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ABSTRACT

Despite the crucial role of carbon transport in whole plant
physiology and its impact on plant–environment interactions
and ecosystem function, relatively little research has tried to ex-
amine how phloem physiology impacts plant ecology. In this re-
view, we highlight several areas of active research where
inquiry into phloem physiology has increased our understand-
ing of whole plant function and ecological processes. We con-
sider how xylem–phloem interactions impact plant drought
tolerance and reproduction, how phloem transport influences
carbon allocation in trees and carbon cycling in ecosystems
and how phloem function mediates plant relations with insects,
pests, microbes and symbiotes. We argue that in spite of chal-
lenges that exist in studying phloem physiology, it is critical that
we consider the role of this dynamic vascular system when ex-
amining the relationship between plants and their biotic and
abiotic environment.

Key-words: carbon cycle; defense; drought; growth; phloem
transport; reproduction; rhizosphere; xylem transport.

INTRODUCTION

Carbon fixed by plants serves as the basis of all life in terrestrial
habitats, but there are still many questions that remain about
how plants invest carbon during their lifetimes (Körner 2003;
Sala et al. 2012) and how carbon allocation affects many ecolog-
ical processes ranging from community assembly to carbon cy-
cling (Grime 2006; Migliavacca et al. 2011). The majority of
carbon used by vascular plants is not used where it is fixed
but is transported to other metabolically active areas. This
transport occurs in the phloem, a part of the vascular system
that moves carbohydrates from photosynthetic and storage tis-
sue (sources) to areas of active growth and metabolism (sinks).
Because carbon transport is influenced by source and sink ac-
tivity, it can integrate changes that occur throughout the plant,

potentially influencing everything from growth and allocation
to defense and reproduction (Fig. 1). The phloem’s role in
shaping many ecological processes has intrigued scientists for
decades, but proving a direct connection between phloem
physiology and plant ecology remains challenging.

Carbon transport occurs in a series of stacked cells, sieve el-
ements, which in angiosperms form long continuous conduits
called sieve tubes (for details on cell ultrastructure, see Froelich
et al. 2011). Unlike transport cells in the xylem, sieve elements
are under positive pressure and have intact cellularmembranes
(for recent reviews on phloem physiology, see De Schepper
et al. 2013; van Bel 2003). In the phloem, there are other cell
types, including parenchyma and fibres, and of particular im-
portance are the companion cells in angiosperms, which are of-
ten responsible for loading sugar into the phloem and for
helping maintain metabolic function of neighbouring sieve
tube elements (vanBel &Knoblauch 2000). Carbohydrates en-
ter the phloemusing one or a combination of passive and active
loading mechanisms (see section on Phloem Loading, a Case
Study: What Physiologists can Learn by Thinking About Ecol-
ogy), which require different sugar concentration gradients in
the mesophyll and vary in the amount of symplastic continuity
that exists between the vascular and ground tissues.

It is currently believed that phloem transport is driven by a
pressure differential between the source and sink generated
by local osmotic gradients in each tissue. This ideawas first pro-
posed by Ernst Münch (1930) and is the most widely accepted
mechanism for phloem transport (for further discussion, see
Knoblauch & Peters 2010). This mechanism not only allows
for transport to occur inmultiple directions but also means that
changes in the source and sink tissue, including those triggered
by the biotic and abiotic environment (reviewed by Lemoine
et al. 2013) such as drought (Sevanto 2014), may alter phloem
transport. The downstream effects of these changes can influ-
ence the movement of carbohydrates (Savage et al. 2013) and
phloem-mobile informational signals and secondary com-
pounds (for reviews on molecular trafficking, see Turgeon &
Wolf 2009; Lucas et al. 2013). These effects place the phloem
in a central position for mediating plant–environment
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interactions and suggest that phloem structure could have im-
portant implications for a variety of processes from growth to
reproduction (Fig. 1; Petit & Crivellaro 2014; Savage et al.
2015; Woodruff 2014).

In this review, we describe research that provides a founda-
tion for future work considering phloem physiology in an eco-
logical and evolutionary context. We focus on three broader
topics: carbon–water interactions, carbon fluxes in plants and
ecosystems, and biotic interactions. For each of these topics,
we provide discrete examples of how a phloem-focused line of
inquiry could or already has enriched the field of physiological
ecology. The aim of this review is to demonstrate the breadth
of research influenced by phloem physiology and how research
on this critical part of the vascular system can enhance our un-
derstanding of plant ecology and ecosystem function.

CARBON–WATER INTERACTIONS

Many types of environmental stress including drought and
freezing temperatures can jeopardize the integrity of the water
transport system. Because the ability of plants to survive these
conditions is influenced by aspects of xylem structure and func-
tion (Davis et al. 1999; Ewers 1985; Hacke & Sperry 2001;
Hacke et al. 2001), research on this part of the vascular system
has become central to the discipline of physiological ecology
(e.g. Ackerly 2004; Jacobsen et al. 2007; Zanne et al. 2014).

However, in all plants, the xylem and the phloem occur in close
proximity, and there is increasing evidence that a tight hydrau-
lic connection (Bull et al. 1972; Minchin& Lacointe 2005; Ohya
et al. 2008; Sevanto et al. 2011; van Bel 1978) supports their
transport processes (Knoblauch & Peters 2010; van Bel 1990;
Zwieniecki et al. 2004). Considering this fact, xylem–phloem in-
teractions could significantly impact the nature of hydraulic
stress and have large implications for plant function, growth
and reproduction.

What happens to phloem transport when xylem
water potential changes?

Experiments and modelling studies have revealed that most of
the time the xylem acts as a water source for the phloem
(Hölttä et al. 2006; Windt et al. 2006), but in certain situations,
for example, close to strong sinks (Sevanto et al. 2003), or dur-
ing drought (Sevanto et al. 2005; Zweifel et al. 2000), phloem
tissue including sieve tubes, parenchyma and fibres may act
as an additional water resource for the xylem (Fig. 2). Even if
the volume of the phloem is a fraction of the volume of the xy-
lem, it can contribute significantly to the transpiration stream
because of its higher elasticity. From simultaneous measure-
ments of phloem and xylem diameter variations, it can be esti-
mated that in a tree with a stem diameter of ~15 cm, phloem
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Figure 1. Transport of water and carbon into and out of the phloem. Water and carbon fluxes are noted in blue and orange, respectively, and
separated based on where they occur (e.g. within the plant, aboveground and belowground). Dashed arrows are fluxes that occur outside the plant
but originate from resources transported in the phloem.
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contributes roughly 0.35 dl of water per every metre of tree
height (values taken from Acer rubrum L., in Sevanto et al.
2011), which, in a 10 m tree can contribute to about 6% of its
total daily water loss (Sevanto et al. 2008).
From the point of view of phloem transport, a tight hydraulic

connection with the xylem is beneficial in allowing for easy ac-
cess to water, but it has a trade-off: xylem water potential may
influence phloem transport (Hölttä et al. 2009; Hölttä et al.
2006; Sala et al. 2010). Water exchange between the xylem
and the phloem can be described as flow in a porous medium,
where the flow rate depends on the water potential gradient
and the hydraulic conductivity between the tissues (Hölttä
et al. 2006; Sevanto et al. 2011).As a result, hydraulic conductiv-
ity determines the magnitude of flow rates obtained with a cer-
tain pressure gradient and how fast xylem water potential
changes propagate to the phloem tissue. Because measuring
hydraulic conductivity between the xylem and the phloem is
very challenging, only an order of magnitude estimate exists
(Salleo et al. 2004; Sevanto et al. 2011; Wan et al. 2004). To
our knowledge, the estimated conductivity is high enough that
at any timescale relevant to the whole plant, the phloem con-
duits are in hydraulic equilibrium with the surrounding
apoplast (Thompson & Holbrook 2003) as well as with the

xylem (Daudet et al. 2005; Hölttä et al. 2006, see also Hölttä
et al. 2009), which has clear benefits to plants. Hydraulic equi-
librium between the xylem and the phloem, for example, pre-
vents rapid variations in plant water potential from causing
changes in phloem turgor and unduly disturbing transport un-
der most conditions (Thompson & Holbrook 2003).

