)
− krirl + kri0

(
kr2rl√
1− kr2

+A0
rl~r · ~r0

r2
0

)]
×

[
δjl − rj0

(
krl√

1− kr2
+A0

rl0
r2

0

)]
= δij − rj0

(
kri√

1− kr2
+A0

ri0
r2

0

)
− ri0

(
krj√

1− kr2
+A0

rj0
r2

0

)

+ ri0r
j
0

(
k2r2

1− kr2
+ 2

kA0~r · ~r0

r2
0

√
1− kr2

+
A2

0

r2
0

)
− krirj

+ krj0r
i

(
kr2

√
1− kr2

+A0
~r · ~r0

r2
0

)
+ kri0

(
kr2rj√
1− kr2

+A0
rj~r · ~r0

r2
0

)
− kri0r

j
0

(
k2r4

1− kr2
+ 2A0

kr2~r · ~r0

r2
0

√
1− kr2

+A2
0

(~r · ~r0)2

r4
0

)

= δij − krirj +
(
rirj0 + ri0r

j
)(
− k√

1− kr2
+

k2r2

√
1− kr2

+
kA0~r · ~r0

r2
0

)
+ ri0r

j
0

(
k2r2

1− kr2
+ 2kA0

~r · ~r0

r2
0

√
1− kr2

+
A2

0

r2
0

− k3r4

1− kr2
− 2k2A0

r2~r · ~r0

r2
0

√
1− kr2

− kA2
0

(~r · ~r0)2

r4
0

− 2
A0

r2
0

)
.

The lhs is

g′ij = δij − k
[
ri + ri0

(√
1− kr2 −A0

~r · ~r0

r2
0

)][
rj + rj0

(√
1− kr2 −A0

~r · ~r0

r2
0

)]
,

which we can compare term by term. The only nontrivial term is the ri0r
j
0 term, for which we need

to verify that

−k

[
1− kr2 − 2A0

√
1− kr2

~r · ~r0

r2
0

+A2
0

(~r · ~r0)2

r4
0

]

=
k2r2

1− kr2
+ 2kA0

~r · ~r0

r2
0

√
1− kr2

+
A2

0

r2
0

− k3r4

1− kr2
− 2k2A0

r2~r · ~r0

r2
0

√
1− kr2

− kA2
0

(~r · ~r0)2

r4
0

− 2
A0

r2
0

.

The 6th term on the rhs is the 4th term on the lhs, the 2nd and the 5th terms on the rhs give the

4th term on the lhs, the 3rd and the 7th terms on the rhs give the 1st term on the lhs and the 1st

and the 4th terms on the rhs give the 2nd term on the lhs.
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4. Free falling particle (geodesic)

The equation of motion is

d2xµ

dτ2
+ Γµνκ

dxν

dτ

dxκ

dτ
= 0,

where

Γµνκ =
1

2
gµλ

(
∂gλν
∂xκ

+
∂gλκ
∂xν

− ∂gνκ
∂xλ

)
.

Let’s look on a comoving particle with ~r = const.. It follows dxi/dτ = 0, and therefore

d2xi

dτ2
+ Γi00

dx0

dτ

dx0

dτ
= 0.

Since

Γµ00 =
1

2
gµλ

(
∂gλ0

∂x0
+
∂gλ0

∂x0
− ∂g00

∂xλ

)
= 0

(as gλ0 is either 0 or −1), we get d2xi/dτ2 = 0, so ~r = const. is a geodesic. Proper time interval

for this particle:

c2dτ2 = c2dt2 − gijdridrj = c2dt2 ⇒ dt = dτ,

so t is the time measured in the rest frame of a comoving clock.

5. The rest of the affine connections

Γ0
ij =

1

2
g0λ

(
∂gλi
∂xj

+
∂gλj
∂xi

− ∂gij
∂xλ

)
= −1

2

(
∂g0i

∂xj
+
∂g0j

∂xi
− ∂gij
∂x0

)
=
RṘ

c
g̃ij ,

Γ0
0i =

1

2
g0λ

(
∂gλ0

∂xi
+
∂gλi
∂x0

− ∂g0i

∂xλ

)
= −1

2

(
∂g00

∂xi
+
∂g0i

∂x0
− ∂g0i

∂x0

)
= 0 = Γ0

i0,

Γi0j =
1

2
giλ
(
∂gλ0

∂xj
+
∂gλj
∂x0

− ∂g0j

∂xλ

)
=

1

2
gik

∂gkj
∂x0

=
Ṙ

cR
δij = Γij0,

Γijk =
1

2
giλ
(
∂gλj
∂xk

+
∂gλk
∂xj

−
∂gjk
∂xλ

)
=

1

2
g̃il
(
∂g̃lj
∂xk

+
∂g̃lk
∂xj
−
∂g̃jk
∂xl

)
≡ Γ̃ijk.

Note units: [Γ0
ij ] = cm, [Γi0j ] = cm−1 and Γijk, Γ̃ijk dimensionless.
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6. Ricci tensor

Rµν =
∂Γλλµ
∂xν

−
∂Γλµν
∂xλ

+ ΓλµσΓσνλ − ΓλµνΓσλσ.

