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Abstract

Key message Desert Acacia trees photosynthesize during the hot dry summer, and use stored carbon for summer
growth.

Trees that grow in hyper-arid environments can provide important insight into the role of carbon use and carbon storage
for tree survival and growth in extreme conditions. Acacia trees, in particular, experience some of the most arid conditions
in which trees can grow on the planet, enduring high temperatures, high radiation and drought. Here we measured for two
years photosynthesis along the day, stem circumference growth, and seasonal changes in non-structural carbohydrates in
adult Acacia trees in their natural hyper-arid habitat (Arava desert, southern Israel). The peak of net CO, assimilation was
at midday in all seasons, even during summer when vapor pressure deficit was at maximum of 6 kPa and light intensities
were at high levels (1800 umol photons m~2 s!). Tree growth started in the spring and increased in the hot summer season
and during the dry fall season (autumn). Starch concentrations in the branches were highest in the winter and spring (17%
in dry matter) decreasing in the summer and fall (7% in dry matter). Our observations indicated that carbon assimilated
during the winter was stored in the branches as starch reserves, which were later used for tree growth in summer. Still, most
of the growth was subsidized by concurrent assimilation during the dry season. These findings show that Acacia trees are
able to photosynthesize in conditions that other trees cannot, indicating a strong potential to contribute to ecosystem carbon
sequestration in warming and drying climates.
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Introduction

Three major environmental factors limit plant growth and
photosynthesis: light (Barber and Andersson 1992; Gururani
et al. 2015), temperature (Berry and Bjorkman 1980; Slot
and Winter 2017), and water availability (Fan et al. 2017).
Climatic changes are predicted to drive much of the natural
and agricultural habitats globally towards the limits of these
environmental conditions (Christensen et al. 2007). There-
fore, identifying tree species that are able to survive and
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even prosper under these predicted conditions has an eco-
logical and societal value. Hot desert ecosystems are char-
acterized by low availability of water and high temperatures.
Heat combined with drought results in a high vapor pressure
deficit (VPD) in the air, which increases plant water loss
via transpiration (Chaves et al. 2003; Sanginés de Carcer
et al. 2018). In addition, plants in deserts are exposed to
high radiation which results in long periods of photosynthet-
ically active radiation (PAR) exceeding 1300 umol photons
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m~2 57!, alevel that can damage photosynthetic processes

(Treves et al. 2016).

Despite this combined effect of high temperature, high
PAR, and low water availability, there is a tree genus that
populates some of the hottest and driest deserts around the
globe. Acacia' trees are distributed in the Namib desert
(Schulze et al. 1991), the Sahara desert (Essendoubi et al.
2007), the Australian desert (Adams et al. 2016), and the
Arabian deserts (Seleem et al. 2013), where they are con-
sidered keystone species. Recently, in the Israeli desert, two
species of Acacia were found to grow predominantly during
the hot, dry season when environmental conditions are at
their extreme heat and drought (Winters et al. 2018). Tree
growth and other biochemical processes depend mainly on
photosynthetic uptake of CO, (assimilation) from the atmos-
phere (Dickson 1989; Ericsson et al. 1996; Klein et al. 2011,
2016; Klein 2015; Klein and Hoch 2015). However, CO,
assimilation (via opening of the stomata) entails a high cost
of water loss, especially in dry environments. Therefore,
trees have developed the ability to buffer carbon availability
by producing carbon reserves, as non-structural carbohy-
drates (NSC), to be consumed up to months, seasons and
years later. These NSCs (mainly sugars and starch) are the
long-term storage of C, produced by the plant to ensure sur-
vival when CO, assimilation is limited (Wiley and Helliker
2012; Klein and Hoch 2015).

Trees that live in a hyper-arid environment can provide
important insight into the role of carbon use and storage for
tree survival and growth. Therefore, we ask: What are the
environmental conditions (temperature, PAR, and humid-
ity) that control leaf gas exchange and allow Acacia trees to
grow in the hot dry summer? And does Acacia tree growth
depend on direct C inputs from photosynthesis (net CO,
assimilation) or on the usage of C reserves (NSC)? We
performed two years of diurnal measurements of photosyn-
thesis, stem circumference growth, and seasonal measure-
ments of NSC in adult Acacia trees in their natural hyper-
arid habitat. Although other C sinks exist (respiration, fruit
production, etc.), source-storage-growth relationships still
represent intrinsic tree C management. We use this extensive
field dataset to test two hypotheses: (1) CO, assimilation
is constrained during midday and summer, by a combina-
tion of high temperatures, high VPD, and PAR approaching
2000 umol photons m~2 s~!; (2) Carbon reserves accumulate

! The genus (Acacia) was split into two different genera, Vachellia
and Acacia. While the original name (Acacia="thorn" in latin) has
been reserved for the species in Australia (thornless), the new name,
Vachellia, has been reserved for the species in the rest of the world
(with thorns). However, most published studies and researchers con-
tinue to use the old name. We therefore chose to use the old genus
name Acacia.
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in the branches during the wintertime, and these C stores are
used for stem growth during the summer.

