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1 Linear Perturbations

We have so far discussed the evolution of a homogeneous universe. The
universe we see today is, however, highly inhomogeneous. We see structures
on a wide range of scales, from the solar system, on scale of 1 A.U.= 1.5 x
10" cm, through galaxies on scales of 10 kpc (1 kpe= 3.15 x 10'® ¢cm) and
galaxy clusters on 1 Mpc scale, to super-clusters on 30 Mpc scale. The
inhomogeneities on small scales, < 10 Mpc, are highly non-liner, that is,
the fractional density fluctuations on these scales, 6 = dp/p where p is the
average density, are large, d > 1. = 1 on scales ~ 10 Mpc and § < 1 on
much larger scales.

As we have mentioned in the introductory lecture, the cosmic microwave
background (CMB) radiation is highly isotropic, with variations not ex-
ceeding 1 part in 10°. Since the radiation has decoupled from matter at
2 = Zgee. = 1.1 x 103, the CMB anisotropy reflects the level of inhomo-
geneities in that early epoch. The smallness of the CMB fluctuations imply
that the universe has been nearly homogeneous at z = zge... We therefore
believe that the structures that we see today are the result of the evolution
of these small perturbations, which were generated at an early epoch of the
universe evolution.

As we shall see below, perturbations grow due to the effect of gravity.
Gravity slows the expansion of the universe. Hence, a perturbed over dense
region will suffer stronger than average deceleration, leading to slower than
average expansion and hence to increase of over density with time. In this
chapter, we will discuss the evolution of perturbations in the linear regime.
Since the initial perturbations were small, § < 1, much of their evolution
may be described by a linear perturbation analysis. Moreover, the evolution
of perturbations on scales > 10 Mpc is well described by linear analysis all
the way through the present epoch. In the following chapter, we will use the
results of this chapter to derive constraints on the cosmological model from
the observed CMB fluctuations and from the observed large scale (galaxies,
clusters of galaxies) structure of the local (z = 0) universe.

The plan of this chapter is as follows. In the first sections, we will con-
sider the evolution of perturbations in a universe composed of radiation and
ordinary (baryonic) matter. In §1.1 we will derive the characteristic scales
over which various physical processes are operating. In §1.2 we will discuss
the evolution of perturbations on scales where only gravity is important, and
in §77 we will derive the equations describing the evolution of perturbations
on arbitrary scale. In §1.4 we will discuss the evolution of perturbations in
the presence of dark, non-baryonic component of matter. In §1.5 we will



summarize the main conclusions of our analysis by deriving the relation
between the present day, z = 0, spectrum of perturbations and the initial
perturbations at the early universe.

1.1 Characteristic scales

The expansion of the (homogeneous) universe is described by the equation
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Here, a is the scale factor, for which we will use the normalization a(t =
to) = 1, where ¢ is the present (z = 0) age of the universe. Hy is the Hubble
constant, e is the energy density, p. = 3H§ /8@ is the critical density and
pa = Ac?/87G is the effective” A density.

Since pa is time independent, and since p decreases with time, at suf-
ficiently early time, a < 1, we may neglect the curvature and A terms,
a?> = Hi(e/pec?)a?. No characteristic time scale appears in this equation.
This implies that a is proportional to some power of ¢, and that the charac-
teristic time scale for expansion, a/a, is proportional to t. As we shall see
in the following section, small perturbations on scales where only gravity is
important also grow, at a < 1, as a power of time, i.e. § x a®, implying that
the characteristic time scale for growth of perturbations, 6/6 = a~'a/a, is
also proportional to ¢. This result is to be expected, since under the effects of
gravity alone, no characteristic time scale appears in the problem at a < 1.

Since the universe expansion as well as the evolution of perturbations
occur, for a < 1, on time scale a/a, the instantaneous horizon scale, defined
as Ay = ca/a, has an important physical significance. It is the largest scale
which is causally connected, i.e. across which information can be commu-
nicated, during the time over which significant expansion, or perturbation
growth, takes place. In what follows, we will express length scales in terms
of ”comoving units”. The proper distance between points which move with
the (homogeneous) Hubble flow increases linearly with a: Two points sepa-
rated by a proper length L. at time ¢ are separated at present, t = tg, by
Lyrop. /a(t). A perturbation on scale Aprop. at time ¢ therefore corresponds
at present to a perturbation on scale Aeo. = Aprop./a(t). In what follows
we drop the subscript ”co.” and express all length scales in comoving units,
unless otherwise stated. Thus, Ay = a~'ca/a = c/a.

Radiation and matter energy densities were equal at a = aeq., Where
o = Qpe/(40/c)TE 5 = 2.3Qh2; x 10°. Here Q is the matter energy
density (today, measured in units of p.), Hp = 75h7skm/Mpcs and Toyp =



2.73 K is the CMB temperature. At early times during matter domination,
Geq. < a <K 1, we have a’ = HgQa_l, while during radiation domination,
(eq. > a, we have a? = HgQaeq‘a*Q. Thus,

_ ¢ _ (a/aeq,)l/Q, for a > aeq ; _ 2 \—1
Ar = a Acq. { (a/aeq‘)l, for a < aeq.. Aeq. = 27(§thz5)™ Mpc.
(2)

The baryon mass enclosed in a sphere of radius A is
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where 0 = 10_2Qb,,2 is the baryon energy density today measured in units
of pe, A = 1AMpe Mpc and M is solar mass. We use different notations
for the total matter density, §2, and the baryonic density €2, to allow for
the presence of non-baryonic matter (2 > €). Thus, present day galaxies,
which contain ~ 10'° Mg, of baryons, were formed out of fluctuations on a
scale ~ 1 Mpc. Since the fluctuations we see in the present day universe are
large on galaxy-cluster scale, the theory of structure formation should allow
for the growth of perturbations to § ~ 1 on galaxy cluster scale.

1.1.1 The Jeans scale

While gravity acts to increase density fluctuations, plasma pressure acts
to suppress them. The pressure in a denser region, which expands slower
than average, would decrease slower than the average pressure. The over-
pressure would act to accelerate the over-dense region expansion. In order
to estimate the scales at which pressure effects are important, we recall that
(linear) pressure perturbations in an ideal fluid, where dissipative processes
may be neglected, propagate at the speed of sound c¢g, which is given by
the derivative of the pressure with respect to energy density at constant en-
tropy, ¢2 = c?(dp/de)s (see Appendix A). Thus, over-pressure will prevent
the growth of perturbations on a scale for which the sound crossing time,
Aprop./Cs is shorter than the time scale for the growth the of perturbation,
a/a, ie. for Aprop. < csa/a corresponding to a comoving scales A < ¢ /a.
Thus, on scales much larger than the Jeans scale,
Cs

Cs
== =— 4
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A > Ay, pressure effects may be neglected. At small scales, A < \j, pres-
sure prevents the growth of perturbations, pressure gradients dominate over



gravitational force.For A < A\j, the perturbations become sound waves (see
Appendix A), with oscillation period given by Aprop./Cs.

During radiation domination, the speed of sound is ¢; = ¢/v/3 (see
Appendix A). Thus, A\j = Ay for a < @eq.. For a > aeq and before
decoupling, a < agec., the plasma pressure is dominated by the photons,
p=(1/3)(40/c)T*. Since the entropy is proportional to the number of pho-
tons per baryon, S o n,/ny o< T3 /p o p?/*/p, we find (cs/c)? = (4/3)p/p =
(4/9)(40/c)T*/p = (4/9)(a/aeq )™, ie. cs/c = (2/3)(a/aeq )~ "/?. Since for
a > Qeq. We have a o< a_1/2, we find that for aeq. < a < agec. the Jeans scale
is time independent and given by Ay = (2/3)Aeq.