Since Γ vanishes for two or three time indices, we get:

Rij =
∂Γkki
∂xj

−

(
∂Γkij
∂xk

+
∂Γ0

ij

∂x0

)
+
(

Γ0
ikΓ

k
j0 + Γki0Γ0

jk + ΓlikΓ
k
jl

)
−
(

ΓkijΓ
l
kl + Γ0

ijΓ
l
0l

)
≡ R̃ij −

∂Γ0
ij

∂x0
+ Γ0

ikΓ
k
j0 + Γki0Γ0

jk − Γ0
ijΓ

l
0l,

R00 =
∂Γii0
∂x0

+ Γi0jΓ
j
0i,

and R0i = Ri0 = 0 because of isotropy.

We need to calculate the following terms:

∂Γ0
ij

∂x0
=

1

c2
g̃ij

d

dt

(
RṘ
)
,

Γ0
ikΓ

k
j0 =

RṘ

c
g̃ij

Ṙ

cR
=

1

c2
g̃ijṘ

2,

Γki0Γ0
jk =

Ṙ

cR
δki
RṘ

c
g̃jk =

1

c2
g̃ijṘ

2,

Γ0
ijΓ

l
0l =

RṘ

c
g̃ij

3Ṙ

cR
=

3Ṙ2

c2
g̃ij ,

∂Γii0
∂x0

=
3

c2

d

dt

(
Ṙ

R

)
,

Γi0jΓ
j
0i =

Ṙ

cR
δij
Ṙ

cR
δji =

3Ṙ2

c2R2
.

We get:

Rij = R̃ij +
1

c2
g̃ij

(
−Ṙ2 −RR̈+ Ṙ2 + Ṙ2 − 3Ṙ2

)
= R̃ij +

1

c2
g̃ij

(
−RR̈− 2Ṙ2

)
,

R00 =
3

c2

(
R̈

R
− Ṙ2

R2
+
Ṙ2

R2

)
=

3

c2

R̈

R
.

Note units: [R00] = cm−2, Rij and R̃ij are dimensionless.
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To calculate R̃ij , note that we need Γijk = Γ̃ijk, calculated with g̃ij and g̃ij . We have

∂g̃ij
∂xk

=
k

1− kr2

(
δjkr

i + δikr
j
)

+
k2rirj

(1− kr2)2
2r

2rk

2r

=
k

1− kr2

(
δjkr

i + δikr
j
)

+
2k2

(1− kr2)2
rirjrk,

∂g̃ij

∂xk
= −k

(
δjkr

i + δikr
j
)
.

Such that

Γ̃ijk =
1

2
g̃il
(
∂g̃lj
∂xk

+
∂g̃lk
∂xj
−
∂g̃jk
∂xl

)
=

1

2

(
δil − krirl

) k

1− kr2

(
δjkr

l + δlkr
j + δkjr

l + δljr
k − δklrj − δjlrk +

2k

1− kr2
rlrjrk

)
=

(
δil − krirl

) k

1− kr2

(
δjkr

l +
k

1− kr2
rlrjrk

)
=

k

1− kr2

(
δjkr

i +
k

1− kr2
rirjrk − kδjkrir2 − k2

1− kr2
rirjrkr2

)
=

kri

1− kr2

[
δjk
(
1− kr2

)
+

krjrk

1− kr2

(
1− kr2

)]
= kri

(
δjk +

krjrk

1− kr2

)
= krig̃jk.

We have

∂Γ̃ijk
∂xl

= kδil g̃jk + kri
∂g̃jk
∂xl

= kδil g̃jk + kri
[

k

1− kr2

(
δklr

j + δjlr
k
)

+
2k2

(1− kr2)2 r
jrkrl

]
,

such that

R̃ij =
∂Γ̃kki
∂xj

−
∂Γ̃kij
∂xk

+ Γ̃likΓ̃
k
jl − Γ̃kijΓ̃

l
kl

= k

{
δkj g̃ki + rk

[
k

1− kr2

(
δijr

k + δkjr
i
)

+
2k2

(1− kr2)2 r
krirj

]}
− k

{
δkk g̃ij + rk

[
k

1− kr2

(
δjkr

i + δikr
j
)

+
2k2

(1− kr2)2 r
irjrk

]}
+ k2rlrkg̃ikg̃jl − k2rkrlg̃ij g̃kl

= k

(
g̃ji +

kr2

1− kr2
δij +

krirj

1− kr2
+

2k2r2rirj

(1− kr2)2 − 3g̃ij −
krirj

1− kr2
− krirj

1− kr2
− 2k2rirjr2

(1− kr2)2

)
+ k2rlrk (g̃ikg̃jl − g̃ij g̃kl)

= −2kg̃ij +
k2

1− kr2

(
r2δij − rirj

)
+ k2rlrk (g̃ikg̃jl − g̃ij g̃kl) .
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The second term is

k

(
kr2δij

1− kr2
− krirj

1− kr2

)
= k

(
kr2δij

1− kr2
+ δij − g̃ij

)
= k

(
δij

1

1− kr2
− g̃ij

)
.