Materials and methods
Study species and field site

Trees of the genus Acacia (nowadays separated into Acacia
and Vachellia) consist of about 1,300 species that are distrib-
uted all around the southern hemisphere including the most
arid environments on Earth (Maslin et al. 2003). The species
Acacia tortilis, considered as the most thermophilic Acacia
species (Boulos 1999), has been subdivided into four dis-
tinct subspecies: A. tortilis subsp. tortilis, A. tortilis subsp.
raddiana, A. tortilis subsp. spirocarpa and A. tortilis subsp.
heteracantha (Wickens et al. 1995). The northern limit of
this species is in the Negev and Arava deserts of Israel,
where A. tortilis subsp. tortilis (Forssk.) Hayne (Fig. 1b)
and A. tortilis subsp. raddiana Savi (Fig. 1c), are the two
dominant (and sometimes the only) tree species existing
(Zohary and Orshan 1956; Halevy and Orshan 1972; Ross
1981; Winters et al. 2018). Surrounded by coexisting shrub
species, these Acacias have a true tree form, growing up to
5 m in height, which is the maximum potential tree height
due to hydraulic limitation (Klein et al. 2015). For simplic-
ity, we term here Acacia tortilis tortilis as Acacia tortilis
and A. tortilis raddiana as A. raddiana. There are visible
morphological differences between the two subspecies; A.
raddiana trees have one stem, twice as large smooth leaves,
and larger fruits than A. tortilis trees which have multiple
stems, smaller hairy leaves and smaller hairy fruits. While
the general shape of A.tortilis is of an upside down pyramid
(Fig. 1c), A. raddiana has a round crown (Fig. 1d). There are
also phenological differences in the timing of fruit ripening
which starts earlier in A. raddiana.

This study was conducted in Wadi Sheizaf, a dry sandy
ephemeral streambed in the northern edge of the Arava
Valley, southern Israel (30.721222°N, 35.268366’E; eleva-
tion — 137 m a.s.l.) (Fig. 1a).Climate in the site is hot and
dry; the 30-year average diurnal temperatures of the hottest
and coolest months are 33.2 °C and 14.4 °C, respectively
(Winters et al. 2018). The mean annual precipitation ranges
20-70 mm, and most of the rain events are local and strong,
occurring within a short time and causing flash floods.
Both Acacia subspecies—A. tortilis and A. raddiana—are
distributed along the Sheizaf wadi at distances of 5-20 m
between each other. Circumference of Acacia trees in this
wadi ranged 60—100 cm (in the multi-stemmed A. fortilis
this refers to the thickest stem) (Data not shown). Both
subspecies have close to evergreen leaf canopy, with two
annual flushing events (early March and late October) and
a short shedding period in July (A. raddiana) or August (A.
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Fig. 1 a The Arava valley region (Israel) and the location of the study
site (red square). b Rainfall and atmospheric conditions during the
study period were recorded in Hatzeva meteorological station (7 km

tortilis), however, shedding periods are water dependent, and
can vary between years and drought periods (Winters et al.
2018). We selected five individual trees of each subspecies
for monthly measurements of photosynthesis, stem growth,
and NSC. Monthly measurement campaigns were carried
out for two consecutive years (Jan 2018-2020).

Rate of photosynthesis

To examine seasonal and diurnal patterns of photosynthesis
(via net CO, assimilation), each month we measured leaf
gas exchange and stomatal conductance (g) at three time-
points during the day—morning (one hour after sunrise),
midday (solar noon when the sun reaches its highest position
in the sky), and afternoon (two hours before sunset). At each
daily time-point of each monthly measurement, we pruned
two sun-branches from the south-facing side of the canopy
and immediately transferred them in a controlled closed and
humid box to the measuring system (2-5 min depending
on transfer distance). From the pruned branches from each
tree, we selected four fully developed leaves and measured
their rate of photosynthesis and g, using an Infra-Red Gas
Analyzer (IRGA) photosynthesis system (GFS 3000, WALZ,
Germany). Measurements of leaf net CO, assimilation in
the IRGA chamber simulated open-air conditions (400 ppm
CO,, air temperature, and relative humidity (RH) adjusted

north of the study site). Typical Acacia tortilis tree (¢) and Acacia
raddiana tree (d) in the study site