Finally, following decoupling the baryons no longer feel the photons pres-
sure, and the pressure is dominated by the thermal motion of the baryons,
i.e. ¢2 = (5/3)T/m, where T is the baryon temperature. Since following
decoupling T' = 0.25(a/agec.) "2 eV, we find cs/c = 2 x 1075 (a/agec.)~*, and
hence Ay = 2x 107° A\ gec. (a/adec_)_1/2. Combining the results for the various
epochs,

3*1/2(a/aeq‘), for a < aeq.;
AT =Neq. X & 2/3, for aeq. < a < agec.; (5)
2 x 10_5(adec,/aeq,)(a/aeq,)_l/z, for a > agec.-

1.1.2 Diffusion scale

In the discussion of the previous section, we have treated the baryon-radiation
plasma as an ideal fluid. We have neglected, in particular, effects that may
arise from the dissipation induced by diffusion of photons. As long as radi-
ation and matter are coupled, the energy density of photons in over-dense
regions is higher than average. In this situation, photons will try to dif-
fusively ”escape” from over-dense regions, carrying with them energy and
momentum flux. During matter domination, the effects of diffusion are
small, since the energy density carried by the photons is small. However,
during radiation domination, photons dominate the energy density and if
they ”escape” over-dense regions on a time scale shorter than that required
for gravitational growth of perturbations, then they will ”smear” out the en-
ergy density perturbation, and hence suppress the gravitational instability
growth.

Photons are scattered, at a < agec., by free electrons. This scattering is
roughly isotropic, and hence photons random walk in space. The average
distance a photon propagates after N collisions is therefore ~ /N l,, where
L, is the mean free path. Since the gravitational growth time is a/a, photon



diffusion during the radiation dominated phase will suppress perturbations

on (comoving) scales A < Ap(a) ~ a~'\/cafal,l, = \/cly/aa = \/Auly/a.
The photon mean free path is given by I, = 1/n.or and the electron density

is ne = Qb(pc/mp)a_?’, so that Ap(a) = \/Ag/ancor = a/mp g /orQpe.

The diffusion scale therefore grows with time, and perturbations with A <
Ap(a = aeq.) would be suppressed due to diffusion,

_ MpAeq. QN2 2 \—2
AD,eq. = AD(A = Geq.) R Geq. o1 Qpe ~ 0.2 S—Qb (Qhz5)"*Mpc. (6)

1.2 Evolution of perturbations with A > \;

On scales A > A; we may neglect the effects of pressure and diffusion. The
perturbations on such scales are therefore described by the energy density
perturbation, 6 = de/e, and by the deviation dv of the velocity field from
the Hubble flow, v. The pressure perturbation dp does not affect the per-
turbation evolution.

Since the flow is adiabatic, entropy perturbations do not evolve with
time (see also A.2), so that the non-adiabatic perturbation modes do not
contribute to the growth of inhomogeneities. The incompressible, {Viv =
0,V x v # 0} (see also A.2) part of the adiabatic perturbations also do not
contribute, since they do not lead to modification of the density (in fact, since
this component is rotational, V x v # 0, it carries angular momentum and
conservation of angular momentum implies that as the universe expands the
rotational mode amplitude must decrease o< 1/a). We will therefore focus
on the adiabatic compressible modes, {Vdv # 0,V x v = 0}, for which the
velocity may be expressed as the gradient of a potential field.

Since the perturbations in which we are interested are described by two
scalar functions, the energy density perturbation and the velocity potential,
there are two independent modes of perturbation for each wavelength. In
what follows, we will derive the temporal evolution of these two modes.

1.2.1 Growth Rates

Consider a spherical region where the energy density is homogeneously per-
turbed. Since we are discussing scales A > Aj, the perturbed region may
interact with the rest of the universe only through gravity- the thermal mo-
tion of particles leading to energy and momentum transfer (pressure and
diffusion effects) may be neglected. According to Birkhoff’s theorem, we
may ignore the gravitational effects of the universe outside our perturbed



sphere, provided that the universe is homogeneous outside the sphere. Al-
though we are discussing the evolution of a non-homogeneous universe, we
are considering only small, linear, perturbations. For such perturbations,
the gravitational effects of the inhomogeneities outside the sphere on the
evolution of the sphere, i.e. the interaction between perturbations, is a
second order effect, which may therefore be ignored.

The perturbed sphere would thus evolve as if it were a part of a homoge-
neous universe, where the energy density is everywhere different than that
of the unperturbed homogeneous universe. The evolution of the perturbed
region is therefore described by a solution a(t) of the equation (1), with
parameters that differ from that of the unperturbed universe. Since we are
free to choose the normalization of the expansion factor a, we shall choose
a normalization of a for the perturbed solution so that both the perturbed
and non perturbed universes have the same density for a = 1 (of course,
the two solutions may reach a = 1 at different times ¢). With this choice
of a normalization, Eq. (1) depends on a single parameter, the curvature
term oy = kc?/R2. The solution for a(t) depends on one additional param-
eter, the integration constant of the first order differential equation. It will
be useful below to consider time, ¢ to be a function of expansion factor, a,
t(a; a1, ), where ay is the integration constant,

¢ da
t:a2+/ m- (7)

The energy density has a power law dependence on a, p < a~" with m =
3 for matter domination and m = 4 for radiation domination. Since we have
normalized a so that the energy density of both (perturbed and unperturbed)
solutions is the same for given a , the fractional energy density perturbation
related to a perturbation corresponding to modification of the parameters
a;is 6 = 6p/p = —mda/a = —ma~'(0a/Oc;)dc;. Note, that the derivative
of a with respect to «; is taken at constant ¢, since the energy density
perturbation is defined as the difference between the density of the two
(perturbed and unperturbed) solutions at some fixed time ¢. The variation
of the solution a(t; g, ag) with respect to oy, da/Oc;, may be obtained by
the following consideration. Taking the partial derivatives with respect to
«a; of the rhs and lhs of Eq. (7) at constant ¢ we find,

Ot_lﬁa/ada(?d_lﬁa/a da

m

(8)
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Thus,

Oa ¢ da da
— =4 —, = = —d 10
8a1 a/ 2(13 ’ aag @ ( )
and the growth of the two perturbations modes is given by
a [* da a
01 x — —, Oy X —. 11
1% g / 233" 2% (11)

Note, that the evolution of perturbations is independent of the perturbation
wavelength, as long as A > Aj.

At early time, a < 1, we may approximate @’ oc a®>~™, with m = 3 for
matter domination and m = 4 for radiation domination, which implies

5 oca™ 2, Gy ocaT™2. (12)

Thus, as discussed in §1.1, the perturbation amplitude evolves as a power
of a. The growing mode evolves as a? during radiation domination, and as
a during matter domination.

1.2.2 Amplification Factors

In the next chapter, we will compare the amplitude of perturbations to-
day, inferred from galaxy surveys, to their amplitude at decoupling, inferred
from CMB anisotropy. It is therefore useful to derive approximate analytic
expressions for the factor by which the perturbations amplitude has grown
from decoupling till today, 01(t9)/1(tdec.).- We will consider three different
sets of cosmological parameters: flat universe with zero cosmological con-
stant, 2 = 1 and A = 0, low-density open universe with zero cosmological
constant, 2 < 1 and A = 0, and a flat low-density universe with non-zero
cosmological constant, 2 < 1 and Q + Qx = 1 where Q5 = (¢/Hp)?A/3.

For the {Q = 1, A = 0} case we have @ o< a~'/? and hence §; x a. In
this case therefore d1(to)/01(tdec.) = 1/adec.-

For the {Q) < 1,A = 0} case we may approximate Eq. (1) by a?> = H?
for a >  and by a? = Hthf1 for a < Q. Assuming Q >> 1/agec., we
therefore have

a [* da a [dee da 3/2 2 adec.
— —_— = — B e ———— = — ]_
[a/ 2a3L:a a/ (H2Q)32" T 5 HZQ (13)
dec.
and
a [ da Q da 1 3
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For this case we obtain &1 (t)/61(taec.) = (5/2)ag Q(1 — 3Q/5).