The influence of xylem water potential on phloem transport
has recently emerged in connection with drought mortality
studies of trees (Fig. 2; McDowell & Sevanto 2010; Sala et al.
2010; Sevanto 2014). As described earlier, the lower the xylem
tension (less negative the water potential), the easier it is for
the phloem to obtain the water needed for transport. There-
fore, theoretically, phloem transport should be easiest at night
or during wet seasons (Hölttä et al. 2009; Hölttä et al. 2006).
The high solute concentrations needed for osmotic adjustment
during high xylemwater tension, if built up with soluble sugars,
may increase the viscosity of phloem sap and potentially block
phloem transport (Hölttä et al. 2009; Hölttä et al. 2006). Such a
blockage could have consequences for plant survival (McDow-
ell & Sevanto 2010; Sala et al. 2010). However, if the conduits
are hydraulically connected to the surrounding tissues and wa-
ter in the apoplast, any change in osmotic concentration inside
a conduit is immediately compensated for by inflow of water
balancing the viscosity increase. The little empirical evidence
we have on phloem responses to drought suggests that phloem
turgor will collapse well before things get too ‘sticky’ in rela-
tively isohydric plants (Sevanto 2014). This collapse may lead
to a temporary increase in water available for the xylem but ul-
timately promotes hydraulic failure. This way, even well-
watered plants that cannot maintain phloem turgor because
of depleted carbohydrate reserves can show symptoms of hy-
draulic failure (O’Brien et al. 2014; Sevanto 2014).

The hydraulic connection between the xylem and phloem
also necessitates that the structure of both tissues be balanced
so that water supply and carbon transport needs match. This
has implications for the relative thicknesses of xylem and
phloem tissues and relative diameters of conduits (Hölttä
et al. 2009; Jyske & Hölttä 2015) in relation to photosynthetic
capacity and stomatal control (Nikinmaa et al. 2013). Phloem
transport capacity depends on xylem water potential, which is
linked with xylem water transport capacity (conduit number
and size). Therefore, large structural investments in the xylem
that improve its transport capacity reduce the need to invest
in phloem structure (Hölttä et al. 2009). This implies that plants
with wide xylem conduits or plants that keep their xylem water
potential relatively constant (isohydric plants) may function
with less phloem than plants that have low xylem conductivity
or regularly experience low xylem water potentials
(anisohydric plants) (Sevanto unpublished data).

Despite increasingly sophisticated models, greater comput-
ing power and an improved biophysical understanding of the
processes governing coupled xylem–phloem transport in
plants, empirical evidence of how plant stature and growth con-
ditions are related to phloem transport remains limited (see
next section on Carbon Fluxes in Plants and Ecosystems).
More anatomical and physiological data are needed to better
understand the complex interactions that occur between the
xylem and phloem from the source to the sink and to truly
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Figure 2. A schematic presentation of water and carbohydrate fluxes
between a source leaf and a sink in the stem or roots. Fluxes of water
and carbohydrate are represented by blue and orange arrows,
respectively, and the length of the arrow indicates the size of the flux.
Open arrows are gaseous fluxes. Inside the vascular tissue, darker
shades of blue indicate more negative xylem water potentials, and
dark shades of orange indicate higher phloem solute concentrations.
During non-drought conditions, the phloem pulls water from the
xylem to support carbohydrate transport. At sinks, carbohydrates are
extracted from the transport stream and water returns to the xylem.
During drought, increasing solute concentrations are needed in the
phloem to prevent excessive water loss to the xylem and allow for
phloem turgor maintenance.
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reveal the consequences of this interaction for plant ecology
and evolution.

How are flowers and fruit hydrated?

Because reproductive organs often serve as strong carbon
sinks, xylem and phloem interactions can significantly impact
water and solutemovements into and out of developing flowers
and fruit. Münch (1930) hypothesized that the phloem in the
pedicel supplies both the water and solute requirements of
growing buds and fruit, with transpiration considered negligi-
ble and excesswater returned to the plant via the xylem (Fig. 3).
However, calculations of phloem water flows based on dry
weight growth and respiration rates suggest that the potential
rate of supply is limited, unless either the phloem sap is very

dilute, risking loss of turgor (Chapotin et al. 2003), or there
are large alternative sinks for carbon, such as accelerated respi-
ration, catabolism of carbohydrates (Tarpley & Sassenrath
2006) or copious nectar production (Chapotin et al. 2003; De
la Barrera & Nobel 2004). For these reasons, phloem-only hy-
dration of flowers must be energetically demanding compared
with xylem supply, suggesting that the adaptive benefit of hav-
ing flowers that are ‘hydraulically isolated’ from daily and sea-
sonal fluctuations in the xylem may be high (Feild et al. 2009;
Galen 2005).

While direct measurement of phloem flow is difficult, the rel-
ative contributions of the phloem and xylem to floral develop-
ment have been inferred from water potential gradients. In
the small number of species examined, the water potential of
the perianth is often higher than the subtending stem, indicating
that water cannot be flowing towards the flower in the xylem
(Chapotin et al. 2003; Lin 1997; Trolinder et al. 1993). More re-
cently, it was proposed that dual phloem/xylem hydration is an
ancestral trait, while exclusive phloem supply is a more ad-
vanced characteristic of the eudicotyledons, selected for as the
angiosperms diversified and colonized less mesic habitats (Feild
et al. 2009). In reality, the concept of a dichotomy between
phloem-only and xylem plus phloem hydration is probably
overly simplistic (Roddy et al. 2013). The number of taxa for
which flower water relations have been examined is very low,
and there have been no direct observations that separate
phloem and xylem flows in pedicels or within floral organs
(Windt et al. 2009). We expect that continued investigation will
reveal a range of variation in themechanism of floral hydration.

Compared with flowers, the role of the phloem in fruit devel-
opment is better understood. Generally, both the phloem and
xylem contribute to early development, but phloem supply be-
comes more important during ripening (Matthews & Shackel
2005) because of reduced hydraulic conductance in the xylem
(Choat et al. 2009; Mazzeo et al. 2013) and lower apoplastic wa-
ter potential gradients (Bondada et al. 2005). This transition is
typically accompanied by reduced growth and declining fruit
surface conductance and transpiration rates (Clearwater et al.
2012; Greer & Rogiers 2009), lowering the demand for xylem
water. Across species, there may be a correlation between fruit
surface conductance, the balance between phloem and xylem
supply, and tolerance of water stress. For example, phloem-
only supply occurs throughout development of fruits of the de-
sert plant Opuntia Mill. (Nobel et al. 1994; Nobel & De la
Barrera 2000) and the warm climate crop cotton, Gossypium
L.(Trolinder et al. 1993; van Iersel et al. 1994; Wullschleger &
Oosterhuis 1990). However, there have been no broad compar-
isons of fruit transpiration rates and vascular functioning.