according to ambient conditions at the time of measure-
ment). Light conditions within the IRGA chamber were
adjusted each time to the natural levels of PAR at the time
of measurement (using the IRGA internal LED Light Source
3041-L LED array providing wavelength of 400700 nm).
The rate of photosynthesis (umol CO, m~2 s~!) was recorded
after 3 min, once gas exchange in the chamber has stabilized.
Leaves were then removed from the IRGA chamber and pho-
tographed with a known scale. Photographs were used to
calculate leaf surface area (cm?) using image J (Rasband
1997). We used the measured surface area of all measured
leaves to standardize the rate of photosynthesis and g, per
unit of leaf area (umol CO, m~2 of measured leaf s™'). We
calculated the maximum g, value (g, .,) for each month
by the average of morning g, whixh was the highest of the
day consistently for the two measured years. Based on this
value (g, h..) We could reveal the percentage of stomatal
closure at noon and afternoon times. For testing the effects
of detaching the leaves we compared the measurements of
detached leaves to measurements of the rate of photosyn-
thesis in-situ in attached leaves, on autumn midday (n=35
attached and detached leaves for each of the two species,
N=20). Although we found slightly higher photosynthetic
rates in attached vs. detached leaves of A. tortilis (6.1+1.8
and 4.6 +1.03 umol m~2 s~!, respectively), this difference
was not statistically significant. Almost no differences were
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found between photosynthetic rates in attached and detached
leaves of A. raddiana (7.0+2.2 and 6.6 +2.8 pmol m=2 s~ !,
respectively). This indicated a negligible effect of leaf
detachment and transfer.

Stem growth

We measured stem circumference continuously with auto-
matic high-resolution radial dendrometers (DRL26, EMS,
Brno, Czech Republic; (Urban et al. 2013)). These den-
drometers measured circumference variations of up to 1 um
resolution and logged hourly data into a built-in data logger.
Dendrometers were installed on five A. fortilis trees and five
A. raddiana trees. Data from dendrometers were used in
two types of analyses: (1) diurnal stem growth (mm day~)
during the given year; for this analysis readings were set to
zero in Jan 2018 and again in Jan 2019; (2) seasonal stem
growth (mm/season). For this, readings were set to zero at
the onset of each season. This was followed by subtracting
the value measured at the end of the season from the first
value of the next season (Fig. 5b). Seasons were defined, for
simplicity, as winter (1st January—31st March); spring (1st
April-30th June); summer (1st July—30th September); and
fall (1st October—31st December) (2018 and 2019).

Nonstructural carbohydrates in branches and roots

Plant materials for non-structural carbohydrate (NSC)
analysis were sampled once a season for two years (in
February, May, August, and November) from the same
set of focal A. raddiana (n=5) and A. rortilis (n=5) trees.
Branches (2-3 mm) were cut at 1-2 m height and fine roots
(0.5-1.0 mm) were sampled at 10-50 cm depth. All plant
materials were microwaved at a nearby village to stop fur-
ther enzymatic activity, and then oven-dried at 60 °C for
48 h. Samples were then ground using a mortar and pestle
and a ball mill (MM301; Retsch GmbH, Haan, Germany)
until tissues turned into fine powder. NSC analysis was per-
formed following protocols S1, S2, and S3 of Landhiusser
et al. (2018) with minor adjustments. Shortly, 30+ 1 mg
of dry tissue was used for the extraction of soluble sugars
and starch, using 80% ethanol at 90 °C. Starch was later
digested by a-amylase (85 °C,60 min) and amyloglucosidase
(55 °C,30 min) enzymes (Sigma-Aldrich). Different NSC
components (soluble sugars and glucose-hydrolysate) were
detected and quantified using an analytical high-performance
liquid chromatography (HPLC) system (Shimadzu Scientific
Instruments, Kyoto, Japan) fitted with an Aminex HPX-87C
Column (300 x 7.8 mm, 9 um particle, Bio-Rad, California,
USA). Sugars separation occurred under the following con-
ditions: 84 °C column temperature, water as mobile phase,
0.6 mL/min flow rate (according to manufacturer recom-
mendations). Glucose, sucrose, and fructose standard curves
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were used to quantify extracted and hydrolyzed NSC sam-
ples. All standards were purchased from Sigma-Aldrich
(Sigma cat. 47,829, 47,289, and F2793, respectively).

Meteorological data

We used meteorological data to test the influence of envi-
ronmental conditions on photosynthetic rates of Acacia
trees in the field, including air temperature (°C), relative
air humidity (%), irradiance (i.e., light, W m~?) and daily
rainfall (mm day_l) (Fig. 1b). We collected all data from the
Israeli Meteorological Service (www.ims.gov.il) station in
Hatzeva, 7 km north of the study site.