For the {Q <« 1,Q + Qp = 1} case we may approximate Eq. (1) by
a? = HZa? for a > QY3 and by a® = HZQa™! for a < Q3. Assuming
QY3 >> 1/agec., we therefore have

L]y [ ey [ e = g (<
a) 23], ° (H2Q)3/2 ® Jaus 00 T T2 T 1002/

(15)

Using Eq. (15) and Eq. (13) we obtain &1 (t)/61(tdec.) = (5/2)ag. Q(9Q72/3 /10—

1/2).

We may therefore approximate

(51(t0) ) -1 1-— §Q, for A = 0;
~—a; )X 9 2 2/3 1

01(tgec,) 2 9o { 1582 /3 — 5, for Q< 1,0+ Q) =1
(16)

Thus, in a {Q = 1, A = 0} universe, perturbations are amplified by gravity

by a factor famp. = ag,, = 1100 from decoupling till the present. The

amplification factor is much smaller for an open low density universe, {{) <

1,A = 0}, for which fymp. =~ 2.5Qagelc'. The dependence of amplification

on ) is weaker for a A dominated universe, e.g. for {2 = 0.1,Q, = 0.9}

we have fymp. & O.9a;elc., similar to the { = 1,A = 0} universe. Note,

however, that the evolution of perturbations with time, given by Eq. (11),

is different for the {2 =0.1,Q2x = 0.9} and {Q = 1,02, = 0} universes.

For a universe with Q = €, <« 1, the amplification factor is too small
to account for the growth of the perturbations’ amplitude from § ~ 107° at
decoupling to  ~ 1 today. This is discussed in detail in the next chapter.
The accepted solution to this discrepancy is the presence of ”Dark Matter”,
an unknown particle which does not interact electromagnetically and domi-
nates the matter density, so that 2 > . The effect of the presence of such
particles on the growth of perturbations is discussed in § 1.4.

famp.

1.3 Pressure effects: oscillations
1.3.1 The evolution at scales A\ < Ay during matter domination

Let us consider sub-horizon scale, A < A\p, adiabatic perturbations during
matter domination, a > aeq.. For this regime, we may use the Newtonian
approximation,

(O +v.V)p+pVv = 0, (17)
1
(O +v.V)v = —;Vp — V. (18)

10
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The unperturbed homogeneous solution is vo = H (t)r and p = po(t). We are
interested in compressible adiabatic perturbations. These are described by
two functions, which we will choose to be the perturbations in the velocity
divergence and in the density. The equation describing the evolution of the
velocity divergence may be obtained by taking the divergence of the second
equation above,

815(82"[)2‘) + Ujaj (&va) + <8ivj)(ajvi) = _ai(p_laip) - 82'2(1)7 (19)
which may be written as

(O + Ujaj)(?)H + 0;0v;) + (H(Sij + 8,~5vj)(H5ij + 8]'(5%‘) = —81'(/)718,‘]?) — (91-2(19.

(20)
Taking the first order terms only we have
. 1 1 1 4
6H +2HSH = —§p6182-2(5p - §8i2<5<1> = —gpalcgép — %Gap. (21)

Here, we have defined 0;6v; = 36 H, the full time derivative stands for deriva-
tion along the fluid’s trajectory, d/dt = (0; + v;0;), and op = (Op/0,)s0p =
c2op.

The first order part of the continuity equation is

dp~+3Hdp+ 3pgdH = 0. (22)
Defining the perturbation amplitude § = dp/pp, this yields
5= —30H. (23)
Using this result in eq. (21) we finally have
6+ 2HO = 2V?%5 + 4G posd. (24)

The first term on the RHS represents the effect of pressure, and the sec-
ond represents the effect of gravity. In the absence of expansion, H = 0,
and pressure, perturbations grow exponentially on the free-fall time scale
1/v/Gpg. In the presence of expansion, and neglecting pressure, the pertur-
bations evolve differently with time. For a < 1 we have H? = 87Gpg/3 and
H = 2/3t, and the perturbations evolve as a power of time, § o t*, with
z = —1 (decaying mode, 6 o< a=3/?) or x = 2/3 (growing mode, § x a).
This is consistent with the result of eq. (12). The two modes differ in the
relationship between the velocity and density perturbations, see eq. (23).

The pressure effects are negligible for perturbations on scales Aprop. >
AJprop. = Cs/H, since the pressure term is of order (cs/ )\pmp,)Qé while the
gravity and expansion terms are of order H2§. The pressure term dominates
at A < Ay, where perturbations oscillate at a frequency ¢s/Aprop.-

11



1.3.2 The evolution at scales A < Ay during radiation domination

See Tutorials & Problem sets.

1.4 Dark Matter

The evidence from gravitationally bound systems for the existence of ”Dark
Matter”, matter component that we can not observe through its electromag-
netic interaction (emission/absorption of light) and the existence of which is
inferred from its gravitational effects only, was discussed in the introductory
lectures. Based on observations of galaxies and of clusters of galaxies, it
is inferred that the density of dark matter in the universe exceeds that of
luminous matter, that we can see via its electromagnetic interaction, by a
factor of ~ 5 to one. As we have discussed, this Dark Matter is not neces-
sarily non-baryonic. It may be ordinary, baryonic, matter in a form that is
hard to observe electromagnetically (rarified hot gas which has little emis-
sion and absorption, low mass stars that have very low luminosity, etc.). In
this section, however, we will assume that the dark matter is non-baryonic,
and consider its effect on the evolution of perturbations. We shall assume
that the dark matter particles have decoupled from the rest of the universe
plasma at a < aeq while still relativistic, that following decoupling their
interaction (between themselves and with the rest of the plasma) is only
through gravity, and that by the time of matter-radiation equality they are
sub-relativistic, i.e. that they become non-relativistic at a = ayr < deq.-
As we show below, the dark matter particles must be non-relativistic at
matter-radiation equality, anyr < @eq., in order to resolve the problem of
the too small perturbation amplification factor obtained for a universe with
QO —Qyp (see § 1.2.2).

Since the indication from large-scale structure is that the dark matter
density is much higher than that of ordinary matter, we will assume Q > ;.

1.4.1 Evolution of Perturbations

During radiation domination, the evolution of perturbations is governed by
the radiation. Matter, both dark and not, follows the evolution of pertur-
bations in the radiation energy density, which determine the gravitational
potential. At a > aeq. the evolution of perturbations is governed by matter.
Our discussion, in the previous section, of the evolution perturbations on
scales A > Ay > Aeq. holds for both ordinary and dark matter: This evolu-
tion is governed by gravity only, and hence it does not differentiate between
dark and ordinary matter.

12



Differences in the evolution of perturbations at a > aeq due to the
presence of dark-matter may arise on small scales A < A\j >~ A¢q.. The Jeans
scale is determined, at a < agec., by the radiation pressure. This pressure
prevents perturbations in the baryonic matter component from growing on
scales A < Aj >~ Aeq.. On such scales the baryon density perturbations
oscillate during aeq. < a < agec.. Since dark matter particles are not coupled
to the radiation they do not ”feel” the pressure. Thus, if the density of dark
matter is much higher than that of baryonic matter, Q@ > €, then the
baryonic density oscillations will have only a little effect on the dark matter
distribution. In this case, perturbations in the dark matter component on
all scales, including A < A¢q., Will continue to grow, J oc a, during aeq. <
a < Qgec.- After decoupling, the baryon Jeans scale drops by many orders of
magnitude, the radiation pressure no longer supports the baryons and they
will therefore fall into the gravitational potential wells created by the dark
matter. Thus, in the presence of dark matter, perturbations on scales A <
Aeq. are amplified by a factor agec./teq. = QOQh% beyond their amplification
in the absence of dark matter.