Another possibility is that the xylem acts to buffer any imbal-
ances between transpiration, growth andmore constant inward
flows of phloem water (Choat et al. 2009). Continuously circu-
lating or temporally oscillating flows have been measured for
several species including kiwifruit, Actinidia chinensis Planch.
(Clearwater et al. 2012; Clearwater et al. 2009; Higuchi &
Sakuratani 2005; Windt et al. 2009; Yamamoto 1983). In this
species, models show that the amount of inward flow in the xy-
lem decreases with decreasing assumed phloem sap concentra-
tion, but within the likely range of phloem concentrations,

Figure 3. Measured and modelled time course of sap flow in pedicels
of kiwifruit over 24 h, 65 d after anthesis. A positive flow indicates flow
from plant to fruit. (a) Total flow (the sum of xylem and phloem flows)
was measured using sap flow gauges (Clearwater et al. 2013) and
predicted using a biophysical model of fruit development (Hall et al.
2013; Hall, unpublished). (b) Model predicted total flow partitioned
into component phloem and xylem flows, with mean phloem sap
concentration assumed to be at the low (Cp= 0.1; sugar mass fraction)
or high (Cp= 0.3) end of likely in vivo concentrations (Jensen et al.
2013). Xylem flows oscillate between inward and outward flows, and
with decreased Cp, the magnitude and duration of xylem outflow
increases. Model parameters for (b) were adjusted so that total flow
matched predicted flow shown in (a).
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there is always a requirement for some inward xylemflow (Fig. 3).
For xylem flow to always be zero or outward, as a ‘phloem-
only’ paradigm suggests, the modelled phloem concentration
must be set below known physiological concentrations, and
loss of phloem turgor is predicted. The same problem has been
raised for phloem-only floral hydration (Chapotin et al. 2003).
However, it is possible that variation in the overall contribution
of the phloem to fruit development is correlated with interspe-
cific differences in phloem sap concentration. For example, in
fruits of Opuntia, phloem-only supply is supported by dilute
phloem sap (Nobel et al. 1994; Nobel & De la Barrera 2000).
Another factor that contributes to changes in fruit hydration

during development is phloem unloading between sieve ele-
ments and sink tissues. The transition to phloem-only supply
at the onset of ripening (veraison) in grape is accompanied by
a change in unloadingmechanism, from symplastic (via plasmo-
desmata) to one that includes an apoplastic step (Zhang et al.
2006). These two unloading types lead to differences in solute
accumulation in the apoplasm (Patrick 1997), which may affect
sink water status, the flow of water in the xylem and the compo-
sition of any xylem sap that returns to the plant (Matthews &
Shackel 2005). The transition to apoplastic unloading occurs
primarily in sinks that accumulate high concentrations of os-
motically active solutes such as ripening grapes and tomatoes
(Lalonde et al. 2003; Patrick 1997) but has also been observed
in some tissues of developing flowers (Werner et al. 2011). How-
ever, more research is needed to understand whether the form
of sugar unloaded in the fruit (e.g. sucrose, sugar alcohols and
stachyose, which are tied to different loading strategies) has im-
portant implications for fruit development.
By combining our knowledge of flowers and fruit, a model

emerges of highly regulated changes in phloem and xylem
functioning, coordinatedwith each stage of reproductive devel-
opment. The phloem contribution to hydration is expected to
increase with decreasing phloem sap concentration, organ tran-
spiration and fresh weight growth, and with increasing carbon
requirements for nectar or storage. However, more research
is needed to determine whether the balance between the two
vascular tissues differs between species, environments and
functional groups and whether hydraulic isolation in reproduc-
tive organs is favoured in warmer and drier environments or in
taxa that accumulate high levels of osmotically active solutes in
their petals or ovaries. Just as changes in xylem functioning
have had a major role in the evolution of terrestrial plants
(Boyce et al. 2009; Sperry 2003), the properties of the phloem
may have constrained angiosperm reproductive evolution in
ways that we have only just begun to understand.

CARBON FLUXES IN PLANTS AND ECOSYSTEMS

Models of carbon allocation in trees and carbon cycling in eco-
systems require information about the rate and size of carbon
fluxes that occur in plants. Although several ecosystem (e.g.
Duursma & Medlyn 2012; Friend 1995; Mackay et al. 2012;
Ogée et al. 2003) and global scale vegetation models (e.g.
Bonan et al. 2014; Hickler et al. 2006; Xu et al. 2012) consider
the xylem on a mechanistic basis and model the entire soil–
plant–atmosphere continuum, these same models rely on

empirical carbon transfer or partitioning schemes to under-
stand carbon fluxes. A more mechanistic understanding of
how canopy photosynthesis and transpiration fluxes are
coupled towater and carbon use (including plant and soil respi-
ration and phloem transport) and the factors that control
changes in carbon allocation within plants would make it easier
to model the rates of ecosystem carbon and water exchange
and examine how sensitive surface fluxes will be to environ-
mental forcing (McDowell et al. 2013; Migliavacca et al. 2011).

What assumptions are made about phloem
transport in tree carbon budgets?

An annual carbon budget for a tree was first calculated, with
limited compartment partitioning, by Tranquillini (1979) and
by Ågren et al. (1980) using a mass balance approach.
Although this type of analysis does not explicitly deal with
the phloem, its estimates of carbon flux are based on assump-
tions about phloem transport. A realistic tree carbon balance
needs to account for the dynamic nature of phloem transport
andmove beyond a simple ‘black box’ understanding of carbon
flux (‘black box’ versus a new carbon allocation model; Fig. 4).
Here, we highlight two critical aspects of phloem transport that
have important implications for whole plant carbon balances:
the variety of carbon sources that exist in the plant and the pos-
sibility of flow in multiple directions (not exclusively from the
leaves to the roots).

Carbon supply via photosynthesis is sensitive to multiple
factors such as light, temperature and tissue hydration, and
hence, the availability of fresh assimilates for various plant
processes is often interrupted. Carbon reserves, mainly in
the form of non-structural carbohydrates (NSC), have been
long recognized as a major tool used by plants to bridge car-
bon supply interruptions (Hoch et al., 2003, Richards &
Caldwell, 1985, Schnyder, 1993). For example, deciduous
trees in temperate forests shed their leaves before the dor-
mant season, during which carbon reserves are the sole source
for a ‘baseline’ maintenance respiration. The role of NSC as a
carbon source further increases towards spring, when new
growth takes place before leaves are fully expanded and ac-
tive. Similarly, tree species in Mediterranean and semi-arid
forests are compelled to close their stomata during a long
dry season and hence must rely on NSC as a carbon source
(Hoch et al., 2003, Schadel et al., 2009).

An estimate of carbon allocation partitioning that considers
NSC as a potential carbon source was recently calculated for
mature pines (Pinus halepensis Miller) growing in a semi-arid
forest (Klein & Hoch, 2015). In those trees, the seasonal dy-
namics in whole-tree starch content were dominated by large
fluctuations in the stem and root starch pools. More than half
of each of these pools was degraded and consumed during
the transition from wet to dry season, indicating the important
role of starch as a carbon source for plant activities outside
leaves. When expressing the NSC as pool sizes and accounting
for the total foliage biomass compared with that of the woody
compartments (aboveground and belowground), it becomes
clear that non-leaf tissues play a major role in post-
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photosynthetic carbon supply. These results reinforce that fact
that carbon loading into the phloem can take place at multiple
sites along the transport pathway, depending on the availability
of mobile carbon in adjacent cells.