Thermal Infra-Red imaging

Thermal Infra-Red (TIR) images were taken in the field
using a FLIR T1030sc camera (FLIR Systems Inc., Wilson-
ville, OR, USA), with14-bit, 1027 X 768-pixel resolution,
30 frame rate per second, accuracy of +1 °C or 1% of the
temperature reading between 5 to 150 °C, 7.5-14 pm spec-
tral range, 24.6 mm focal length, 21° x 28° field of view and
built-in SMpixel digital camera, adapted to the IR lens (tech-
nical data taken from the Manufacturer). In the April — Sep-
tember campaigns the camera was placed in a fixed position
at a known distance (7 m) from an Acacia tortilis tree at the
height of 1.5 m in 90° from the soil to capture a full image
of the tree canopy. Values of relative humidity and air tem-
perature were set for each image, based on the measurements
from the nearby meteorological station. The emissivity was
set to a value of 0.98, as recommended by Idso et al. (1969).
TIR images were processed using FLIR ResearchIR Max
software (FLIR Systems Inc., Wilsonville, OR, USA). Data
represent the average of five different regions of the crown
foliage and the stem.

Statistical analyses

We tested how the rates of photosynthesis in adult trees in
the field are influenced by the species of Acacia, the month
of the year, and daytime, and the interactions between these
independent variables, using repeated-measures ANOVA (2
species, 24 months, 3 daytimes, 5 replicates per species). To
test the influence of season on stem growth, photosynthesis,
and NSCs concentrations we tested the correlation between
seasonal growth and the seasonal photosynthesis and con-
centrations of starch and sugars reserves in stems and roots,
using the same monthly composition for each season: winter
(JEM), spring (AMIJ), summer (JAS) and fall (OND), then
we correlate the seasonal growth to the seasonal photosyn-
thesis and starch and sugars reserves. Statistical analysis
was performed using R (R Development Core Team 2006)
and the interface R Studio, with packages nlme (linear and
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Table 1 . A comparison among Model Effect variable No. of AIC,  Slope R?

alternatl\fe mgdels for the param-

effects of environmental eters

variables on the rates of

photosynthesis in adult Acacia 1. Linear Temperature 3 5126 1.000  0.004

trees in the field 2. Linear RH 3 5130 0999 0.000
3. Linear VPD 3 5130 0.999  0.000
4. Linear Light (PAR) 3 4803  0.999  0.259
5. Saturation Temperature 4 5121  0.996 0.010
6. Saturation RH 4 5132 1.000  0.006
7. Saturation VPD 4 5122 0995 0.009
8. Saturation Light (PAR) 4 4778  0.999  0.277
9. Saturation with 0000interaction Light (PAR) 4+ Temperature 4 4913 0.999 0.182
10. Non-rectangular 0000hyperbola  Light (PAR) 4 4736 0.999 0.304
11. Non-rectangular 0000hyperbola  Light (PAR) and species 7 4720 1.001 0.319

nonlinear mixed-effects models; version 3.1) and car (com-
panion to applied regression; version 3.0).

We used inverse modeling and maximum likelihood esti-
mation to find the most parsimonious model of the effect of
environmental variables (temperature, RH, VPD, and PAR)
on photosynthesis, and the most likely set of parameters
for this model, given our large empirical dataset (Johnson
and Omland 2004; Sheffer et al. 2013, 2020). The inverse
modeling approach is used to compare a set of alternative
models (e.g., different functional forms) to test the strength
of support for different hypotheses. We compared the follow-
ing set of models representing alternative hypotheses for the
effects of environmental factors on photosynthesis: (1) linear
models, which test a continuous linear effect of each of the
environmental variables alone (models 1-4). (2) Saturation
models, which test a Michaelis—Menten type effect of each
of the environmental variables alone, to take into account
the biochemical limitation of photosynthetic enzymes (mod-
els 5-8). (3) Interaction models, which test a multiplicative
effect of temperature on the saturating effect of PAR (model
5); and (4) non-rectangular hyperbola model, which tests the
response of photosynthesis to PAR including the effect of
light-saturation followed by photo-inhibition (model 10-11
in Table 1).

To understand the relative importance of each of the inde-
pendent environmental variables, we searched for the most
parsimonious grouping of environmental effects and differ-
ent partial combinations of them, using model comparison
methods. We compared the strength of evidence for a model
that includes one set of parameters for the results of both
species and a model with two species-specific sets of param-
eters. We solved for the maximum likelihood parameter val-
ues using simulated annealing in the “likelihood” package in
R (Murphy 2012). Residuals (¢) for the different variables
were normally distributed, so the error terms were modeled

accordingly. We compared alternative models based on the
Akaike information criterion corrected for a small sample
size (AICc) which allowed to find the most parsimonious
model (lower AICc). To evaluate each alternate model, we
calculated the slope and the R? of the regression of observed
vs. predicted as measures of model bias and goodness of fit,
respectively. All analyses were done using the R program-
ming environment version 1.2.5033 (R Development Core
Team 2006).