Although dark matter particles do not ”feel” the radiation pressure, there
are other processes that suppress the growth of dark matter perturbations
on small scales. Obviously, such effects may be important only on scales
A < Mg, for which, at a > aeq., we may use the Newtonian approximation.
For simplicity, we will neglect the expansion of homogeneous universe in the
derivation below of the gravitational evolution of dark matter perturbations.
It is straightforward to generalize the derivation to include such expansion
of the background solution, and the conclusions are unchanged.

Let f(x,v,t) be the distribution function of dark matter particles, so
that f(x,v,t)d3xd>v gives the number of particles in the infinitesimal phase
space element d%q = d3xd>v positioned at q = {x,v}. Conservation of the
number of particles implies (continuity equation in q space)

Of + Vq(af) =0uf + Vx(xf) + Vy(vf) = 0. (25)

Since the particles respond only to gravity, the acceleration v is not a func-
tion of the velocity, v = —V®(x), where ® is the gravitational potential.
Thus, eq. (25) may be written as

Ohf +v.Vf— VOV, f =0. (26)

The unperturbed distribution function is homogeneous in space, i.e. inde-
pendent of x. In the Newtonian approximation, where the system must be

13



infinite in size, the gravitational potential ® can not be determined. How-
ever, as mentioned in the introductory lectures, Birkhoff’s theorem for gen-
eral relativity implies that we may use ® = 0 for the unperturbed solution.
We denote the steady homogeneous distribution by fo(v). We assume that
unperturbed velocity distribution is isotropic, fo depends only on v = |v/,
since there is no preferred direction in space.

Let us now add a small perturbation to the dark matter distribution,
f = fo+ fi. The evolution of the perturbation is described by

8tf1 + V.Vfl — V<I>.va0 =0, (27)

with
V20 = 4nGop, Sp= m/ v f1(x,v,1). (28)

We have neglected the term V®.V, f; in Eq. (27) since it is of second order,
and denoted in Eq. (28) the mass of each dark matter particle by m.

Since the equations are linear, we look for solutions of the form f; o
expi(k.x — wt). For such solutions, Eq. (27) gives

1
—iwf; +iv.kf) — i@k.vf% =0, (29)

vdv
where we have used V. fo(v) = v=!v(dfy/dv), and Eq. (28) gives
® = —k~24xGmdp. (30)

replacing ® in Eq. (29) with the expression given by Eq. (30), and integrating
over velocities we find

4rGm 3 kv 1dfy
1- ~901 5, =0, 1
[ k2 /de—k.vvdv](sp 0 (31)

Non trivial solutions are obtained therefore only for

4 k. 1d
chm/d?’v v dfo

1 —
k

w—kvody 0 (32)
This is a dispersion equation, which determines a dispersion relation w(k)
for which the equality is satisfied.

Let us first obtain the long wavelength, & — 0, limit of the disper-
sion relation w(k) imposed by Eq. (32). We shall assume that in this limit
w/k — oo, so that k.v/w < 1 and may be considered a small parame-
ter. This approximation will hold for wave numbers k& < w/vg where vy is
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the characteristic velocity of the dark matter particle distribution. Keeping
terms up to second order in k.v/w, Eq. (32) may be written as

_—— =0. 33
k2w? w (33)

vdo
The term linear in k.v/w vanishes upon integration, since k < w /vy chances
signs under v.— —v (while the rest of the integrand is independent of v
direction). It is straightforward to show (using integration by parts) that the
integral of the (k.v/w)? term, [ d®v(k.v)?v=1(dfo/dv) gives —k?* [ dv fo,
leading to the dispersion relation w? = —47Gp. Note, that here p is the
mass, rather then the energy, density.

In the long wavelength limit, perturbations grow therefore on a time
scale 27 /iw = \/7/Gp, independent of perturbation scale. This result has a
straight forward interpretation. Consider a sphere of radius R, mass M and
mass density p. Since the acceleration of a point at the edge of the sphere is
g = GM/R?, the sphere would undergo gravitational collapse on a time scale
~ \/2R/g = \/2R3/GM = \/3/27Gp. 1/\/Gp is usually termed the ”free
fall time”, being the characteristic time scale for collapse under gravitation
in the absence of processes (e.g. pressure) that resist the collapse.

The long wavelength result we obtained is consistent with the general
results obtained in §1.2. The growth of perturbations in the matter dom-
inated universe at early times is described by ¢ o a, implying that the
characteristic time for perturbation growth is a/a. Using the approxima-
tion a* = HZQa ™! and recalling that H3Q = HE(pa®/p.) = (87G/3)pa?, we
find a/a = /3/87Gp (here too, p is the mass density).

The result w? = —47Gp holds for long wavelength. Let us estimate the
wavelength scale where this gravitational instability is suppressed. We may
obtain such estimate by finding the wavelength k. for which w = 0. Using
Eq. (32), we find

. | —
k2 = —47er/ddv —— = 47er/d‘3fu ﬁfo = 47Gpv~2. (34)

Here, the over-bar denotes average over the distribution function fy. The
corresponding wavelength is

e e (3)

Ac
ke Gp

This result is similar to that obtained for normal matter. The Jeans scale is
given by the product of the perturbation growth time and the speed of sound
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of the fluid (which is comparable to the thermal speed of fluid particles).
Here, the scale below which perturbation growth is suppressed is given by the
product of the perturbation growth time and the characteristic dispersion
in the dark matter particle velocities, defined as (v=2)~1/2,

1.4.2 ”Free Streaming”

Contrary to the effects of pressure, that lead to oscillations, the velocity
dispersion of dark matter particles lead to suppression of perturbations. On
scales A < A, dark matter particles propagate a distance larger than A on
perturbation growth time scale (this follows from the discussion at the end
of the previous sub-section). During matter domination, where gravitational
perturbation growth is driven by dark matter, this ”free streaming” of par-
ticles will ”smear out” and erase the perturbations, much like the photon
diffusion suppression of perturbations on scales A < Ap during radiation
domination.

We therefore define the free streaming scale as the distance that dark
matter particles propagate on a gravitational perturbation growth time
scale, A\ps = a~'(a/a)v = v/a, where v is the characteristic velocity dis-
persion of dark matter particles. Apg evolves with time as Apg o< va™/271,
with m = 4 for radiation domination, and m = 3 for matter domination. As
long as the dark matter particles are relativistic, v & ¢, Apg increases with
time, Apg o< a' (recall that we have assumed that the dark matter particles
become non-relativistic at @ = aygr < agec.). For a > ayp, the redshift of
dark matter particle momentum implies v  1/a, and hence Apg am/2-2,
The free streaming scale is constant at ayr < a < @eq., and decrease after-
wards. Thus, free streaming of dark matter particles will erase perturbations
on scales A < Aps(a = angr) = c¢/a(a = ang).

Dark matter particles become non-relativistic when their temperature,
Tpur, becomes smaller than the rest mass, m. We will define aygr to be
the value of the scale factor when Ty = mc? /3. As long as dark matter
particles are coupled to radiation, their temperature is the same as that of
the radiation, Tpys = T. After their decoupling, the momentum redshift
of dark matter particles implies Tpar o< a~', as long as the particles are
relativistic. Tpps would therefore follow T, for a < ayg. Since, however,
the entropy of the photon gas may be increased after the decoupling of dark
matter, T, may be increased above the a~! decline, leading to T, > Tpm
(this is similar to the process leading to the neutrino background tempera-
ture being lower than T’,).