Tree carbon balances also need to consider that the direction
of phloem transport can change depending on source and sink
activity. This can be seen in the aforementioned study on pines,
where Klein & Hoch (2015) demonstrated that there were two
relocation flows: carbon transport from roots to the stem and
from the stem to the leaves (Fig. 4). These flows were relatively
minor in size (ca. 5% of the maximum wet season transport
flux) and restricted to the drought months of July and August.
The potential carbon relocation to the leaves in July correlated
with aminimum in the foliage starch pool, while the stem starch
pool was also close to its lowest level. This stem to foliage relo-
cation suggests some low threshold level at which local starch
hydrolysis stops and carbon must be imported into leaves, in
agreement with Hoch (2005). Root to stem relocation might
suggest that carbon transport within the tree is governed by
sink activities rather than supply level, as discussed in earlier
studies (Farrar & Jones 2000).

Despite growing interest in understanding patterns of car-
bon allocation within plants, relatively few studies have
attempted to make a direct connection between carbon alloca-
tion and phloem transport (but see Nikinmaa et al. 2013;
Schiestl-Aalto et al. 2015; Woodruff & Meinzer 2011). How-
ever, our view of carbon allocation might change as we learn
more about phloem physiology, the significant role of NSC as
an intrinsic carbon source, the major role of respiration among
the different carbon sinks, the possibility of multi-directional
carbon flows and the existence of other carbon transport sys-
tems, for example, via the ray and axial parenchymas or the

xylem (Améglio et al. 2002; Sauter 1982; Schill et al. 1996). Fu-
ture experiments considering the dynamic nature of phloem
transport will allow us to better understand to what extent relo-
cation flows can change (e.g. increase under environmental
stress), whether such carbon management changes offer any
advantage to tree fitness and drought resistance, and the impli-
cations of carbon storage to forest ecology, biomass production
and ecosystem function.

How do tall trees transport carbon?

Many aspects of ecosystem function, plant growth and produc-
tivity are influenced by plant size including carbon storage, can-
opy transpiration and plant water usage (e.g. Falster et al. 2011;
Feldpausch et al. 2012; McDowell et al. 2011). As a plant grows,
it can gain better access to water and light by increasing the
footprint of its canopy and root system, but it also has to invest
more resources in structural and supportive tissues. At the
same time, it experiences more negative water potentials,
lower hydraulic conductivity and lower stomatal conductance
in its canopy. These and other observations have led to many
hypotheses about what limits plant height from hydraulics to
the growth of non-photosynthetic tissue (e.g. Givnish 1995;
Givnish et al. 2014; King 1991; Ryan et al. 2006; Ryan & Yoder
1997) and to research on the impact of plant height on vascular
transport (e.g. McCulloh et al. 2003; Mencuccini 2002; West
et al. 1999). However, until recently, most of the research
concerning height-related constraints on transport has focused
on the xylem despite the important implications of plant height
on both parts of the vascular system.

Earlier modelling by Tyree et al. (1974) concluded that trans-
port in sieve tubes as long as 50m was possible in angiosperms,
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Figure 4. Carbon fluxes in a tree depicted by a simple ‘black box model’ and one with partitioning among internal carbon pools and their individual
fluxes. Partitionedmodel shows changes that occur between the growing season and non-growing season in terms of the direction of phloem transport
and predominant sources and sinks in the system. This model is based on data presented in Klein & Hoch (2015). Gaseous fluxes are noted by open
arrows. Non-structural carbohydrates in the form of sugars and starch found in the leaves, trunk and roots are noted as NSC.
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provided that sieve tube conductivity increased relative to
values in shorter tubes and that sap velocity decreased closer
to the sink, as a result of sucrose unloading and consumption
along the transport path. The main effect of increasing sieve
tube conductivity in longer tubes (i.e. taller trees) was to de-
crease the pressure and concentration gradients required to sus-
tain vertical flow, which in turn required relatively high sucrose
concentrations. More recently, Thompson & Holbrook (2003)
relaxed several assumptions of earlier models and coupled
phloem transport to changes in water potential of the surround-
ing tissue. They showed that under many conditions, water po-
tential equilibrium between xylem and phloem was satisfied,
and carbon transport could occur from sources to sinks in an os-
motically regulated fashion (see section on Carbon–Water In-
teractions). However, in this model, the behaviour of the sieve
tube is strongly dependent on tube radius and length, such that
in a very long tube (tens of metres) significant declines in
phloem turgor are predicted to occur, potentially impairing car-
bohydrate transfer in tall trees (Thompson 2006).
How do plants cope with the challenge of long-distance trans-

port in the phloem? The system modelled by Thompson &
Holbrook (2003) is that of a single untapered and unbranched
tube with sieve plates and a semi-permeable membrane. How-
ever, similar to the situation for the xylem (e.g. Tyree & Ewers
1991), the conductivity of a single pipe is only one of a number
of factors affecting the efficiency of hydraulic transport at the or-
ganismal scale. While we still do not have a clear understanding
of the relative contribution of all the possible components, one
can speculate that many factors influence carbon transfer effi-
ciency and reduce resistance along the transport pathway. Some
of these factors include the progressive widening of sieve ele-
ment diameters, the lengthening of sieve elements, which
will increase the mean distance between sieve plates, the de-
crease in conduit frequency and density and the decrease in
phloem area relative to xylem area towards the base of the plant
(e.g. Hölttä et al. 2009; Jyske & Hölttä 2015; Mencuccini et al.
2011; Petit & Crivellaro 2014; Woodruff 2014). Additionally,
the ratio of total phloem conducting area to the leaf area of
the plant will affect whole plant sugar loading and plant water
potential (Hölttä et al. 2009; Mencuccini et al. 2011).
The effects of gravity on axial phloem transport and on the

scaling of phloem anatomy with plant size have generally not
been considered carefully in tall plants despite the analytical
solutions that exist for both xylem and phloem transport
(Jensen et al. 2011; McCulloh & Sperry 2005; West et al. 1999)
and the more complex simulation models of allometric scaling
based on optimality principles (e.g. reviewed by Mencuccini
et al. 2011). Gravity can impact phloem transport in two very
different ways, that is, (1) by affecting turgor at the top of tall
plants (and therefore the realized cell size as a consequence
of the effects of turgor on cell growth) and (2) as an additional
force that affects the movement of a solution along a vertical
axis. Effect (1) impacts the scaling of both xylem and phloem
conductance as a consequence of parallel changes in apical cell
diameters. Effect (2) hinders the upward pull in the xylem and
phloem but helps transport of carbon towards the roots.
While much progress has been made in elucidating mecha-

nisms of phloem loading and unloading, questions about the

physical organization of this vertical superhighway, and the sig-
nificance of plant height for phloem transport, have not been
explored thoroughly. We still lack a sound understanding of
how environmental factors affect these anatomical and mor-
phological traits, how this set of characters relates and trades
off against other sets of plant traits and how these strategies
combine and vary across evolutionary lineages to affect carbon
transfer at the ecosystem scale.

How does phloem physiology influence the rate of
carbon transfer to the soil?