For the third term we need

g̃ij g̃kl =

(
δij +

k

1− kr2
rirj

)(
δkl +

k

1− kr2
rkrl

)
,

g̃ikg̃jl =

(
δik +

k

1− kr2
rirk

)(
δjl +

k

1− kr2
rjrl

)
,

⇒ g̃ikg̃jl − g̃ij g̃kl = δikδjl − δijδkl +
k

1− kr2

(
δikr

jrl − δijrkrl
)

+
k

1− kr2

(
δjlr

irk − δklrirj
)

⇒ k2rlrk (g̃ikg̃jl − g̃ij g̃kl) = k2

[
rirj − δijr2 +

k

1− kr2

(
r2rirj − δijr4

)
+

k

1− kr2

(
rirjr2 − rirjr2

)]
= k2

(
rirj − δijr2

)(
1 +

kr2

1− kr2

)
=

k2

1− kr2

(
rirj − δijr2

)
.

Putting these together, we get:

R̃ij = −2kg̃ij + k

(
δij

1

1− kr2
− g̃ij +

k

1− kr2
rirj − k

1− kr2
δijr

2

)
= −2kg̃ij + k

(
δij +

k

1− kr2
rirj − g̃ij

)
= −2kg̃ij .

We finally get

Rij = R̃ij +
1

c2
g̃ij

(
−RR̈− 2Ṙ2

)
= −

(
2k +

RR̈

c2
+

2Ṙ2

c2

)
g̃ij .

7. The energy-momentum tensor

T 00 is the energy density e, T 0i is the the energy flux divided by c, and T ij is the flux in

the j-th direction of the i-th momentum component. We assume that the Universe is full with

ideal fluid in LTE: the relaxation time is � than the expansion time and the diffusion length scale√
D · tflow is � than typical length scales L of the problem. Under these assumptions entropy is

conserved δs = 0. In the rest frame of the fluid Tµν = diag(e, p, p, p), where p is the pressure. In

Special relativity we can make a tensor out of this with Tµν = (e + p)uµuν/c2 + ηµνp This is a

tensor, since e and p are defined by their values in locally comoving system, so they are scalars,

and uµ is defined to transform as 4-vector and u0 = c, ui = 0 in a locally comoving system. This

velocity vector is normalised such that gµνu
µuν = −c2. The generalisation to general relativity

would be Tµν = (e+ p)uµuν/c2 + gµνp.



– 9 –

For locally comoving systems:

Tµν = (e+ p)δµ0δν0 + gµνp,

Tµν = Tµλgλν = −(e+ p)δµ0δν0 + δµν p⇒ Tµµ = 3p− e,
Tµν = T λµ gλν = (e+ p)δµ0δν0 + gµνp.

Note units: [T 00] = erg cm−3, [T ij ] = erg cm−5, [T 0
0 ] = [T ij ] = erg cm−3, [T00] = erg cm−3, and

[Tij ] = erg cm−1.

The conservation laws are:

Tµν;ν =
∂Tµν

∂xν
+ ΓµκνT

κν + ΓνκνT
µκ = 0.

For energy conservations:

0 = T 0µ
;µ =

∂T 0µ

∂xµ
+ Γ0

µνT
µν + ΓµνµT

0ν

=
1

c

∂T 00

∂t
+ Γ0

ijT
ij + Γi0iT

00 =
1

c
ė+

RṘ

c
g̃ij

1

R2
g̃ijp+

3Ṙ

cR
e

=
1

c
ė+

3Ṙ

cR
(e+ p)⇒ ė+

3Ṙ

R
(p+ e) = 0. (1)

This can be written as:

de

dR
= − 3

R
(e+ p)⇒ de

dR
+

3e

R
=

1

R3

d

dR

(
R3e

)
= −3p

R

⇒ d

dR

(
4π

3
R3e

)
= −4πpR2,

This is simply dE = −PdV , since dS = 0 for a diagonal Tµν . For momentum conservations:

0 = T iµ;µ =
∂T iµ

∂xµ
+ ΓiµνT

µν + ΓµνµT
iν

=
∂T ij

∂xj
+ ΓijkT

jk + ΓkjkT
ij

=
p

R2

∂g̃ij

∂xj
+ krig̃jk

p

R2
g̃jk + krkg̃jk

p

R2
g̃ij

=
p

R2

[
−k
(
δjjr

i + δijr
j
)

+ 3kri + krkδik

]
=
pk

R2

(
−δijrj + δikr

k
)

= 0,

so no useful information here.

Equation (1) can be solved for p = we (w is a constants):

de

dt
+

3Ṙ

R
(w + 1) e = 0⇒ de

dR
= −3(w + 1)

R
e⇒ e ∝ R−3−3w,

1. cold matter: p = 0⇒ e ∝ R−3
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2. radiation: p = e/3⇒ e ∝ R−4

3. vacuum energy: p = −e⇒ e const.