In order to determine Tpys(a), we may use the following consideration.
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In the absence of processes increasing the photon entropy, the ratio of photon
and dark matter number densities, npar/n., does not change after photon
and dark matter decoupling, since both densities drop as a=3. Let us as-
sume that the photon temperature is increased after photon-dark matter
decoupling, due to entropy increase of the photons (e.g. electron-positron
annihilation), by a factor = above the value it would have had in the absence
of entropy change. The number density of photons, n, o Tv?)’ is increased
in this case by a factor 23, and the present ratio of npas /Mys MDM,0/Ty,0, 1S
smaller than the ratio at photon-dark matter decoupling by a factor 3. As
long as dark matter and radiation are coupled, Tpy = T = T, the number
densities of the photons and dark matter particles are similar, both given by
~ (T/hc)3. Thus, the value of the photon temperature increase x is approx-
imately given by z =~ (nDM’O/n%O)_l/?’. Approximating npo = Qpe/mc?,
where m is the dark matter particle mass and we have neglected the contri-
bution of baryonic matter to €2, we find

Mieyv 1/3
x%4< 2) , (36)

where myey is the particle mass in keV units, mc? = Imyey keV.

The dark matter temperature at times later than photon-dark matter
decoupling is smaller by a factor x than the extrapolation of the present
CMB temperature to that time, i.e. Tpy(a) = a™ 1T, o/x, where T, ¢ is the
present CMB temperature. Thus,

ang ~ 2 x 107 m 3 (QhZ)3. (37)

-2

Using the approximation a? = H3Qaeq a2 we therefore have

C

Ars,NR = Arps(a = ang) = - ~ 0.1my 1% (Qh25)"/3 Mpe.  (38)

ala = angR)

1.5 The Resulting Perturbation Spectrum

In order to discuss perturbations on different length scales, it is convenient
to decompose the perturbation §(x) into its Fourier components, i, where
Jk is the amplitude of the component exp(ik.x). The power in the k mode
is defined as P(k) = |6k|?>. Let us assume that at some initial time, when
a = a;, small deviations from homogeneity have been introduced by some
process. We assume that the process was random, i.e. that the amplitudes
dx were randomly drawn from some given distribution. Since we assume
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Figure 1: Characteristic length scales relevant for perturbation evolution.
The values of cosmological parameters used in this figure are Q = 1, h7s = 1,
Q, = 0.05, and mc? = 1 keV. Scalings of various length-scales with the
parameter values are given in Egs. (2,5,6,38).

that there is no preferred direction in the universe, the average (taken over
realizations of the random process) of the power spectrum, < P(k) >, should
depend only on the magnitude of k and not on its direction, < P(k) >=
P;(k). Since the number of modes in a logarithmic interval of k is oc k3, the
total power of fluctuations on scales ~ k is oc k3P(k). Thus, it is customary
to use [k3P(k)]'/? as a measure for the amplitude of fluctuations on scales
A~ 27 /k.

The results of previous sections allow us to determine the evolution of
perturbations on various scales. In this section, will use these results to de-
termine the present perturbations spectrum, P(k), given the initial spectrum
P;(k) at early times. Since we have shown that following decoupling pertur-
bations are amplified, up to any given time t > t4ec., by a scale independent
factor (the value of which depends on cosmology), the evolution following
decoupling does not change the shape of the perturbation spectrum. We
will therefore focus in this section on the evolution up to decoupling. Fig. 1,
where the evolution is shown of various characteristic length scales relevant
for our problem, may be useful for following the discussion below.

Perturbations on small scales are suppressed by the diffusion of photons
and free streaming of dark-matter particles. Thus, we approximate Py = 0
on scales A < max(Apeq,Ars,nr). Of course, if dark matter is absent,
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suppression is due to photon diffusion only.

Perturbations on large scale, of wavelength A > A¢q., grow as a? during
radiation domination and as a' at @ < 1 during matter domination. Since
we are interested in the evolution for a < age.. < 1, we may use the ap-
proximation d oc a for the matter dominated phase. Thus, perturbations
of wavelength A > Ay are amplified by a factor (aeq./ a;)?(agec./ Qeq.) Up to
a4 = Qdec.-

Let us now consider wavelengths max(ApsNR, ADeq.) < A < Aeq.. Per-
turbations on these scales "enter the horizon”, i.e. their wavelength be-
comes equal to A\, at @ = Gent. < Geq.- After the perturbation enters the
horizon, it does not grow during the radiation dominated phase, since the
Jeans scale at this time is comparable to the horizon size. Thus, these
perturbations are suppressed, compared to perturbations on larger scales
A > Aeq., by a factor (aeq. /@ent.)? by the time the scale factor reaches
4 = Qeq.. During the time aeq. < @ < adec., the evolution of such per-
turbations depends on whether or not €2 is dominated by dark matter. If
is dominated by dark matter, dark matter perturbations grow linearly with
a during aeq. < a < adec., and although the baryon perturbations on scales
A < Aeq. do not grow, but rather oscillate, during this time, the baryons
fall into the dark-matter gravitational potential wells after decoupling (see
§1.4). Thus, in the presence of a dominant dark matter component, pertur-
bations on scales max(Aps NR; ADeq.) < A < Aeq. are suppressed, compared
to perturbations on larger scales, by a factor (deq./@ent.)? Up t0 @ = dgec..

In the absence of dark-matter, baryon perturbations on scales Ap ¢q. <
A < Aeq. do not grow during aeq. < @ < agec., and are therefore suppressed
by an additional factor agec./deq.. In this case, therefore, perturbations on
scales Apeq. < A < Aeq. are suppressed by a factor (aeq./ Aent.)? (Adec. /aeq.)
up to a = agec.-

Since Ay x a for a < Geq., Gent. X A, 1.€. Gent. () = Geq. (A Aeq.). Thus, in
the presence of dark-matter perturbations on scales max(Aps,NRr, AD,eq.) <
A < Aeq. are suppressed, compared to perturbations on larger scales, by a
factor (A/Aeq.) 2. In the absence of dark matter, perturbations on scales
AD,eq. < A < Aeq. are suppressed by a factor (A/ )\eq,)_Q(adeC_/ Qeg.)-

Let as consider, for example, a power law initial spectrum, P;(k) oc k™.
Following the above analysis, the evolved spectrum after decoupling would
be

k320 for 210 /k > Aeq;
5 1/2 ’ eq.»
[k‘ P(k‘)] x { k(=172 for max(Aps NR, ADeq.) < 27/k < Xeq.; (39)
O, for 27T/k7 < max()\FS,NR, )\D,eq.)~
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In the presence of dark matter, the normalization of the intermediate wave-
length spectrum, o k~1/2 is such that it matches the long wavelength
component, o k(3)/2 at 27 /k = Aeq.. In the absence of dark-matter, the
normalization of the intermediate component is lower by a factor (aqec./deq.)-
It should be noted that in reality there would be a smooth transition of P(k)
between the functional forms given in Eq. (39) for the three wavelength
regimes.
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2 CMB & LSS

The signatures of the inhomogeneities in the Universe at the time of decou-
pling are imprinted on the cosmic microwave background (CMB) radiation.
In this chapter we will show that a comparison of the CMB anisotropy
with the observed inhomogeneities in the present universe, i.e. with the
large-scale structure (LSS) of the distribution of galaxies, provides, when
combined with the results of the previous chapter on the evolution of the
spectrum and amplitude of inhomogeneities, stringent constraints on the
cosmological model.

The plan of this chapter is as follows. In the first section, we will derive
the relation between observed LSS and the power spectrum P(k). In §2.2
we will discuss the anisotropy imprinted on the CMB by inhomogeneities,
and in §2.3 we will discuss the constraints imposed by observations on the
cosmological model.