Plant carbon use has large scale implications for ecosystem
function because of the role that plants serve in carbon seques-
tration (Barford et al. 2001), their role in food webs (Elser et al.
2000) and their influence on belowground respiration through
root metabolism, interactions with soil microbiota and produc-
tion of litter (Fig. 1, Cornwell et al. 2008; Högberg et al. 2001;
Jones et al. 2009). Plants transfer carbon belowground by two
pathways, that is, via the detritus formed by leaf and root litter
and bymass transport in the phloem (see next section on Biotic
Interactions). The detritus feeds heterotrophic organisms (pre-
dominantly fungi and bacteria) and is therefore primarily re-
sponsible for the dynamics of carbon stocks present in soils
and litter layers (e.g. Malhi et al. 1999). Typically, the timescale
for the production of this detritus is in the order of years to de-
cades. Conversely, carbon transfer by the plant phloem, which
is primarily employed to sustain root growth, carbohydrate
storage and ‘autotrophic’ respiration belowground, occurs over
shorter timescales (cf., Högberg & Read 2006; Janssens et al.
2001) and may change more rapidly in response to environ-
mental conditions.

Continuous measurements of soil CO2 efflux and vertical
soil CO2 profiles, coupled with measurements of canopy pho-
tosynthesis by eddy covariance, have allowed the exploration
of the diel and seasonal dynamics of the links between carbo-
hydrate production and consumption by autotrophic and
heterotrophic respiration in the field (reviewed by Vargas
et al. 2011b). For example, Vargas et al. (2010) showed that
the timing of soil CO2 production was temporally coherent
with changes in soil temperature and photosynthetically active
radiation (used as an indicator of photosynthesis). In a second
study, they found a significant temporal synchrony between
canopy photosynthesis and soil CO2 efflux at a 1 d timescale
or longer, suggesting that these two fluxes were closely
coupled and that there is very fast transmission of information
about the state of the canopy to the root–soil system (Vargas
et al. 2011a). This evidence suggests that phloem transfer of
carbohydrates belowground is directly linked to canopy pho-
tosynthesis, and it is sufficiently fast that diurnal and seasonal
changes in weather conditions, which impact ecosystem-scale
photosynthesis, are quickly perceived as changes in ecosystem
respiration, thereby creating a feedback with the carbon bal-
ance of the site.

Another approach used to determine the significance of
phloem transfer to carbon cycling has been to curtail this trans-
fer directly, either by root trenching (cf., Hanson et al. 2000),
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phloem girdling (cf., Andersen et al. 2005; Bhupinderpal-Singh
et al. 2003; Binkley et al. 2006; Högberg et al. 2001; Scott-Denton
et al. 2006; Subke et al. 2004) or transient bark chilling (Johnson
et al. 2002). However, most of the information on the variables
controlling the transfer of carbohydrates belowground at sea-
sonal to multi-year timescales has been obtained using isotopic
techniques (for reviews, see Kayler et al. 2010; Kuzyakov &
Gavrichkova 2010; Mencuccini & Hölttä 2010a; Mencuccini &
Hölttä 2010b). These approaches have been advanced consider-
ably by the use of new technologies such as fast-response laser
absorption spectrometry and cavity ring-down spectroscopy.
Using the latter approach, Dannoura et al. (2011) found differ-
ences among species in their isotopically determined velocities,
which were found to depend on the mean air temperature for
24hours following labelling. In general, isotopic studies have
found lags of around 1 to 5d or longer for the times taken by
the isotope peaks to appear as either stem or soil CO2 efflux,
with the lag dependent on plant height following a power law re-
lationship (Mencuccini & Hölttä 2010b). The shape of this rela-
tionship is consistent with the occurrence of a reasonably
constant phloem turgor gradient across species spanning 50m
of height range, with a positive scaling of mean phloem specific
conductivity with plant height (see section on How Do Tall
Trees Transport Carbon?). This means that both the transport
rate of the phloem and the architecture of trees could have im-
portant implications for carbon cycling.

At longer timescales (seasonal to multi-annual), the task of
determining the ecological significance of phloem transport is
made easier by recognizing that a different set of constraints
can be imposed on the problem. In general, the rate of carbo-
hydrate flux must be equivalent to canopy photosynthetic flux,
the net of the fluxes going into and coming out of intermediate
storage pools and sinks present along the transport pathway
(see section on What Assumptions Are Made About Phloem
Transport in Tree Carbon Budgets?). This inventory approach
can also be extended to incorporate the carbon fluxes to the
soil. Giardina&Ryan (2002) devised a simplemass balance ap-
proach based on a water tub analogy to work out the total be-
lowground carbon allocation (TBCA) from measurements of
aboveground fluxes of detritus, changes in pool sizes below-
ground and gaseous (CO2) and liquid (dissolved inorganic
and organic carbon) losses by the soil. Using this method over
typical intervals of one to several years, one arrives at reason-
able estimates of phloem fluxes belowground. This approach
is useful for comparisons carried out at yearly to decadal time-
scales to investigate responses to ecological processes such as
nutrient availability, inter-plant competition or stand develop-
ment. One significant finding of this and similar studies is that
TBCA can be a large fraction of gross photosynthesis (up to
60%) and that it can change dramatically as a function of tree
size and stand development (Giardina & Ryan 2002; Zerva
et al. 2005). For example, Giardina et al. (2014) looked at a ver-
tical elevation gradient in a tropical montane wet forest and
found that stands at lower elevations (higher mean tempera-
tures) circulated carbon belowground faster, both as above-
ground detritus and as TBCAvia phloem transfer.

Accurate models of belowground carbon transfer rely on a
clear mechanistic understanding of the extent that phloem

transport dominates carbon flux into the soil and how coupled
carbon transport is to changes in environmental conditions.
However, at larger spatio-temporal scales, some of the pro-
cesses and trade-offs that relate to the short-term dynamics of
phloem loading, transport and unloading lose their relevance,
while others continue to maintain their significance. A more
thorough understanding of phloem physiological ecology will
help identify which traits should be explored in more detail to
evaluate their long-term ecosystem-scale significance.

BIOTIC INTERACTIONS

Where and when plants allocate carbon to different organs can
influence their interactions with other organisms (e.g. Elzinga
et al. 2007; Tiffin 2000), but the role of carbon transport in me-
diating biotic interactions involves more than structural invest-
ment. Many carbon-rich compounds from nectar to secondary
compounds help plants attract beneficial and deter detrimental
organisms (Bekaert et al. 2012; De la Barrera & Nobel 2004;
Gershenzon 1994; Pichersky & Gershenzon 2002). Some of
these compounds are transported in the phloem, while others
are made from nutrients or their production is regulated by sig-
nals delivered by this vascular tissue (Heil & Ton 2008;
Turgeon & Wolf 2009). In fact, approximately 40% of the net
carbon fixed by plants is transported in the phloem to roots
(Jones et al. 2009) where a large portion is exuded into the soil
and supports many soil organisms (Hartmann et al. 2009). In
this section, we discuss how the phloem influences plant inter-
actions with a few important components of their biotic envi-
ronment: pests, pathogens and soil microorganisms.

How does phloem physiology shape plant–pest
interactions?

Plants live under a continuous threat from insects, herbivores
and pathogens and have evolved mechanisms to minimize the
negative impact of these organisms, including the development
of physical and chemical defenses (Futuyma &Agrawal 2009).
Because these defenses require energy and resources for their
production, maintenance and, in the case of some compounds,
their transport (Bekaert et al. 2012; Gershenzon 1994), many
researchers have proposed that investing in defense can come
at the expense of other types of growth (Bazzaz 1987; Coley
et al. 1985; Herms & Mattson 1992). This ‘cost’ is the basis of
multiple plant defense theories that are used to explain the di-
versification of secondary metabolites and the relationship be-
tween fitness, defense and resource availability (for review, see
Stamp 2003). However, when defense is considered in the con-
text of phloem transport (Fig. 1), the situation becomes more
complicated because of constraints that vascular architecture
and source–sink relationships place on plant defense responses
(Arnold et al. 2004; Honkanen et al. 1999; Jones et al. 1993;
Larson & Whitham 1991; Orians 2005; Schultz et al. 2013).