As long as there is no interchange of energy between different components, these results hold

separately for each of them.

8. The Einstein field equations

The Einstein field equations are

Rµν + λgµν = −8πG

c4
Sµν = −8πG

c4

(
Tµν −

1

2
gµνT

λ
λ

)
.

Note units: [λ] = cm−2. So we need Sµν :

Sµν = (e+ p)δµ0δν0 + gµνp−
1

2
gµν(3p− e)

= (e+ p)δµ0δν0 +
1

2
gµν(e− p),

We find

S00 = e+ p− 1

2
(e− p) =

1

2
(e+ 3p),

S0i = Si0 = 0,

Sij =
1

2
(e− p)gij =

1

2
(e− p)R2g̃ij .

The 00 term of Einstein field equations is

3

c2

R̈

R
− λ = −8πG

c4

1

2
(e+ 3p)

⇒ 3
R̈

R
− λc2 = −4πG

c2
(e+ 3p).

The ij terms of Einstein field equations are

−

(
2k +

RR̈

c2
+ 2

Ṙ2

c2

)
g̃ij + λR2g̃ij = −8πG

c4

1

2
(e− p)R2g̃ij

⇒ 2kc2 +RR̈+ 2Ṙ2 − λc2R2 =
4πG

c2
(e− p)R2.

We can interpret the λ term as having some energy density eλ and pressure pλ if

4πG

c2
(eλ − pλ) = λc2,

4πG

c2
(eλ + 3pλ) = −λc2.
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Multiplying by 3 the first equation and adding both equations:

4πG

c4
4eλ = 2λ⇒ eλ =

λc4

8πG
.

First equation minus the second equation:

4πG

c4
(−4pλ) = 2λ⇒ pλ = − λc4

8πG
= −eλ.

Taking R̈ from the 00 component and substituting into the ij component:

2kc2 + R2

[
λc2

3
− 4πG (e+ 3p)

3c2

]
+ 2Ṙ2 − λc2R2 =

4πG

c2
(e− p)R2

⇒

(
Ṙ

R

)2

= −kc
2

R2
+

1

3
λc2 +

2πG

c2

4e

3

⇒

(
Ṙ

R

)2

=
8πG

3c2

(
e+

λc4

8πG

)
− kc2

R2
.

This is the Friedmann equation. It can be written as

H2 = H2
0

(
e

ρcc2
+
ρλ
ρc
− kc2

H2
0R

2

)
,

with

H =
Ṙ

R
, H0 =

Ṙ0

R0
, ρλ =

λc2

8πG
,

and

ρc =
3H2

0

8πG
≈ 1.878× 10−29h2 g

cm3
, h =

H0

100 km s−1 Mpc−1

is the critical density. We can compare this with the Newtonian approximation:

H2 =

(
ȧ

a

)2

= H2
0

[
ρ

ρc
+
ρλ
ρc

+

(
1− ρ0

ρc
− ρλ
ρc

)
a−2

]
.

We see that

1. all energy density contributes, ρ→ e/c2.

2. a is R up to a scale factor, a = R(t)/R(t0), H0 = (Ṙ/R)|t=t0

3. k/R2
0 = −H2

0 (1 − ρ0/ρc − ρλ/ρc)/c2, such that the current curvature radius is of the order

c/H0 or larger (unless |ρ0 + ρλ| � ρc).
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So the 16 Einstein field equations reduce to 2 equation for the FRW Universe:

H2 = H2
0

(
e

ρcc2
+
ρλ
ρc
− kc2

H2
0R

2

)
,

ė+ 3H(p+ e) = 0,

which are the Friedmann equation and energy conservation, respectively. We have 2 equations for

3 variables e, p,R, so we need one more equation, which is the equation of state (EOS), p(e, s).

Since s = const., we have p(e, s0), where s0 is a property of the Universe. We’ll see later that

s0 ∼ η = nγ/nb.

We define for the vacuum, matter, radiation, and curvature, respectively:

ΩΛ = Λ =
ρλ
ρc

=
8πG

3H2
0

ρλ =
λc2

3H2
0

,

ΩM =
ρM,0

ρc
=

8πG

3H2
0

ρM,0,

ΩR =
ρR,0
ρc

=
8πG

3H2
0

ρR,0,

ΩK = − kc2

H2
0R

2
0

,

to write the Friedmann equation as

H2 = H2
0

[
ΩM

(
R

R0

)−3

+ ΩR

(
R

R0

)−4

+ ΩΛ + ΩK

(
R

R0

)−2
]
,

and ΩM + ΩR + ΩΛ + ΩK = 1. We can find solutions for k = 0:

1. Matter dominated (ΩM = 1): Ṙ = H0R(R/R0)−3/2 ∝ R−1/2 ⇒ R ∝ t2/3.

2. Radiation dominated (ΩR = 1): Ṙ = H0R(R/R0)−2 ∝ R−1 ⇒ R ∝ t1/2.

3. Vacuum dominated (ΩΛ = 1): Ṙ = H0R⇒ R ∝ exp(H0t) = exp(Ht).

9. Currents and numbers

From isotropy, the mean value of any 3-vector vi must vanish. From homogeneity, the mean

value of any 3-scalar (i.e. invariant under spatial translations) can be only a function of time.