2.1 LSS and P(k)

Consider the observed distribution of galaxies at the present, z = 0 epoch. A
common measure for the level of inhomogeneity on a scale )\ is the variance,
0/2\, of the fractional mass fluctuations in spheres of radius A. The fractional
mass fluctuation in a sphere of radius A centered at x is

EAJ@(}ZL = <4?ZTA3>_1/|X,<A d’z'd(x +x') (40)

and Ui is thus
~ SM(x)\ 17
2=y-! / d3 — 41
I "I\ > \ ’ (41)

where V is the observed volume over which the spatial integration is taken.
In order to relate o3 to the power-spectrum P(k), let us decompose § to
its Fourier modes,

i(x) = Z ek, (42)
k

J?\ is given by

-2
0/2\ =V /d% <47r)\3> / &l / d’z" Z5k5k/ei(k+k,)'xei(k'xl+k,'x/l)
3 |x/[<A x| <\

K/
(43)
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The integral over x vanishes unless k + k/ = 0. Thus,

4 72 ; / 1
O_i — Z ‘5k|2 <;T>\3> / B / 32" 6zk.(x —x'") ' (44)
K [x/|<A [x" <A

For k < 27 /), the integrand, etk-('=x") ig close to unity over the integration
volume, while for & > 27/)\ the integrand oscillates rapidly within the
integration volume. We may therefore approximate

o~ Y Pk . (45)

|k|<2m /A

As mentioned in the last section of the previous chapter, the average of the
power spectrum taken over realizations of the random process generating
the perturbations, < P(k) >, should depend only on the magnitude of k
and not on its direction. The number of modes within a sphere k < kg is
proportional to k3. Thus, if < P(k) >= P(k) does not decrease with k
faster the k~3, the sum in the last equation is dominated by the largest k’s,
ie.

03 =~ [4;%313(@} : (46)

k=2m/\

One, somewhat subtle, point should be clarified here. P(k) is the average
of P(k) over realizations of the random process generating the perturbations.
In obtaining the last equation, we have assumed that the average of P(k)
over a sphere of fixed |k| in the universe we observe, i.e. in a given realization
of the random process, is equal to the average over realizations P(k). This
assumption is valid for wavelengths A much smaller than the linear scale L
of the observed volume, provided the random process is such that modes
with different k’s are independent. In this case, there is a very large number
of modes, ~ (L/))3, over a sphere of fixed |k| ~ 1/), and since these mode
are independent, the average of P(k) over the sphere is close to P(k). It
should be kept in mind, however, that even for random processes that satisfy
the condition, that modes with different k’s are independent, the spherical
average of P(k) may differ significantly from P(k) for A ~ L due to the poor
statistics, i.e. due to the small number of modes over which the average is
taken.

Finally, observations of LSS imply 0/2\:8h_1MpC ~ 1. Here h is the Hubble
constant in units of 100km/Mpss (since distances are measured from redshift
using Hubble’s law, the absolute distance scale is inversely proportional to
h).
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2.2 The CMB anisotropy
2.2.1 Temperature anisotropy

Due to inhomogeneities in the universe at decoupling, the CMB temperature
is different when observed in different directions on the sky. The temperature
differences result from several different processes.

Variations in the radiation energy density, dpgr, imply variations in the
radiation temperature, 67/T = %6/)3/;)3 since pr o< T, As long as radia-
tion and matter are coupled, the entropy of the universe fluid is proportional
to T3/pp, where pp is the baryon density. For adiabatic perturbations, i.e.
perturbations where the fluid entropy is everywhere unchanged from its ho-
mogeneous (unperturbed) value, the temperature perturbation is therefore
related to the fractional perturbation in the baryon density, ép, through

or 1

As explained in the previous chapter, the entropy of fluid elements is con-
served during perturbations on scales A > Ap, and the evolution of growing
modes on scales A > Ay is independent of the entropy. The temperature
perturbation of the growing modes is therefore given by Eq. (47). It should
be noted, however, that if the mechanism generating the initial inhomo-
geneities produces non-adiabatic perturbations, then the relation between
0T /T and 0p may be different than given in Eq. (47).

Another effect that creates temperature inhomogeneities is related to
the fluctuations of the gravitational potential. Photons ”climbing out” of
over-dense regions suffer a higher than average redshift on their way to us,
since the gravitational potential well of the over-dense region is deeper than
average, and will therefore be ”colder” than average. The modification of the
gravitational potential due to mass fluctuation M on (proper) scale Aprop. is
6 ~ 2GOM [Nprop. = (87Gp/3)A2rop 0 = (HAprop.)?d, where H = a/a is the
Hubble ”constant”. The fractional temperature change due to the redshift
is thus 0T /T ~ 6¢/c? ~ (HAprop./€)?0 = (M Adec.)?5, where A = a3} Aprop.
is the comoving wavelength and we have used agl (¢/H) = Agec.- Thus, on

ecC.

scales A > Agec., the gravitational redshift effect,

(7).~ () @

dominates over the intrinsic temperature change given by Eq. (47).
Finally, temperature variations will also result due to the peculiar ve-
locity, i.e. due to the variation of velocity from the Hubble flow, associated
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with the perturbations, via the Doppler effect, 67/T = év/c. Using eq. (23)
we find 30v/Aprop. &~ 0 = HJ, implying

(?)N;<)\:)5 (49)

The Doppler effect is thus dominated by the potential effect on large scales,
and by the intrinsic variations on small scales.

2.2.2 The power spectrum

Let us consider the correlation function of the fractional temperature per-
turbations on scale A, defined as

_ 0T (x + Ae)oT'(x
gmzvl/d% (<T>)2 & (50)

Here € is an arbitrary unit vector. The intrinsic contribution, due to changes
in the radiation energy density, to &7 is given (for adiabatic perturbations)
by

1
= vt /d% S(x +28)05(x) | (51)
Decomposing dp into Fourier modes, we have
1 . . / o
fra = §V71 / Px Y pxdp e TR xek e
Kk’
1 -
=3 Z 651%™ (52)
Kk

For k < 27/, the term e™® is close to unity, while for k& > 27/\ it
oscillates rapidly. We may therefore approximate

1 2
rp =g > lesal® . (53)
k<2 /A

and, under the same assumptions of §2.1,

1 (47 1 (4n
T > — [k3!53,k\2] =— |-
913 p=2r/x 9| 3

x|’
=| K3P(k)

2 (54)

k=27/\

Recall, that in the presence of dark matter, the dark matter perturbation §
is larger at decoupling than dp by a scale independent factor (agec./@eq.)-
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The fluctuations of the CMB temperature are usually quantified in terms
of the correlation function of the temperature fluctuations. Comparing Eq.
(54) with Eq. (46), we find that the mass fluctuations on scale A, %, and
the temperature fluctuation correlation function, &7 x, both measure k3P(k)
at k= 2w /.

Eq. (54) gives the contribution to &7y of the intrinsic temperature
perturbations due to radiation energy density perturbations. It therefore
holds only at A < Agec., where this contribution dominates. On larger
scale, A > Agec., the temperature fluctuations are dominated by the gravita-
tional redshift, which results in temperature perturbations larger by a factor
(A/Adec.)? than those given by Eq. (54). As discussed in §5 of the previous
chapter, the evolution of perturbations leaves the perturbation power spec-
trum unchanged on scales A > A¢q., and suppresses perturbations on smaller
scales, compared to those at A > Aeq., by a scale dependent factor (A/Aeq.)?.
Since the gravitational redshift effect amplifies the temperature perturba-
tions on scales A > Agec,, compared to those at A < Agec., by (A/Adec.)?,
the CMB temperature fluctuation correlation function reflects the original
power spectrum P;(k) at both small and large scales, {7y o kP;(k). In
particular, for a power-law initial spectrum P;(k) o< k™, we have

g1/2 ~ { k(=172 for 21 /k > Aec.; (55)
Tk E=D/2 0 for max(Ars NRy AD.eq.) < 27/k < Aeq.-

Note, that the value of k3P (k) at A = Aq. is larger (in the presence of dark
matter) than its value at A = Agec. by @ factor (Adec./Aeq )" F3)7/2.