Results

Two years of monthly measurements in the field (Fig. 2a)
showed that photosynthesis (net CO, assimilation) was
low during the morning, peaked at midday (solar noon),
and decreased again in the afternoon (average + SE values
of 1.5+0.06, 5.0+0.15 and 1.3 +0.07 umol CO, m~2 57!,
respectively). The same diurnal pattern was found across
seasons, including the dry and hot months of April—OQOcto-
ber (Fig. 1b). There was no significant difference in the rates
of photosynthesis between the two subspecies of Acacia
(F12,=0.145, p=0.703). There was, however, a significant
difference in the rates of photosynthesis among daytimes
(F,,,=378.423, p<0.001) and months (F; 5,=5.215,
p<0.001). Unexpectedly, the rates of photosynthesis were
the highest during conditions of extremely dry and hot air
(VPD=4-6 kPa) and very high PAR intensities (1800 pmol
photons m~2 s71) (Fig. 2b).

During the two study years, air temperatures ranged
10-40 °C (Figs. 1b, 3), RH ranged 14%-65% and PAR
ranged 1001800 umol photons m~2 s~!, with the high-
est values measured at midday during the summer (when
the sun is in the northern hemisphere). At midday (solar

noon) PAR varied from 800 pumol photons m~2 s~! in the
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Fig.2 a Two years dynamics of monthly rates of photosynthesis (net
CO, assimilation) in adult Acacia raddiana (blue) and A. tortilis (red)
trees in the field in the morning, midday (when the sun reached its
highest position in the sky) and afternoon. Monthly measurements
include two consecutive years. Each point represents one measuring
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Temper Ature (+c

Fig.3 a Rates of photosynthesis as a function of temperature, light
(measured as photosynthetically active radiation; PAR), and vapor
pressure deficit (VPD) in adult A. raddiana (top) and A. fortilis (bot-

winter to 1800 umol photons m~2 s~! in the summer. At

the same time, photosynthesis (net CO, assimilation) rates
were 2—12 pumol CO, m~2 s™!, which is two-fold higher
compared to the rates measured during mornings and
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date and time of an individual tree (n=>5 for each species; 24 meas-
urement days). Boxplots represent first to third quantiles; the middle
line represents the median. b Two years average of photosynthetically
active radiation (PAR) and at the time of photosynthesis measurement
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2 20

T
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tom). b A comparison among alternative models for the effects of
environmental variables on the rates of photosynthesis in adult Aca-
cia trees in the field

afternoons. In both species, the rates of photosynthesis
increased with temperature and PAR (Fig. 3). Thermal
IR images show the mean temperatures of the tree leaves
(foliage), tree stem, and the ambient air at 06:00 (morning)



Fig.4 Thermal infra-red (TIR) images at noontime in the hottest
months in the hyper-arid site. Graphs show the mean + SE of the tree
foliage temperature (green), tree stem temperature (brown) and the

and 12:00 (noon) throughout the summer months (Fig. 4).
Foliage noon temperature was similar to air noon tempera-
ture constantly, ranging from 30.7 °C in April to 39.3 °C
in August (p value=0.411). By contrast, the stem tem-
perature was significantly higher than air temperature at
noontime by 40% (p value=0.001), ranging from 45.5 °C
in April to 51.0 °C in June and 46 °C in September. Thus,
the transpiring tissue (foliage) was able to cool-down itself
to air temperature while the non-transpiring tissue (stem)
was overheated (Fig. 4).

We used maximum likelihood estimation and model
comparison to examine the effect of atmospheric variables
(temperature, RH, VPD, and PAR) on the rates of photo-
synthesis in acacias (Table 1). Each model resulted in an
AIC score, smaller AIC scores entailing the model explain
better the results. The AICc scores in Table 1 showed greater
support for models that included the effect of PAR (AICc
scores 4803 and 4778 for models 4, 8 respectively). Models
that included the effects of temperature, VPD, and RH were
not parsimonious (higher AICc scores of 5126 and 5122 for
models 1, 7 respectively). The most parsimonious model
contained the effect of PAR only, using a non-rectangular

40
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L $
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]
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—e—Stem
0 1 1 1 1 1
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50
§40 o
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230
I
] —o— Air
g£20
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10 —e—Stem
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Apr  May  Jun Jul Aug Sep

ambient air temperature (blue, taken for metrological station) (n=35)
at morning (upper plot) and noon (lower plot)

hyperbola, with a different set of parameters for each of the
species (model 11, AICc=4720; Table 1).