Therefore, we have for currents

J i = 0, J0 = n(t),

where n(t) is the number per proper volume in a comoving frame. From conservation:

0 = Jµ;µ =
∂Jµ

∂xµ
+ ΓµµνJ

ν =
∂n

∂(ct)
+ Γii0n =

ṅ

c
+

3Ṙ

cR
n⇒ ṅ

n
= −3Ṙ

R
⇒ n ∝ R−3. (2)
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10. Distances and redshift

10.1. Proper distance

The distance at time t from the origin to a co-moving object at a radial coordinate r:

dprop(r, t) =

∫ r

0
dr′
√
grr(r′, t) = R(t)

∫ r

0

dr′√
1− kr′2

= R(t)rf(r),

where f(r) = sin−1(r)/r for k = 1, f(r) = 1 for k = 0, and f(r) = sinh−1(r)/r for k = −1. We can

never measure the proper distance. Also,

ḋprop = Ṙ(t)rf(r) = R(t)rf(r)
Ṙ

R
=

(
Ṙ

R

)
dprop,

which can be larger than c.

10.2. Redshift

Light travels along cdτ = 0. For a photon emitted at r in the r̂ direction and received at r = 0

at time t:

c2dτ2 = c2dt2 − grrdr2 ⇒ cdt = −R dr√
1− kr2

,

where the minus sign is because r decreases as time increases (the photon is coming to us). The

time ti(r, t) at which the photon was emitted is given by:∫ t

ti(r,t)

cdt′

R(t′)
=

∫ r

0

dr′√
1− kr′2

= rf(r). (3)

Consider now 2 signals, emitted at ti and than at ti + δti (both from r, which is time independent)

and received at r at t, t+ δt. Differentiate the last equation wrt t:

c

R(t)
− c

R(ti)

∂ti
∂t

= 0⇒ δt

δti
=

R(t)

R(ti(r, t))
≡ 1 + z(r, t).

For frequencies: ν/νi = R(ti)/R(t), such that the wavelength is redshifted λ → λ(1 + z). The

analogy with Doppler (v = cz) only holds for z � 1. In particular, we care about the increase of

R(t) from emission to absorption, and not only on the rate of change of R(t) at the time of emission

or absorption. Also, p = hν/c for a photon, such that p ∝ R−1.

Going back to Friedmann equation, we can write:

dt =
dR

H0R

√
ΩM

(
R
R0

)−3
+ ΩR

(
R
R0

)−4
+ ΩΛ + ΩK

(
R
R0

)−2

dt =
−dz

H0(1 + z)
√

ΩM (1 + z)3 + ΩR (1 + z)4 + ΩΛ + ΩK (1 + z)2
,
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where

x ≡ a =
R

R0
=

1

1 + z
,

dR

R
=

dx

x
= −(1 + z)dz

(1 + z)2
= − dz

1 + z
.

If we define the zero of time at infinite redshift, then the time at which light was emitted that

reached us with a redshift z, is given by:

t(z) =
1

H0

∫ 1/(1+z)

0

dx

x
√

ΩMx−3 + ΩRx−4 + ΩΛ + ΩKx−2
.

For z = 0, the age of the Universe is

t0 =
1

H0

∫ 1

0

dx

x
√

ΩMx−3 + ΩRx−4 + ΩΛ + ΩKx−2
.

10.3. Angular distance

Consider a sphere of a diameter D lying at r and 2 photons emitted from the sphere’s edges

reaching to us. They move on a fixed Ω̂, such that the size of the object is (assuming D � rR)

D = rR[ti(r, t)]dθ

⇒ dA(r) = R[ti(r, t)]r = (1 + z)−1R(t)r.

10.4. Luminosity distance

Consider a source with a luminosity L lying at r. Our detector of a diameter D occupies a

solid angle of πdθ2/4 = π[D/(2rR(t))]2 as seen by the source. Because the arrival time of photons

is larger by the emission by (1 + z) and the energy of the photons is decreased by another (1 + z),

the observed flux is:

f =
πdθ2

4× 4π

L

πD2/4

1

(1 + z)2
=

L

4πr2R2(t)(1 + z)2
.

Since

f =
L

4πd2
L

⇒ dL = (1 + z)R(t)r.

Note that

dL = (1 + z)dprop/f(r) = (1 + z)2dA.
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From Equation (3) we get:

r = S

[∫ t

ti(r,t)

cdt′

R(t′)

]
= S

[∫ 1

1/(1+z)

cdx

R0H0x2
√

ΩMx−3 + ΩRx−4 + ΩΛ + ΩKx−2

]
,

where S[y] = sin y for k = 1, S[y] = y for k = 0, and S[y] = sinh y for k = −1. This can be written

as

R0r(z) =
c

H0Ω
1/2
K

sinh

[
Ω

1/2
K

∫ 1

1/(1+z)

dx

x2
√

ΩMx−3 + ΩRx−4 + ΩΛ + ΩKx−2

]
,

for all possible k values, by noting that sinh(ix) = i sinx and that sinhx→ x for x→ 0. We finally

get

dL(z) = (1 + z)R0r(z) =
(1 + z)c

H0Ω
1/2
K

sinh

[
Ω

1/2
K

∫ 1

1/(1+z)

dx

x2
√

ΩMx−3 + ΩRx−4 + ΩΛ + ΩKx−2

]
.