2.2.3 Angular and physical scales

By observing the CMB temperature fluctuations in different directions on
the sky, the correlation function of temperature fluctuations is determined
as a function of angular separation, 6, between different directions. This
angular scale corresponds to a length scale at decoupling, Aprop. = 0d 4 dec.
where d gec. is the angular diameter distance to the z = zgec. last scattering
surface. This length scale corresponds to a comoving scale A = 9a;el(3‘d A dec. -
In order to compare CMB measurements with the mass fluctuations in the
LSS, which are observed on length scale A, it is thus necessary to determine
dAdec.- The angular diameter distance is given by da(a) = aRor(a), where
r(a) is determined by

La Tod
C/ ‘,‘:/ S (56)
RO a aa 0 \/].—:ICT2
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Here, k = 0 for a flat universe, and for a curved universe, k # 0, we chose
the normalization |k| = 1, for which the radial part of the present, z = 0,
metric is Rodr/v/1 — kr?. Using approximations similar to those used in
§2.2 of the previous chapter, it is straight forward to derive the following
approximation for d4(a):

2 -1 —0-
c {Q ,  for A =0; (57)

dA(a)zFOaX QY3 for Q< 1,040, =1.

Using the above approximation, we find that the angular scale corre-
sponding to the size of the horizon at equality, Aeq. = ¢/¢eq. = (¢/Ho)(teq. /)
is

%

eeq.

1 I/QX{ QY2 for A =0;
2 eq.

2? QS for Q< 1,Q+ Q) =1.
o, for A = 0;

_ orp—1
= 025 x { 023 for Q< 1,0+ = 1. (58)

The angular scale corresponding to the size of the horizon at decoupling,
Adee. = ¢/ adee. = (¢/Hp)(agee. /)2, is given by

lal/g " { Q1/2, for A =0;
9 dec. QY6 for Q< 1,04 Q) = 1.
_ 1°><{ QY2 for A=0;

QY6 for Q< 1,Q4+ Q) =1.

adec. ~
(59)

O4ec. depends on the cosmological parameters €2 and A, which determine
the geometry of the universe. From the analysis of the preceding section, we
expect a strong feature in the CMB fluctuation spepctrum at 84e... Deter-
mination of f4e., from CMB observations will provide a stringent constraint
on the value of these parameters, roughly on Q + A, and hence on the ge-
ometry. Note, that for a A = 0 universe, 04... decreases for smaller €2, while
Ogec. is only weakly dependent on 2 for 24 Q2 = 1 universe. Determination
of fq. from the shape on the fluctuation spectrum will provide a constraint
on Qh?, since Ogec. /Oeq, < (Qh2)1/2.

In the range 0 ~ 6. = adec. Aeq./dA(a = Gdec.) t0 6 ~ Ogec., there is a
transition from domination of intrinsic temperature fluctuations (at small )
to domination of the gravitational redshift effect (at large #). Moreover, at
0 ~ Ogec. the Doppler redshift contribution to §7'/T is of the same magnitude
as the contribution of the other effects. At scales smaller than the Jeans
scale, 0 < 0 ~ fq., the photon and baryon fluid undergoes oscillations and
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Figure 2: A schematic representation of the angular correlation function of
the CMB temperature fluctuations.

the Doppler contribution to 67'/T oscillates as a function of 6, according to
the phase of the oscillation accumulated from a = aept. Up to @ = agec.. For a
featureless power spectrum, e.g. P;(k) o k™, this introduces a series of peaks
and deeps into the properly normalized temperature fluctuation correlation
function, 9"*1&[79. The relative amplitude of the peaks decreases at smaller
0, as the Doppler effect becomes dominated by the intrinsic contribution to
oT/T.

Note that the pressure effect introduces an oscillatory part also into the
growing modes, A > Ay, as long as the mode wave-length is smaller than the
horizon. Although the oscillation amplitude decreases as A increases beyond
Aj, the pressure effects will be significant up to 8 ~ O4ec., since Agec. is not
much larger than A\q.. Fig. 1 presents a schematic temperature fluctuation
spectrum, summarizing the conclusions of the discussion above.

2.3 Observations and cosmological parameters

For an initial power-law power spectrum, the observed CMB fluctuation
spectrum is determined by 6 parameters: the densities of baryonic and dark
matter particles at decoupling, pp and ppjs, the amplitude and spectral
index of the initial fluctuations, P;(k) = Ak™, the angular diameter distance
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to the da dec.(2, A, Hy) to the last scattering surface, and the Thomson op-
tical depth, 70 << 1, to scattering of CMB photons by free electrons at low
redshift due to the re-ionization of the plasma (as will be discussed later).
At small angular scales the effect of Thomson scattering is a suppression
of the amplitude by e=2™", such the effect of 77 is a 'normalization’ of the
amplitude to Ae~2?™. Note that the plasma condition at decoupling re-
quires also a knowledge of the temperature at decoupling. However, given
the current measured value of the CMB temperature, pg determines the
photon to baryon ratio and hence the decoupling temperature. Recalling
that the physical density is given by QHZ, we may choose 5 parameters
that determine the observed spectrum as {Qph?, Qparh?, d A, dec. Ae= 2T n}
(Q=Qp+ Qpun, his Hy in units of 100km/s Mpc).

As discussed in the preceding section, the angular scales that determine
the prominent features of the observed CMB power spectrum, and that
can hence be simply determined from its shape, are fcq. = Gdec. Aeq./dA dec.
and fgec. = Adec. Adec./dA dec.- Their determination constrains €2 + A and
Qh2. In addition, the relative amplitude of the 'Doppler peaks’ at different
wavelengths depends on Qp/Qpys, since the oscillating baryonic fluid is
affected by the growing depth of the DM potential wells. Thus, an accurate
measurement of the peaks’ amplitudes enables a determination of this ratio.

Finally, the power spectrum is affected at (very) small scales by the
suppression due to photon diffusion (we assume that this dominates ’free
streaming’) and due to the finite width of the last scattering ’surface’. The
diffusion effect takes place on scales comparable to and smaller than the dif-
fusion scale, Op = agec. Adec./dA dec. = 0.1'(9/593)1/2(9@5)*2, see eq. (6).
The finite width effect takes place on a scale that depends on a different
combination of {Qh? Qp/Qpy}, to be discussed in one of the seminars.
Thus, an accurate measurement of the CMB spectrum, in which these ef-
fects are measured, provides consistency checks of the model (which is over
constrained).

2.3.1 COBE and LSS

The COBE satellite measured (early 90’s) the temperature fluctuations on
scales of tens of degrees. The amplitude of the temperature fluctuations
detected is 6T/T ~ 107> and the spectrum is consistent with a power-
law spectrum P;(k) oc k™ with n ~ 1, i.e. the correlation function {7 is
consistent with being scale independent, &7 9 o< g1 = g9,

Angular scales of  ~ 4ec. ~ 1° correspond to (comoving) length scales of
hundreds of Mpc, about an order of magnitude larger than the largest scales
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over which the LSS is probed at present by galaxy surveys. Direct compar-
ison of the COBE measurements of P(k) with the z = 0 measurements
based on LSS is therefore not possible. In order to make such comparison,
an assumption must be made regarding the extension of the COBE power
spectrum of the temperature fluctuations to small angles, corresponding to
the scales over which the LSS is probed. Assuming that the initial power
spectrum extends as P;(k) o< k™ with n ~ 1 down to such small scales, im-
plies {79 o 6° and hence that the amplitude of fluctuations is §7/7 ~ 107>
on all scales.

As mentioned in §2.1, the amplitude of perturbations today is of order
unity on 8h~! Mpc. Let us consider the implications of this observation,
adopting the assumption that P;(k) extends as k! to small scales. Let us
first consider a universe with A = 0 and no dark matter. For such a universe,
which has a low density € < 1 given the nucleosynthesis constraint Qgh? =
0.027, perturbations are amplified from decoupling till today by a factor
~ 2.50 x 103 (see § 1.2.2). The temperature fluctuations on small scales give
the perturbation in baryon density at decoupling, g = 36T/T ~ 3 x 107°.
Multiplying by the growth factor, 2.5Q x 103, we find that perturbations at
decoupling would have grown to a present day amplitude of ~ 0.1Q2 < 1.
This is inconsistent with the measured LSS perturbation amplitude, ~ 1 at
~ 10 Mpc. A A = 0, no dark matter universe is therefore ruled out by the
observations.