The phloem is responsible for transporting many secondary
metabolites, including alkaloids, flavonoids and glucosinolates,
along with resources and informational signals required for the
biosynthesis of these and other defense compounds (for
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reviews, see Heil & Ton 2008; Turgeon & Wolf 2009). In the
case of constitutive defenses, those which are not activated by
wounding or infection, the phloem primarily serves as a trans-
port system for establishing pools of secondary metabolites.
However, in the case of inducible defenses, source–sink rela-
tionships can determine the intensity and location of a defense
response (for reviews, see Orians 2005; Schultz et al. 2013).
Wounded and infected tissues often receive an influx of carbon
from the phloem, a response that appears stimulated by enzy-
matic breakdown of sugars (Arnold & Schultz 2002; Berger
et al. 2007; Rosenkranz et al. 2001; Zhang et al. 1996) and/or
changes in sucrose transporter activity (Meyer et al. 2004). This
response can be triggered by herbivory, infection and plant de-
fense elicitors, including jasmonic acid (Arnold & Schultz 2002;
Walters&McRoberts 2006) and can be linkedwith the produc-
tion of phenolics in leaves, including condensed tannins (Ar-
nold et al. 2004; Ferrieri et al. 2012). Because the induction of
these defenses is tied to phloem transport, young leaves that
are active sinks accumulate higher levels of phenolics than ad-
jacent sources leaves (Appel et al. 2012; Arnold et al. 2004), and
root herbivory can induce a defense response in both above-
ground and belowground sinks (Kaplan et al. 2008).
Plants employ many strategies to resist pests in addition to

chemical defenses, some of which are tied to whole plant shifts
in resource allocation (Tiffin 2000). For example, many species
exhibit compensatory growth in response to herbivory, that is,
faster growth, higher rates of photosynthesis in unattacked
leaves and/or dormant meristem activation (Lebon et al. 2014;
McNaughton 1983; Nowak & Caldwell 1984). Research also
suggests that some plants may increase carbon and nitrogen
transport into their roots in response to aboveground herbiv-
ory, a process often referred to as ‘sequestering’ or ‘bunkering’
that relies directly on phloem transport (Babst et al. 2005;
Gómez et al. 2010; Holland et al. 1996; Schwachtje et al.
2006). This response could be advantageous if stored resources
aid in refoliation and resprouting (Orians et al. 2011). Consider-
ing the challenges that exist in comparing different defense and
tolerance strategies, it is not surprising that there is debate
about whether changes in carbon allocation are always adap-
tive (Tiffin 2000). Regardless of this point, research on growth
responses to herbivory demonstrates the extent that source and
sink relationships in plants can be altered by pests.
The majority of pests that attack plants do not directly inter-

act with the phloem, but there are three important exceptions:
phloem-feeders (e.g. aphids, leafhoppers and whiteflies), para-
sitic plants (e.g. Cuscuta L.) and phloem-mobile pathogens.
Central to the success of phloem feeders is their ability to insert
their stylets into living sieve elements without triggering a
wound response in the penetrated cell. Some have argued that
this is a result of calcium binding proteins in their watery saliva
(Will et al. 2009; Will & van Bel 2006), but the evidence for this
is still under debate (Knoblauch et al. 2014). Once these insects
have established a connection with their host, they begin to
consume phloem sap and can readily transfer phloem-mobile
diseases. Diseases can also be transferred by parasitic plants
that establish symplastic connections with their host’s phloem
(Birschwilks et al. 2006). Because phloem-feeders and parasitic
plants create phloem sinks (Peel & Ho 1970), their access to

resources is influenced by vascular connectivity and the pres-
ence of other pest-based and plant-based sinks. For example,
Larson & Whitham (1991, 1997) showed that galling aphids
are less successful at establishing near flowers, which are strong
carbon sinks, and on plants with a lower source-to-sink ratio
(e.g. lower ratio of stem volume to buds). There is also evi-
dence that adjacent galls can either have negative or positive
effects on each other depending on the carbon requirements
of each structure and their arrangement on a leaf (Heard&Bu-
chanan 1998; Inbar et al. 1995).

There is growing evidence that plant community assembly
and larger patterns of diversity are impacted by herbivores
and pathogens (Connell 1971; Fine et al. 2004; Janzen 1970;
Webb et al. 2006). However, the literature on plant–pest inter-
actions and defense trade-offs is full of conflicting observations,
both in terms of where carbon moves in response to wounding
and whether there are ‘costs’ associated with different defense
responses. Critical to sorting out these discrepancies is research
examining source–sink relationships and vascular architecture,
whichwill help us understand the costs to and constraints of dif-
ferent defense strategies (Appel et al. 2012; Kaplan & Denno
2007; Schultz et al. 2013). This type of research will inform
our understanding of plant defense and the role of phloem
physiology in mediating different aspects of plant–pest
interactions.

What is the phloem’s role in rhizosphere
interactions?

Belowground ecological processes are critical to all stages of
the lives of plants. Many of these processes, including root in-
teractions with soils and soil biota, are controlled or influenced
by photosynthates transported to root tissues. When analysed
in terms of carbon products, rhizodeposition, the releasing of
organic compounds by roots into the soil, may account for
30–90% of root carbon allocation (Nguyen 2003; Whipps
1990). This occurs by different mechanisms, such as releasing
mucilage, exudates, secretions and border cells, through cell
death (senescence) and by direct carbon flow to mycorrhizal
and bacterial mutualists (Jones et al. 2009). Rhizodeposition
also elicits changes in soil organic matter decomposition, an ef-
fect known as rhizosphere priming, which is highly influential in
soil carbon dynamics and affects the supply of nutrients to
plants (Dijkstra et al. 2013) along with stimulating growth in
the rhizosphere (Meier et al. 2013). With such large quantities
of carbon being allocated to plant roots and the strong links
that exist between plant phenology, changes in carbon alloca-
tion and soil respiration (Cardon et al. 2002; Davidson &
Holbrook 2009), the role of phloem in root carbon dynamics
cannot be understated (Fig. 1).

The rhizosphere is inhabited by large populations of bacteria
and fungi that form a broad array of associations with plants,
from mutualistic to pathogenic. These organisms typically rely
on plants for carbon and other resources, which they access
using different methods. For example, some organisms directly
modify plant phloem, including rhizobacteria that produce hor-
mones such as auxins and cytokinins (Costacurta &
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Vanderleyden 1995), which are critical in controlling root vas-
cular patterning, or enzymes that decrease ethylene production
leading to higher fluxes of nutrients and carbon to the roots
(Jiang et al. 2012). In contrast, nematodes cause the formation
of new cells (feeding cells) adjacent to phloem and which are
highly vascularized subsequent to formation (Absmanner
et al. 2013). In the case of cyst nematodes, these feeding cells
are symplastically connected to adjacent sieve elements and
companion cells by plasmodesmata (Absmanner et al. 2013;
Bartlem et al. 2013).