The continuous measurement of radial stem growth in
our A. fortilis and A. raddiana trees (Fig. 5) showed that
there were significant differences among seasons (p=0.008),
while there were no significant differences between tree
species (p=0.411). During the first year of measure-
ments (2018) all the trees from both species grew with an
annual average growth of 21.91+2.09 mm in A. tortilis and
30.05 +£3.004 in A. raddiana. In the second year (2019)
growth was lower and occurred only in 70% of the trees,
with an annual average growth of 12.62 +3.95 mm in A.
tortilis and 11.04 +1.60 in A. raddiana (Fig. 5a). Despite
the differences in growth between the years (p <0.001),
the seasonal timing of growth was similar. A first growth
phase occurred in May, and a second phase in September. An
analysis of seasonal stem growth showed that growth rates
were higher during the hot summer and dry fall compared to
winter in both species (74 and 89% of the annual growth for
A. raddiana and A. tortilis respectively) (Fig. 5b).

We analyzed the seasonal dynamics of non-structural
carbohydrate (NSC) and soluble sugars in the branches
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(blue) and Acacia tortilis (red). Boxplot represents the average of
two years (2018-2019) (n=5 of each species). Groups were com-
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pared using Tukey’s Honest Significance test; different letters above
boxplots represent significant differences among seasons and species;
p<0.05. n=5 trees per subspecies
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and roots of the measured trees (Fig. 6). The concentration
of starch in the branches was the highest in the winter and
spring (16% in A. raddiana and 18% in A. tortilis) compared
to the low levels in the summer and fall (8% in A. A. rad-
diana and 5.5% in A. tortilis) (Fig. 6a). In both species the
concentrations of root starch reserves were low, less than 5%
throughout the year (Fig. 6b). Examination of the concentra-
tions of soluble sugars in the samples showed that 98% of
them were sucrose (data not shown) and that glucose and
fructose composed only 2% of soluble sugars. The concen-
tration of soluble sugars in the branches was almost constant
along the year (average of 1.5%) (Fig. 6¢), while in the roots
of A. tortilis they were higher in the winter (2%) and lower in
fall (1%). No seasonal changes in the content of soluble sug-
ars were found in A. raddiana roots (Fig. 6d). We evaluated
how tree growth is related to the tree carbon reserves by ana-
lyzing on a seasonal scale photosynthesis, sugars reserves,
and growth (Fig. 7a) and tested whether seasonal growth
correlates with seasonal photosynthesis, and the concentra-
tions of starch and soluble sugar reserves (Fig. 7b,c,d,e).
Looking at the seasonal change in growth, photosynthesis,
and starch percentage in the branches (Fig. 7a) shows that
photosynthesis occurs all year round, starch in the branches
is accumulated in the winter and spring and decreases in the
summer, and tree growth begins in the spring and increase in

Branch soluble sugars % %

Root soluble sugars % %

Groups were compared using Tukey’s Honest Significance test; dif-
ferent letters above boxplots represent significant differences among
seasons for each subspecies separately; p <0.05. n=5 trees per sub-
species

the summer and fall. We found a significant negative correla-
tion between growth and soluble sugars in the roots (Fig. 7e;
r*=— 0.747): growth increased as root sugars decreased.
Other correlations were not significant, probably due to the
small sample size, yet hinted to a similar tradeoff between
growth and NSC.

Discussion

Two years of photosynthesis (net CO, assimilation) measure-
ments in adult Acacia trees measured in situ in their hyper-
arid habitat (Fig. 1) showed that the peak of photosynthesis
was at midday in all seasons (Fig. 2a) when light intensi-
ties and VPD are at their maximum (Fig. 2b). Surprisingly,
and against our hypothesis, the rate of photosynthesis was
not influenced by the VPD, i.e., stomatal conductance was
above 100 mmol H,0 m~2s lin high VPD (> 4 kPa) (Fig.
S1). This might be explained by the ability of Acacia trees
to develop a wide and deep root system that allows them to
reach deep soil water reservoirs year round (Do et al. 2008;
Winters et al. 2018). Even after six months of a rainless
summer with VPD of 4 kPa and more (Fig. 1b), we found no
evidence for water stress in the studied trees, i.e., predawn
measurements of leaf water potential ranged between — 0.5
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to — 0.9 MPa (data not shown). Peak of photosynthesis at
midday in all seasons (Fig. 2) together with summer growth
(Fig. 5) and cooling effect (Fig. 4) reinforce the claim that
these trees are capable of reaching constant water source in
the dry desert all year, as suggested previously by Winters
et al. (2015) that showed the presence of a perched aquifer
at a depth of ~7—10 m in a nearby site.

