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Ribosomes, the cellular organelles translating the genetic code to proteins,

are assemblies of RNA chains and many proteins (RPs) arranged in precise

fine-tuned interwoven structures. Mutated ribosomal genes cause riboso-

mopathies, including Diamond Blackfan anemia (DBA, a rare hetero-

geneous red-cell aplasia connected to ribosome malfunction) or failed

biogenesis. Combined bioinformatical, structural, and predictive analyses

of potential consequences of possibly expressed mutations in eS19, the pro-

tein product of the highly mutated RPS19, suggest that mutations in its

exposed surface could alter its positioning during assembly and conse-

quently prevent biogenesis, implying a natural selective strategy to avoid

malfunctions in ribosome assembly. A search for RPS19 pseudogenes indi-

cated > 90% sequence identity with the wild-type, hinting at its expression

in cases of absent or truncated gene products.

Ribosomes are extremely efficient molecular machines

that accurately translate the genetic code into proteins in

all living cells. In eukaryotes, the functional ribosomes

are comprised of long rRNA chains containing ~ 6880

nucleotides and ~ 80 different RPs, which are arranged

precisely [1–3] in two interacting unequal subunits (called

40S and 60S, according to their sedimentation coeffi-

cients). Ribosomes’ performance is accomplished by a

highly correlated intricate mechanism, enabled by coop-

erative contributions of their various components and

interactions with non-ribosomal cellular entities.

Typically, ribosome’s biogenesis proceeds smoothly

and efficiently [4–7], although it requires substantial

intracellular molecular trafficking, delicate cooperation

between the ribosomal components, and specific inter-

actions with cellular assembly, activation, and finaliza-

tion factors [8–20]. The RPs play a significant role in

coordinating the maturation of the ribosome [21,22]

and, together with natural or modified rRNA bases

(e.g., the modified rRNA base 1248 pseudouridine,

m1acp3Ψ), they are collectively implicated in maintain-

ing ribosome biogenesis and in regulating its function

[5,23–28].
Ribosomopathies, a collection of genetic diseases, are

predisposition syndromes associated mainly with either

impaired ribosome biogenesis or ribosome dysfunction

[29–42]. Mutations in genes coding for ribosomal pro-

teins have been implicated in several congenital syn-

dromes belonging to a heterogeneous group of

disorders [40–43] that share malfunctioning bone mar-

row, linked to blood impediments directly or via issues

concerning heme export [44]. Among them, some have

been associated with various physical abnormalities,

such as cleft lip and/or palate and cardiac defects [45–
47]. Sequencing exomes of affected individuals identified

mutations in different genes linked to impaired ribo-

some biogenesis and decreased translational efficiency

[48–51] or defective mRNA translation [52].
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Diamond Blackfan anemia (DBA), a rare congenital

intrinsic erythroid hypoplasia, was discovered in 1936

[53] in infants and children and categorized in 1937 as

congenital hyperplastic anemia [54]. Its clinical aspects

were described in the 1960s [55] and the 1970s [56]. In

the post human genome era, DBA was identified as

the first human ribosomopathy [57], and in 2006, it

was considered as a paradigm for a ribosome-based

disease [58]. In 2008, a database for DBA mutated

ribosomal genes was constructed [46], further updated

in 2010 [59]. Similar to several other ribosomopathies,

DBA is connected to the tumor suppressor gene TP53,

which plays a central role in controlling ribosome

function under stress [30,60–62] and provides a surveil-

lance mechanism for ribosomal function. The classical

DBA presentation is a significant red cell aplasia in

young infants, with congenital malformations in about

50% of the patients [47,55,63,64]. In recent years,

milder ‘non-classical’ cases with less distinct pheno-

types have been identified. Currently, bone marrow

transplantation extends patients’ survival [65,66].

Molecular pathogenesis studies showed that approx-

imately half of all known DBA cases are attributed to

mutations in the pre-rRNA-processing protein TSR2

[67–76] and RP genes, primarily, but not exclusively,

those of the small ribosomal 40S subunit. Impressively,

despite the wealth of DBA-associated mutated genes,

DBA is linked mainly to mutations in RPS19, the first

DBA ribosomal mutated gene to be discovered [69,77–
86]. These mutations, which result in hematopoietic

and developmental abnormalities [40,59,87–94],
account for 25% of all DBA patients [10,79,82] and

illustrate the significance of eS19, the protein coded by

the RPS19 gene. In addition to eS19 involvement in

ribosome biogenesis [95,96], it plays a role in cellular

regulation in humans. Some of these mutations may

have a dominant negative effect (as was shown in mice

[97]) by binding to its own mRNA [98], presumably by

a similar mechanism that is exploited by other riboso-

mal proteins [99–103].
The remarkable similarity between the 3D structures

of eS19 within the functionally active human ribo-

some, and that of isolated Pyrococcus abyssi, which

shares only 36% sequence identity and 57% sequence

similarity [104], hints at the significance of its 3D

structure.