Awide range of interactions also occur between mutualistic
bacteria and mycorrhizal fungi, and their plant hosts. These
symbiotes rely on plants for carbohydrates and protection,
and in exchange, they enhance plant nutrient acquisition or,
in the case of nitrogen-fixing bacteria (rhizobia), provide bio-
logically available nitrogen to the host. With mycorrhizal asso-
ciations, the fungi do not access carbon by directly tapping into
the phloem; instead, the hyphae either extend into cortical cells
or are confined to the root epidermis, as observed in arbuscular
mycorrhizae and ectomycorrhizal and ericoid hyphae, respec-
tively (Peterson &Massicotte 2004). While there has been sig-
nificant research into how plants modify their cells and
membranes to accommodate and exchange resources with hy-
phae, it remains unclear if fungi impact plant vasculature and
phloem unloading.

In the case of rhizobia, carbon is transferred to the symbiotes
from the phloem through transfer cells and companion cells in
the nodule that symplastically connect sieve elements to in-
fected tissues (Joshi et al. 1993; Peiter & Schubert 2003). Be-
cause the phloem helps hydrate nodules, it has been
hypothesized that changes in phloem turgor may impact nod-
ule gas permeability and thus provide a mechanism for plants
to limit resource delivery to rhizobia during periods of drought
(Walsh 1990; Walsh 1995). Other work suggests that feedback
mechanisms may lower nodule activity when water limits nitro-
gen export (Serraj et al. 1999) or that phloem-mobile signals
regulate these processes (Parsons et al. 1993; Sulieman &
Schulze 2010; Sulieman & Tran 2013), but the exact nature of
these feedbacks remains unresolved.

Soil microbes and organisms interact with plants both di-
rectly by modifying phloem structure and function, as de-
scribed earlier, and also indirectly through other organisms
that rely on the same hosts. For example, rhizobacteria can in-
fluence phloem-feeding insect performance on the same plant
(Shavit et al. 2013), and phloem feeding insects can attract
rhizobacteria to plant roots (Lee et al. 2013). Recent work also
demonstrates that soil microbes and symbiotes like rhizobia
can influence organisms aboveground by reducing extrafloral
nectary production (Godschalx et al. 2014). Connections like
these demonstrate that the phloem could have a role in facili-
tating communication and resource competition between
aboveground and belowground organisms (Griffiths et al.
2007).

The phloemmediates bidirectional interactions between soil
biota and plants: soil organisms impact carbon allocation by
changing plant vascular structure and acting as sinks, and plant
rhizodeposition exhibits a large degree of control over rhizo-
spheremicrobial populations. Both of these processes can have

downstream effects on food webs (Way 1963) and carbon cy-
cling (see previous section onCarbon Fluxes in Plants andEco-
systems). Despite the importance of phloem in these and other
belowground processes, fundamental knowledge gaps in areas
such as signalling and the control of apoplastic versus
symplastic flow in plant-organism symbioses will keep the
mechanisms behind these processes in a black box until their
secrets are revealed.

PHLOEM LOADING, A CASE STUDY: WHAT
PHYSIOLOGISTS CAN LEARN BY THINKING
ABOUT ECOLOGY

In this review, we have discussed the importance of considering
phloem transport when studying plant physiological ecology,
but research on phloem physiology can also benefit from exam-
ining differences in plant function in the context of evolution.
This type of research can help us consider the costs and benefits
of different physiological strategies, a point that is well demon-
strated by recent work considering the ecological implications
of phloem loading type in angiosperms.

In the source tissue, carbon is loaded into the phloem by one
or a combination of three mechanisms (Fig. 5). In passive load-
ing, sucrose migrates symplastically from mesophyll cells to

BS/PP CC SEM

Polymer trapping

BS/PP CC SEBS IC SEBS/PPM CC

BS

Polymer trapping

BS/PP CC SEBS IC SEBS/PPM CCIC SESE

Figure 5. (a) Passive, (b) polymer trap and (c) apoplastic phloem
loading mechanisms. In (a), sucrose (pink) passes through
plasmodesmata (arrows) from mesophyll cells (M) to bundle sheath
cells (BS) and into companion cells (CC) and sieve elements (SE)
down its concentration gradient. In (b), sucrose is converted to
raffinose and stachyose (blue) in intermediary cells (IC). In (c),
sucrose is loaded into CC and/or SE by sucrose-H+ co-transporters
(blue star). Plasmodesmata at the BS-CC interface in apoplastic
loaders are present but may be too narrow for sucrose passage.
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sieve tubes down a concentration gradient (Reidel et al. 2009;
Rennie & Turgeon 2009; Turgeon & Medville 1998; Zhang
et al. 2014).A less common symplasticmechanism involves syn-
thesis of raffinose and stachyose in specialized companion cells
(intermediary cells) and is termed polymer trapping because it
‘traps’ sugar in the phloem on the basis of molecular size
(Dölger et al. 2014; Zhang et al. 2014). The third mechanism,
apoplastic loading, was the first to be discovered (Geiger et al.
1971) and is the most common strategy in crop plants.
Apoplastic loading involves efflux of sucrose into the cell wall
space and subsequent active uptake into the phloem by
symport with protons (Braun et al. 2014).
It is currently believed that gymnosperms load passively

(Liesche et al. 2011) and that passive phloem loading is ances-
tral in angiosperms (Turgeon et al. 2001). Passive loading is,
with few exceptions, used primarily by trees (Rennie &
Turgeon 2009), and active loading is more common in herbs
and a restricted number of woody species. Recent work sug-
gests that trees may not require an active loading step because
they often maintain high concentrations of leaf sugars to offset
low whole -plant hydraulic conductance in the xylem (Fu et al.
2011). The elevated sugar content in the leaves apparently pro-
vides enough foliar sucrose to drive phloem transport by
Münch pressure flow and removes the need for thermodynam-
ically active loading. It has also been suggested that loading
strategies are correlated with climate (Gamalei 1989), but this
appears to be due to the virtual absence of trees, and therefore,
passive loading, in very cold climates, and is not a direct effect
of temperature on loading (Davidson et al. 2011).
Given the almost complete absence of passive loading in

herbs and the fact that active loading is an evolutionarily de-
rived trait, what are the advantages of active loading? It is dif-
ficult to argue that energymust be expended in the loading step
to drive long-distance transport efficiently because many trees,
with much longer transport distances than herbs, seem to do
without it (Turgeon 2010b). Even so, high solute concentration
in the phloem, and the elevated hydrostatic pressure it gener-
ates, could be advantageous for other reasons, including coor-
dinated regulation of loading and unloading at distant sites
(Fisher 2000; Patrick 2013), wound healing (Knoblauch &
Mullendore 2012), discouraging phloem feeders, which cannot
tolerate high osmotic potentials (Turgeon 2010a) and optimiz-
ing viscosity for transport (Jensen et al. 2013). Another advan-
tage is that active loading allows the plant to reduce overall
sucrose levels in leaves and still generate the phloem pressure
needed to drive long-distance transport (Turgeon 2010b). Re-
ducing sucrose inventory frees up carbohydrates, which are
needed to foster growth of new leaves. Following the com-
pound interest law, the more efficiently new leaves are pro-
duced, the faster the overall relative growth rate of the plant.
As a result, it is possible that phloem loading explains part of
the variation observed in the leaf economic spectrum and has
larger implications for plant growth strategies and species dis-
tributions (Reich 2014; Wright et al. 2004).
Although this could help explain the widespread adoption

by active loading in herbs, it does not explain why some species
accomplish this by polymer trapping while others load through
the apoplast. One explanation for the evolution of polymer

trapping could be that it allows other important compound(s)
besides sucrose to enter the phloem symplastically. For exam-
ple, in certain families that load by polymer trapping, iridoid
glycosides, anti-microbial and anti-herbivore compounds are
phloemmobile and are approximately the samemolecular size
as sucrose (Gowan et al. 1995; Lohaus & Schwerdtfeger 2014;
Turgeon & Medville 2004; Voitsekhovskaja et al. 2009).