It is instructive to expand dL(z) for small z. For small z we can expand around R0:

Ṙ(R) = Ṙ0 +
R̈0

Ṙ0

∆R+O
(
∆R2

)
= R0H0

[
1 +

R0R̈0

Ṙ2
0

∆R

R0
+O

(
∆R2

)]
= R0H0

[
1− q0∆a+O

(
∆a2

)]
,

where

a =
R

R0
=

1

1 + z
, q0 ≡ −

R0R̈0

Ṙ2
0

, ∆a = a− 1.

Note that ȧ = H0[1− q0∆a+O(∆a2)]. We now expand both sides of equation (3):

rf(r) = r +
1

6
kr3 +O(r5),∫ t

ti(r,t)

cdt′

R(t′)
=

1

R0

∫ 1

a(r)

c

a

da

ȧ
=

c

R0

∫ 0

∆a(r)

dx

(1 + x)H0 [1− q0x+O (x2)]
,

where x = a− 1 = ∆a. We can further evaluate the last expression as

c

R0H0

∫ 0

∆a(r)

dx

[1 + (1− q0)x+O (x2)]
= − c

R0H0

∫ ∆a(r)

0

[
1 + (q0 − 1)x+O(x2)

]
dx

= − c

R0H0

[
∆a+

1

2
(q0 − 1)∆a2 +O

(
∆a3

)]
.

So up to second order in ∆a we have

r =
c

R0H0

[
−∆a− 1

2
(q0 − 1)∆a2 +O

(
∆a3

)]
⇒ dL(z) = (1 + z)R0r =

c(1 + z)

H0

[
−∆a− 1

2
(q0 − 1)∆a2 +O

(
∆a3

)]
⇒ dL(z) =

c

H0

[
z +

1

2
(1− q0)z2 +O

(
z3
)]
. (4)
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11. The deceleration parameter q0

Writing the 00 component of the Einstein equation for t0 we get

R̈0

Ṙ2
0

R0
Ṙ2

0

R2
0

=
λc2

3
− 4πG

3c2
(e0 + 3p0)

⇒ q0 = − λc2

3H2
0

+
4πG

3H2
0c

2
(e0 + 3p0) =

4πG

3H2
0c

2
(e0 + 3p0 + 2pλ)

=
e0 + 3p0 + 2pλ

2ρcc2
=

1

2
(ΩM + 2ΩR − 2ΩΛ) .

We see that if matter (radiation, vacuum) dominates today than k is determined by whether q0 is

larger or smaller than 1/2 (1, −1). For the justified approximation ΩR = 0 we can write

q0 =
3

4
(ΩM − ΩΛ)− 1

4
(ΩM + ΩΛ) .

Some observation are more sensitive to ΩM+ΩΛ (like CMB) and some are more sensitive to ΩM−ΩΛ

(like type Ia SNe).

12. The fate of the Universe

The expansion can stop is there is a real root to the cubic equation (it is safe to ignore radiation

here):

ΩΛu
3 + ΩKu+ ΩM = 0, u =

R

R0
> 1.

for u = 1, we have ΩΛ + ΩK + ΩM = 1. For ΩΛ < 0, the expression will become negative for

large u, meaning that the expansion will stop for some u. Even for ΩΛ ≥ 0 it is possible to stop, if

ΩK = 1− ΩΛ − ΩM is sufficiently negative (which requires k = 1).

13. Massive particles

A massive particle leaves r = 0 at t with v. In the local inertial frame around {t, r = 0} there

is no acceleration (Γ = 0), such that the particle reaches ∆x at ∆t = ∆x/v with a constant v (to a

first order in ∆t). A comoving observer at {∆t,∆x} has a velocity ∆xṘ(t)/R(t) = H∆x (to first

order in ∆x) and therefore measures the particle velocity:

v′ =
v −H∆x

1− vH∆x
c2

⇒ ∆v = v′ − v =

(
v2

c2
− 1
)
H∆x

1− vH∆x
c2

= − γ
−2H∆x

1− vH∆x
c2

.
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The particle momentum p = γβmc is changed by

∆p = mc∆(γβ) = mc∆
(√

γ2 − 1
)

= mcβ−1∆γ = mcγ3∆β

⇒ ∆p

p
= γ2 ∆β

β
= − H∆t

1− β2H∆t

⇒ ∆p

p
≈ −∆R

R
⇒ p ∝ R−1. (5)

For relativistic particles E = pc ⇒ E ∝ R−1. For non-relativistic particles, the kinetic energy is

E = p2/2m⇒ E ∝ R−2.