Summer noon photosynthesis in an arid
environment—unique for Acacia

The photosynthetic activity during noon time found in the
current research (Fig. 2a) is opposed to the common activ-
ity pattern in dryland tree species, which minimize their
gas exchange activity when exposed to high VPD (Klein
2014). For example, pine trees (Pinus halepensis) that grow
in the semi-arid region of Israel, ~80 km NW of our site,
exhibit noon assimilation that is higher only in fall and win-
ter (10 umol CO, m~2 s™!) and decreases to minimal activ-
ity during summer (0~1 umol CO, m~2 s~!) (Maseyk et al.
2008). In addition, the diurnal curve of CO, assimilation
during the dry season for these pine trees shows a morning
peak (3 umol CO, m~2s7!) followed by a midday depression
and a smaller afternoon peak (I umol CO, m~2 s™!) (Klein
et al. 2016). Another example of minimizing activity at high
VPD was demonstrated in Eucalyptus globulus trees that
grow in a semi-arid site in Portugal. CO, assimilation of
those trees was highest (12 umol CO, m~2s™!) in the spring,
reduced in the winter, and strongly depressed by the middle
of the summer when severe drought conditions prevailed
(Pereira et al. 1986). Olive trees in Spain partially close sto-
mata before noon to reduce leaf photosynthesis, in spring,
summer and autumn. Midday stomatal closure appears to be
related mainly to VPD and air temperature (Gimenez et al.
1996). Ziziphus spina-christi, a desert tree that grows in our
site, exhibited maximum photosynthesis during the spring
(VPD = ~2.5 kPa), declined photosynthesis during the sum-
mer (VPD = ~4 kPa) and slightly increased photosynthesis
during the fall (VPD = ~3 kPa) (Zait and Schwartz 2018).
In comparison, Acacia trees seem to stand out in their ability
to keep their stomata open even in the middle of a hot sum-
mer day in the dry desert (Fig. S2). During summer noon
(June—September), g, values remained high (48% of the
measured g, ...), while in the afternoon (two hours before
sunset), stomata closed to 10% of g ... due to reduced PAR.
Keeping the stomata open enables assimilation of CO, dur-
ing noontime across seasons as shown in Fig. 2a and Fig. 7a.
This unique behavior can be explained by the cooling effect
hypothesis: When water is transpired, evaporative cooling of
the leaves occurs (Crawford et al. 2012; Lapidot et al. 2019;
Aparecido et al. 2020). To cope with high temperatures of
40 °C and occasional heat waves when temperatures reach
47 °C, transpiration aids in cooling the Acacia. Evaporative
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cooling can take effect in the desert acacias given that they
have access to deep-water reservoirs and therefore are not
exposed to severe water stress, and do not shut their gas
exchange activity (Fig. 2, Fig. S1, S2). Comparing the foli-
age, stem, and the air temperatures validated that the tree
cools via transpiration at the hottest hours (12:00). The
results indicated that indeed during noontime the tree foliage
temperature and the air temperature were significantly simi-
lar (Fig. 4), measuring up to 15 °C cooler than the stem sur-
face. Such evaporative cooling is exceptional for a broadleaf
tree species, and is more typical of conifer needles (Lapidot
et al. 2019).Another optional hypothesis to explain the high
gas exchange and photosynthesis relates to nitrogen fixa-
tion ability of the trees. Acacias associate with dinitrogen-
fixing rhizobia via root symbiosis, and therefore increase
the concentration of nitrogen in the leaves (Sprent 1995).
High contents of nitrogen in the leaves can support higher
concentrations of chlorophyll, therefore sustaining efficient
photosynthesis (Adams et al. 2016). In addition, dinitrogen-
fixing bacteria in the root system can be a large sink for
carbon, in turn increasing the demand for photosynthates.

High light and temperature resistance in Acacia
trees

Another surprising finding of this research is that the pre-
dominant environmental factor that limited photosynthesis
was light (PAR) (Fig. 3, Table 1). Why would light be a lim-
iting factor in a desert environment with almost year-round
light availability? It is known that high PAR intensities of
above 1300 pumol photons m~2 s~! can cause photooxida-
tive damage to the photosynthetic apparatus (Barber and
Andersson 1992; Long et al. 1994; Miiller et al. 2001; Mur-
chie and Niyogi 2011; Takahashi and Badger 2011; Treves
et al. 2016). However, the trees in our field are exposed
to~ 1800 umol photons m~2 s~! in the summer, and together
with the light reflected by the white desert soil desert (Stern
et al. 2020) acacias experience high PAR intensities, far
beyond the photo-inhibition threshold known for most trees.
We assume that the Acacia trees have developed a defense
mechanism to protect themselves from photo-damage.
Therefore we suggest the potential existence of a “defense
layer” (which is still unknown) that decreases the actual PAR
intensity for the surface of the leaves. In this scenario, the
leaves are “starving” for photons, and higher PAR is needed
for photosynthesis. More research is needed to elucidate
the mechanism that allows exceptional light tolerance in A.
raddiana and A. tortilis. In turn, this knowledge can serve
to design improved plant varieties, e.g., new light-tolerant
crops and timber trees.