The concept of symplastic loading in general has been criti-
cized on the grounds that a continuous plasmodesmatal path-
way would allow ions and small molecules to enter the
phloem from the mesophyll non-selectively (Lucas et al.
2013). However, selectivity is not as fundamental a property
of phloem transport as is often assumed. Sieve tubes transport
a wide range of ions and compounds in concentrations similar
to those of other plant cells (Winter et al. 1992). Indeed, ions
and small molecules continuously leak into the sieve tubes
through the plasmodesmata that connect companion cells to
their adjacent sieve tubes. Another limitation imposed by poly-
mer trapping and passive loading is that up-regulation of load-
ing capacity requires the placement of additional
plasmodesmata, which does not occur in mature leaves, thus
restricting the response to increased light availability (Amiard
et al. 2005). Instead, these plants acclimate to high light by
growing new leaves with higher vein densities.

Understanding the adaptive advantages and disadvantages
conferred by different loading mechanisms will shed light on
the complex role that phloem transport plays in growth and
plant responses to the biotic and abiotic environments. Be-
cause of the impact of loading type on both the osmotic poten-
tial of leaf mesophyll cells and the form of sugar transported in
the phloem, it could also have important implications for other
aspects of plant physiology ranging from leaf hydraulics to fruit
development (see earlier section on Carbon–Water Interac-
tions) that have yet to be explored. Further research testing
the hypotheses laid out in this section will help us better under-
stand the complex evolutionary processes that have shaped the
diversification of phloem loading and other aspects of phloem
physiology.

CONCLUSIONS AND FUTURE DIRECTIONS

As the primary delivery system for carbon inside the plant, the
phloem serves a critical role in mediating shifts in carbon allo-
cation and growth that influence how plants interact with the
environment and how they impact local food webs and carbon
cycling (Fig. 1). However, this is only one of themanyways that
phloem physiology influences plant ecology. Because of its
tight hydraulic connection with the xylem, the phloem can in-
fluence drought tolerance and reproduction in ways we are
only starting to understand. However, despite the often central
role the phloem plays in many plant–environment interactions,
there is limited research considering its role in plant physiolog-
ical ecology.

In this review, we highlight research that integrates phloem
physiology and plant ecology by focusing on carbon–water in-
teractions, carbon fluxes in plants and ecosystems, and biotic
interactions. The material presented is by no means compre-
hensive, and there are many other ecologically important
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aspects of plant physiology that could be influenced by the
phloem including phenological changes that occur in response
to phloem-mobile signals (Haywood et al. 2005; Turck et al.
2008; Turnbull 2011), production of isoprene and other organic
volatile compounds (Kerstiens & Possell 2001; Logan et al.
2000) and the transport of nitrogen and amino acids (Tegeder
2014). However, the goal of this review is not to address all of
the pertinent literature but to draw attention to the critical na-
ture of research that lies at the interface between phloem phys-
iology and ecology. Going forward, it is crucial that we increase
our understanding of phloem function and develop a robust
framework for considering the ecological and evolutionary im-
plications of phloem physiology. To achieve these goals, there
are four critical areas of research that we believe need to be
pursued in the future.

1 Trade-offs in the phloem – A central pursuit of physiological
ecology is to understand the costs and benefits of different
physiological strategies and determine how trade-offs impact
plant performance. Unfortunately, many of the trade-offs
that influence phloem structure and function are poorly un-
derstood. For example, a high level of symplastic continuity
in the leaf is considered advantageous because it would min-
imize the need to actively transport secondary compounds
and informational signals across membranes. However, as
pointed out earlier, many species use active loading mecha-
nisms (Turgeon 2010b). Is there a trade-off between fast
growth strategies associated with active loading and efficient
long-distance communication?Within a flower, there is varia-
tion in how symplastically connected individual organs are
with the phloem (Werner et al. 2011). Are there costs and ben-
efits of these differences? Research aimed at answering these
questions and clarifying the relationship between phloem
structure and function will help advance our understanding
of different physiological strategies and thus provide a more
robust framework for thinking about phloem evolution.

2 Xylem–phloem coupling – There is a large body of work
linking plant hydraulics and xylem function to species distri-
butions and investigating the ecological implications of xy-
lem form and function (e.g. Hacke & Sperry 2001;
Jacobsen et al. 2007; Preston et al. 2006). Less attention has
been paid to phloem, but the structural and physiological con-
nections that exist between these two tissues, some of which
may be governed by critical trade-offs, suggest that it could
be equally influential in defining plant–environment relation-
ships. Interactions between the xylem and phloem are espe-
cially important in sink tissue (e.g. flowers and fruit) where
high osmotic gradients can alter the water balance of these
two tissues (e.g. backflow in the xylem). Further investigation
focusing on the interaction between the two vascular systems
is likely to yield novel insights into the integration of plant
functional properties and their significance for plant ecology
by providing a unique perspective on plant structure and func-
tion that is not found if the two systems are studied separately.

3 Environmental plasticity – Climate change and increasing
levels of CO2 appear to have a significant effect on the
growth and survival of many species (Nemani et al. 2003),
but little research has tried to investigate the impact of these

conditions on phloem transport or vascular architecture.
Considering that phloem integrates changes that happen in
both source and sink tissues, could changes in the phloem
partially explain shifts in carbon allocation that are observed
in CO2 addition experiments? Do plants with different load-
ing types exhibit altered responses to elevated CO2?How do
seasonal changes in the phloem impact plant phenology and
broader sets of traits that impact species distributions? Re-
search on these and related questions will allow us to better
understand phloem plasticity and how it might impact plant
carbon allocation and stress tolerance.

4 Ecosystem scale significance of phloem transport –Do physio-
logical properties of phloem transport have importance at
higher levels of organization, especially in relation to
ecosystem-scale fluxes of carbohydrates and plant–soil inter-
actions? Some authors (Kayler et al. 2010; Kuzyakov &
Gavrichkova 2010) have proposed that phloem transport
may be a bottleneck in the link between photosynthesis and
belowground respiratory fluxes and that the observed
ecosystem–scale relationships between photosynthesis and
respiration are mediated by phloem-dependent traits. To
what degree does the mass flux of sucrose in the phloem vary
as a function of time of day, environmental conditions and
seasonality? Can the changes in phloem physiology alter car-
bon supply and demand at the whole organismal scale? These
questions have implications for understanding and predicting
the controls not only of autotrophic plants but also of the het-
erotrophic organisms that depend on this flux.

The phloem serves as part of an integrative vascular network
that allows plants, asmodular organisms, to respond on a larger
scale to their environment through processes that we are only
beginning to understand (Knoblauch &Oparka 2012; Turgeon
2010a; van Bel 2003). One of the main challenges for physiolo-
gists going forward is to develop methods that will allow us to
better characterize the phloem and facilitate the collection of
data on a larger variety of species. Although this has been a
major limiting factor in the field of phloem physiology in the
past, there have been many promising advances in recent years
(Cayla et al. 2015; Knoblauch et al. 2014;Mullendore et al. 2010;
Savage et al. 2013; Windt 2007). With continued work in this
area, we can open new opportunities to examine the evolution
of phloem anatomy and consider phloem in a more rigorous
ecological and evolutionary framework.
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