Let us consider next a A = 0 universe with a dominant component of
dark matter, Qppsr > Qp. In this case, perturbations are amplified from
decoupling till today by a factor ~ 103Q (see §2.2 of previous chapter).
The dark matter density perturbation amplitude is larger than the baryon
density perturbation amplitude by a factor agec./deq. = QOQh% (see §4 of
previous chapter; here h7s is Hy in units of 75km/s Mpc). The dark matter
perturbation amplitude is the relevant quantity, since the baryons fall into
the dark matter potential wells after decoupling. In this case we have,
therefore, 6 = QOQh%éB ~ 6 X 10_49}@5. Multiplying by the growth factor,
we find that perturbations at decoupling would have grown to a present day
amplitude of ~ 1Q2hZ%.. Such a universe may therefore be consistent with
observations, provided Qpy; ~ 1.

We have mentioned in the discussion of observational evidence for dark
matter existence in stellar and galactic systems, that such observations do
not provide information on the nature of the dark matter particles, which
may be baryonic. The dark matter may be composed, for example, of black-
holes or faint stars. It is the comparison of CMB and LSS observations
discussed above, combined with constraint on {25 from nucleosynthesis, that
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suggests the existence of a non-baryonic component of dark matter.

Finally, let us consider an €2 + Q4 = 1 universe with Qpyr > Qp. In
this case, the amplification factor is ~ 103 with weak dependence on €,
and perturbations at decoupling would grow to a present day amplitude of
~ 1Qh%5. Compared to the A = 0 universe, the dependence of present day
amplitude on € is weaker. A A > 0 model would therefore be consistent
with observations for values of Qpjys which are lower than those allowed by
observations for a A = 0 universe.

2.3.2 Boomerang and Maxima

The balloon experiments Bommerang and Maxima have recently (2001)
measured {79 on 1 degree scale. The main conclusions from these mea-
surements are:

e Comparing with the COBE measurement on larger scale, the ampli-
tude of &7 is consistent with {79 o "1 withn =1+0.1.

e The first Doppler peak at 0 ~ 0Ogec. is clearly detected. Hints for a
second peak on smaller scale are present as well.

e The location of the first peak at # ~ 1° implies [see Eq. (59)] that the
universe geometry is nearly flat, with Q 4+ Qj ~ 1.

2.3.3 WMAP

The WMAP satellite provided precision measurements of the temperature
fluctuations on a wide range of angular scales, down to ~ 0.3°. It confirmed
the results described above, and provided high accuracy determination of
cosmological parameters (see table 2 in Dunkley et al. 2009, ApJS 180, 306).
As discussed above, the values of 2 + A is determined by the location of the
first peak of the CMB fluctuations. WMAP data imply

QO+ A=1.0240.02, where Q=" A= (60)
Pc Pe
This implies that the geometry is nearly flat,
b (0.02+0 (JQ)HO2 (61)
R = (0. 02)—-

The spectral index is inferred to be n = 0.96 & 0.02.
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Adopting a flat universe, k = 0, the subsequent peaks of the CMB
fluctuations give

Qnh? =0.13+0.01, Qh%=0.022+ 0.001, (62)

with h = Hy/(100km/s/Mpc). Taking h = 0.72 £ 0.08 (based on Cepheid
distance ladder, see intro), this gives

to=14Gyr, Q= 0.25+0.4, (63)

implying also A ~ 0.7. The baryon density is consistent with BBN. This
model fits very well the observed CMB fluctuations, see slide 3.
Given Q2 4+ A from CMB, measuring

dr(z) = (¢/Hp)[z + (1 + A — Q/2)2?/2] (64)

using SNIa gives Q — A (slides 4,5). Combining with the CMB Q@ + A =1
yields 2 >~ 0.3, A >~ 0.7 (slide 6, consistent with the results above based on
h).

2.3.4 Planck

The high precision Planck measurements of the CMB spectrum (see slide 4
and 2016 A&A 594, A13) constrain | + A — 1| < 0.005. For Q@ + A =1, it
determines n = 0.97 = 0.01, A = 0.68 = 0.01, 2 = 0.032 £+ 0.02.

2.4 Polarization & re-ionization

To be completed.
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A Hydrodynamics of relativistic fluids

A.1 Egs.

We consider here the flow of a relativistic ideal fluid, neglecting gravity. The
assumption of "ideal” fluid implies that the plasma is everywhere in local
thermal equilibrium, and that dissipative processes (diffusion, heat conduc-
tion etc.) that increase the entropy are negligible. The energy momentum
tensor of an ideal fluid was derived in the discussion of GR & FRW, and
shown to be given by

oV

T = pp™ + - (p + ). (65)

2
Here u* is the 4-velocity, u® = vc and v’ = yv' where v’ is the 3-velocity
and v = (1 — v2/¢?)~1/2 the Lorentz factor, p is the pressure and e is the
energy density. In our notations z° = ¢t and 7 is diagonal with % = —1
and % = 1. Conservation of energy and momentum are given by

0,T"" = 0. (66)
The 0-th component of eq. (66) may be written as

Op = O [yut(e +p)] - (67)

Substituting this in the i=th eq. we have
0+ v.V) ¢ <v +Lva ) (68)
vV)v=—-————— =V .
t Perp \ T
We have 4 equations for the 5 variables, v, e and p. The 5-th equation is

the conservation of entropy along a fluid element’s path,

u0ys = (0 +v.V)s =0. (69)

Note that an equation of state, e(s, p), is required to close the equations.
If the fluid contains particles that are not created or destroyed, the con-
servation of these particles may be written as

Ou(ut'n) = 0¢(yn) + V(ynv) = 0, (70)

where n is the (proper) density of the particles. In this case, using the
conservation of particles and u, 9, uT* = 0 gives

u [au (%) +pd) (i)] —0, (71)

which is a particular realization of eq. (69) for the case where a conserved
number exists.
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A.2 Sound waves

Consider a small perturbation in a homogeneous fluid at rest: p — p + dp,
s = s+ Js, and small (first order in a sense to be defined below) v. The
linearized eqs. of motion are

Ode = —(e+p)Vv, (72)
9 2 g
_ Vop. 73
A S (73)
and
8,05 = 0. (74)

Note that v = 1+ O(v?), so that v = 1 in the linearized equations.

We can separate the perturbation into non-adiabatic and adiabatic parts:
{6s #0,6p = 0,v = 0} and {ds = 0,dp # 0,v # 0}. The evolution of the
non-adiabatic part is simple, it is time independent. Next, we decompose the
adiabatic part in Fourier modes, f(x,t) o exp|i(k.x —wt)], writing egs. (73)
and (75) as

wie = (e +pk.v, (75)
and
¢ (76)
wv = ——kép.
(c+p) "

We now separate the adiabatic perturbation into compressible (v || k, V x
v = 0) and incompressible (v L k, V.v = 0), parts: {dp # 0, Veomp. =
(k.v/k?)k} and {6p = 0, Vincomp. = v — (k.v/k?)k}. The evolution of the
incompressible mode is again simple, it is time independent (w = 0). For
this mode, v and k are perpendicular, i.e. it describes shear flow with no
compression of the fluid, Vv = 0 and no pressure variation.

Finally, for the adiabatic compressible ({ds = 0,v || k}) component we
have

(eiep) - %v 0
0 wv
E fp) = (78)

Dividing the two eqs. we finally obtain

3 -2(2),

2
s

C
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The waves therefore satisfy a linear dispersion relation, w = kcs, so that their
group and phase velocity is the speed of sound, ¢s. Finally, de/(e + p) =
v/cs so that our assumption of a "small velocity” corresponds to first order
expansion in v/cs.
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