Let’s derive this result in a different way. Consider the expression

p = m0

√
gij
dxi

dτ

dxj

dτ
, (6)

where c2dτ2 = c2dt2 − gijdxidxj . In a local inertial Cartesian coordinate system gij = δij , such

that

cdτ = cdt

√
1− 1

c2

(
d~x

dt

)2

⇒ dτ = dt
√

1− β2

⇒ p = m0
d~x

dτ
= m0~v

1√
1− β2

= γβm0c,

which is the momentum. Since Equation (6) is invariant under changes in spatial coordinates we

can evaluate it for comoving FRW coordinates. Let’s look on particle position near the origin xi = 0

with g̃ij = δij +O(~x2). In this case we can ignore the spatial Γijk so the geodesic equation is

d2xi

dτ2
= −Γiµν

dxµ

dτ

dxν

dτ
= −2Ṙ

cR

dxi

dτ

d(ct)

dτ
.

Multiplying by dτ/dt we get

d

dt

(
dxi

dτ

)
= −2Ṙ

R

dxi

dτ
⇒ dxi

dτ
∝ 1

R2

⇒ p ∝
√
R2(t)δij

dxi

dτ

dxj

dτ
∝
√
R2

1

R4
∝ R−1.

This hold for any nonzero mass, so also in the limit of massless particle, m0 → 0, dτ → 0, we still

have p ∝ R−1.

14. The current status

From CMB (mostly Planck 2015) ΩK = −0.005+0.016
−0.017. Adding BAO improves this to ΩK =

0.000± 0.005. Assuming a flat Universe, CMB constrains ΩM = 0.315± 0.013, ΩΛ = 0.685± 0.013,
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Ωbh
2 = 0.02222±0.00023, H0 = 67.31±0.96 km s−1 Mpc−1, t0 = 13.813±0.038 Gyr, zeq = 3393±49.

For pλ = weλ, CMB constrains w = −1.54+0.62
−0.50, and adding BAO and Type Ia SNe the constraint

improves w = −1.019+0.075
−0.080. These values indicate that q0 ≈ −0.55 ⇒ R̈ > 0 such that the

expansion of the Universe is accalerating.

Note that the value of ΩΛ is extremely small. From zero point energy fluctuations of some

field of mass m up to some cutoff energy Λ � m, the vacuum energy density is ∼ Λ4/~3c5. For

Λ = 300 GeV we get ∼ 1027 g/cm3 which is some 56 orders of magnitudes larger than ρλ ∼ ρc ∼
10−29 g/cm3. For the Planck energy scale, Λ ∼

√
~c5/G ∼ 1019 GeV, the situation is much worse.

Distances and the age of the Universe as a function of z for ΩM = 0.3, ΩΛ = 0.7 and h = 0.67

are plotted in Figure 1.

15. The age of the Universe for different Cosmologies

Before the exact measurements of the CMB, it was reasonable to consider the following 3

cosmologies:

1. ΩM = 0.3, ΩK = 0.7: This roughly corresponds to the directly observed mass density in the

Universe, (ΩM . 0.3), with nothing else.

2. ΩM = 1: This could be the case if we are missing some mass from direct observations, and

we have a strong prior for a flat Universe.

3. ΩM = 0.3, ΩΛ = 0.7: Here we trust the directly observed mass estimation and we are having

a strong prior for a flat Universe.

The age of the Universe can be calculated for the above possibilities (and others possibilities).

For ΩK = 0 we get

t0 =
1

H0

∫ 1

0

dx

x
√

ΩMx−3 + ΩΛ

=
2

3H0

sinh−1
(√

ΩΛ
ΩM

)
√

ΩΛ
.

In the limit ΩM → 1 we get t0H0 = 2/3 and in the limit ΩM → 0 we get t0 →∞. For ΩM = 1 we get

t0 ≈ 9.68 Gyr, which is too short compared with stellar ages of ∼ 13 Gyr, although the discrepancy

is not huge and maybe can be resolved with systematic errors in H0 or in the stellar ages estimation.

For ΩM = 0.3 we find t0 ≈ 14 Gyr, which agrees with stellar ages. For ΩM + ΩK = 1 we find

t0 =
1

H0

∫ 1

0

dx

x
√

ΩMx−3 + ΩKx−2
=

1

H0

 1

ΩK
−

ΩM log
(

2+2
√

ΩK−ΩM
ΩM

)
2Ω

3/2
K

 .
In the limit ΩM → 1 we get t0H0 = 2/3 and in the limit ΩM → 0 we get t0H0 = 1. For ΩM = 0

we get t0 ≈ 14.5 Gyr, which agrees with stellar ages. For ΩM = 0.3 we find t0 ≈ 0.81/H0 ≈ 12 Gyr,
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Fig. 1.— dL (blue), dprop (red), dA (black) and time (green) as a function of the redshift for

ΩM = 0.3, ΩΛ = 0.7 and h = 0.67.
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which also roughly agrees with stellar ages. This means that ΩΛ = 0 with a small ΩM & 0 is not

contradicted by stellar ages.