High tolerance to heat is also needed to survive the hyper-
arid conditions, as high temperatures may lead to direct ther-
mal damage or mortality (O'sullivan et al. 2017). Extreme



Trees

temperatures combined with long drought have been associ-
ated with tree mortality in forests (Allen et al. 2015). How-
ever, the Acacia trees in this study grow and thrive under
regularly high temperatures (Figs.1, 3). We suggest that the
tolerance of desert acacias to heat is related also to their
small leaf and leaflet sizes: the; surface area of ~ 200 leaflets
is 2.05+0.05 cm? in A. raddiana and 1.12+0.04 cm? in A.
tortilis, contributing to leaf thermal regulation through tight
coupling with air (Givnish and Vermeij 1976; Ackerly et al.
2002; Wright et al. 2004). In addition, the bipinnate leaf
structure results in high surface area of the canopy. Increased
thickness of the boundary layer of the canopy allows more
turbulent wind flow through the canopy which causes better
heat transfer via convection (Ackerly et al. 2002; Leigh et al.
2017). Generally, the small leaves of the Acacia are advan-
tageous in hot and dry environments and at high intensities
of solar radiation(Niinemets et al. 2007; Tozer et al. 2015),
as found also in Okajima et al. (2012) that showed how in
warm environments the rate of photosynthesis per unit leaf
area increases with the decrease in leaf size.

Carbon dynamics in Acacia trees

In our desert acacias, most stem growth occurred during the
summer (hottest months) and fall (driest months) (Fig. 5b).
These results are in agreement with a previous study on
these trees that showed that cambial growth was arrested
during the wet season and occurred during most of the dry
season (Winters et al. 2018). Here we examined whether this
summer growth is based on the use of carbon reserves rather
than assimilated carbon. Although other C sinks exist (res-
piration, fruit production, etc.), the source-storage-growth
relationships studied here still represent intrinsic tree C
management. Seasonal dynamics of NSC have been stud-
ied extensively in many forest ecosystems, however, there
is almost no data on the dynamics of C reserves in Acacia
species (Wigley et al. 2009; Ward 2016) and even less data
on NSC in mature Acacia trees in the desert. We found high
concentrations of starch in the branches (up to 20% in the
winter and spring). The seasonal patterns of the concentra-
tions of starch, stem growth, and photosynthesis (Fig. 7a)
showed that starch accumulated primarily in the winter
and spring and later decreased in the summer. Tree growth
started in the spring and increased in the summer and fall,
while photosynthesis was almost constant throughout the
year. Based on these findings we suggest that the carbon that
is assimilated during the winter is stored in the branches as
starch reserves which later on drives tree growth in the sum-
mer. Still, most biomass was produced during summer, and
moreover during fall, probably using concurrent assimilate.
High levels of starch may explain why Acacia branches and
leaves are the main source of food for elephants and giraffes
in the African savanna (Lamprey et al. 1974; Pellew 1983).

That said, and despite belonging to the same species, starch
concentration in Acacia trees in the Arava doesn’t necessar-
ily represent the starch levels in the African Acacia trees. At
our site, Acacia is a major food source for gazelles (Gazella
dorcas), among other species.

A. raddiana and A. tortilis comparison

Although the A. raddiana is considered a subspecies of A.
tortilis (Wickens et al. 1995), in this paper we examined
them as two different species as suggested in our regions
due to visible morphological differences that might affect
their ecophysiology. For example, A. raddiana trees have
one stem, twice as larger smooth leaves, and larger fruits,
while A. rortilis trees have multiple stems, smaller hairy
leaves and smaller hairy fruits. There are also phenologi-
cal differences in the timing of fruit ripening which starts
earlier in A. raddiana. In terms of photosynthesis, stem
growth, NSC and sugars, we found only slight but non-
significant differences between the species. Stem growth
was higher in A. raddiana compared to A. tortilis in all
seasons except for springtime (when A. tortilis trees grew
1.8 mm more). The dynamics of starch concentrations in
the branches differed between the two species, as in A.
raddiana concentrations were lower in the summer and
higher in the fall, compared to A. tortilis (Figs. 6a, 7a).
This observation can be explained by the time of fruit
development that starts early (June) in A. raddiana and
later (August) in A. fortilis. Flowering and fruit formation
are known as carbon-demanding processes and therefore
can explain the earlier decrease in starch reserves in the
branch in A. raddiana compared to A. tortilis.

The current study highlights some of the gaps concern-
ing Acacia trees and their carbon use in hyper-arid deserts.
Understanding the diurnal and seasonal changes in tem-
perature, radiation and VPD, and how they influence CO,
assimilation, NSC and growth provides us with a good study
case for tree ecophysiology in extremely dry and hot condi-
tions. Such conditions are predicted to be more prevalent in
the coming decades (Vicente-Serrano et al. 2010; Pachauri
et al. 2014). These findings suggest a strong potential for
Acacia trees to contribute to ecosystem carbon sequestration
in warming and drying climates.
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