For ΩK = 0 we have the general expression

t(z) =
1

H0

∫ 1/(1+z)=a

0

dx

x
√

ΩMx−3 + ΩΛ

=
2

3H0

sinh−1
(√

a3ΩΛ
ΩM

)
√

ΩΛ
.

⇒ a =

[√
ΩM

ΩΛ
sinh

(
3

2
H0

√
ΩΛt

)]2/3

.

16. Luminosity distance for different Cosmologies

For ΩM = 1 we get

dL(z) =
(1 + z)c

H0

∫ 1

1/(1+z)

dx√
x

=
(1 + z)c

H0
2
[
1− (1 + z)−1/2

]
=

2c

H0

(
1 + z −

√
1 + z

)
.

For ΩΛ = 1 we get

dL(z) =
(1 + z)c

H0

∫ 1

1/(1+z)

dx

x2
=

c

H0

[
(1 + z)2 − 1− z

]
=

c

H0

(
z2 + z

)
,

for which the second order approximation, Equation (4), is accurate. For ΩΛ = 0 (k = −1) we have

dL(z) =
(1 + z)c

H0Ω
1/2
K

sinh

(
Ω

1/2
K

∫ 1

1/(1+z)

dx

x2
√

ΩMx−3 + ΩKx−2

)

=
(1 + z)c

H0Ω
1/2
K

sinh

[
2 sinh−1

(√
ΩK

ΩM

)
− 2 sinh−1

(√
1

1 + z

ΩK

ΩM

)]
.

For ΩK = 1 (k = −1) we have

dL(z) =
(1 + z)c

H0
sinh

(∫ 1

1/(1+z)

dx

x

)

=
(1 + z)c

H0
sinh [log(1 + z)] =

c

2H0

(
z2 + 2z

)
,

for which the second order approximation, Equation (4), is accurate. The case ΩM + ΩΛ = 1 has

to be calculated numerically in general. These models are compared in Figure 2.

At z = 1 the 3 cosmologies from Section 15 give dL(z = 1) = c/H0(1.37, 1.17, 1.54), respec-

tively. So there is a ∼ 10% effect at z = 1. The second order approximation, Equation (4), gives

dL(z = 1) ≈ c/H0(1.42, 1.25, 1.77), so it is not accurate enough for z = 1. The second order

approximation is useful up to z ∼ 0.5 (for the cases in which Equation (4) is not exact).
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The ∼ 10% difference at z = 1 can be measured with Type Ia SNe, since their intrinsic

luminosity can be calibrated to this accuracy by using the Phillips relation. Note that without the

Phillips relation the scatter in the peak luminosity is a factor of a few, meaning that type Ia SNe

are not standard candles (so it is hard to imagine that all are explosions of the same star, as in the

popular Chandrasekhar model). The measurement with Type Ia SNe established that ΩΛ > 0 and

that the expansion of the Universe is accelerating.

17. Horizons

17.1. Particle horizon

Particle horizon is the limit on distances at which past events can be observed. Observer at a

time t is able to receive signals only from r < rmax(t):∫ t

0

cdt′

R(t′)
=

∫ rmax(t)

0

dr′√
1− kr′2

= rmaxf(rmax).

There is an horizon if the lhs converges. For radiation dominated Universe we get R(t) ∝ t1/2 and

the lhs converges. The proper distance of the horizon is:

dmax(t) = R(t)rmaxf(rmax) = R(t)

∫ t

0

cdt′

R(t′)
.

For radiation dominated Universe we have R(t) = At1/2 ⇒ dmax(t) = ct1/22t1/2 = 2ct = c/H, since

H = Ṙ/R = 1/(2t). For matter dominated Universe, R ∝ t2/3, we have dmax(t) = ct2/33t1/3 =

3ct = 2c/H, since H = 2/(3t). In general, the particle horizon today is given by

dmax(t) =
c

H0

∫ 1

0

dx

x2
√

ΩMx−3 + ΩRx−4 + ΩΛ + ΩKx−2
.

If ΩΛ dominates in the early Universe then dmax(t0)→∞.

17.2. Event horizon

Event horizon is the limit on distances at which it will ever be possible to observe future events.

Observer at a time t will be able to observe events only for r < rmax(t):∫ ∞
t

cdt′

R(t′)
=

∫ rmax(t)

0

dr′√
1− kr′2

= rmaxf(rmax).

The proper distance to the event horizon is given by:

dmax(t) = R(t)rmaxf(rmax) = R(t)

∫ ∞
t

cdt′

R(t′)
.
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If ΩΛ = 0 then R(t) ∝ t2/3 and the integral diverges, so there is no event horizon. With ΩΛ >

0, eventually H = H0Ω
1/2
Λ ⇒ R(t) ∝ exp(Ht) ⇒ dmax(t) = c exp(Ht)

∫∞
t exp(−Ht) = c/H,

which is ≈ 5.2 Gpc for the current Universe. Every object which is further from this will become

unobservable in the future (since signals from there are redshifted indefinitely, we never ’see’ they

are lost). This is also the largest distance we will ever be able to travel.