Sixty-four different mutations in RPS19 have been

clinically identified in DBA patients despite the rela-

tively short length of its coded protein eS19 (� 145

amino acids, depending on the species). These are

spread throughout the protein and were shown to be

connected to several pathologies [105]. Commonly,

mutated RPS19 is linked to dysregulation of

deltaNp63 and p53 [40], defects in 18S ribosomal

RNA synthesis, assembly of the small ribosomal sub-

unit, ribosome maturation [106–108], and increased

proteasome activity [109,110].

Here, we describe our studies on the highly mutated

gene RPS19 and its coded protein, eS19. We per-

formed structural, biophysical, mutational, and geno-

mic comparative analyses of the potential outcomes of

eS19 mutations by examining its structural and inter-

actions patterns, as observed within the 3D structure

of the human ribosome. Our results shed light on the

natural response to the type of the mutation and the

consequent expected implications on ribosome biogen-

esis or ribosome function. Furthermore, our analyses

indicate the existence of an ingenious natural selection

mechanism to avoid the disturbance of a ribosome

malfunction by hindering the biogenesis of ribosomes

with a mutated functional site, despite the risk that it

may lead to a significant reduction in the ribosome

level. In parallel, nonsense-mediated mRNA degrada-

tion (NMD) analysis [111] indicated that a small num-

ber of predicted mutations in RPS19 could diminish

eS19 transcription and translation. Subsequently, we

identified a pseudogene that highly resembles the natu-

ral RPS19 gene, thus may replace it under specific cir-

cumstances, such as heavily truncated or entirely

deleted protein.

Materials and methods

Information about the mutations was extracted from pub-

lished reports [46,59,88–93]. The PDB files with IDs 4UG0

[2], 6G4W [15], and 6G53 [14] were the sources for the

structural details of the fully and partially assembled

human ribosome that were used for the various analyses.

Coordinates of the different maturation states of the par-

tially assembled large ribosomal subunit were taken from

Ameismeier et al. [15]. The distances reported in Table S2

were calculated using CHIMERAX [112,113]. The PDB IDs of

the various assembly states are shown in each sheet; in

PDB 6G4W, the side of eS19 facing the assembly factor

RRP12, and RRP12 itself is less well resolved; hence, the

distances were calculated by substituting the original eS19

chain with the one from 4UG0.

COOT [114] and UCSF CHIMERA [115] were used for gener-

ating the atomic models. The mutations were mapped on

the models by using UCSF CHIMERA.

RPS19 genes, pseudogenes, and mRNA sequences for

the mutation analysis were extracted from NCBI (gene ID

6223, transcript ID NM_001022.4).

Pseudogene sequences were taken from the NCBI RefSeq

track [116] in the UCSC Genome Browser (Human Genome

version hg38) [117] and translated to amino acids using

Expasy Translate (https://web.expasy.org/translate/) [118].
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The predictions of the amino acid sequences of the

mutated proteins were performed using Expasy Translate

(https://web.expasy.org/translate/). Nonsense-mediated mRNA

degradation prediction tool [119] was used to predict which

mutated transcript variants escaped NMD. The NMD for

point mutations (missense/nonsense) were predicted using

the 50–55 nucleotide rule. EMBOSS NEEDLE [120] was

used to calculate the percentage identity, similarity, and

gaps between each pseudogene and RPS19 wild-type.

Sequence alignments were performed with CLUSTALW [121]

and visualized in JALVIEW [122]. SWISS-MODEL [123–127]
was used to predict mutated eS19 with 4UG0 chosen as a

template. UCSF CHIMERAX was used to superimpose the wild-

type eS19 and mutated eS19 models that SWISS-MODEL

generated. Potential H-bonds were calculated using the

built-in tool in USCF CHIMERAX.

Fig. 1. (A) Surface representations of the human ribosome (PDB ID 4UG0), showing all ribosomal proteins whose genes were found

mutated, in variable colors. The rRNA and the unaffected proteins are shown as light brown ribbons. The two images are 180° rotated with

respect to each other. (B) Surface representations of the human ribosome (PDB ID 4UG0), showing that all mutations in the ribosomal

proteins are exposed at the surface, and many of them around the 60S central protuberance and the 40S head.
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Results

Distribution of RPs mutations in DBA

To seek insights into how the mutations that cause

DBA may influence ribosomal biogenesis and/or

functionality, we imposed all of the predictable

mutations in the RPs on the human ribosome struc-

ture [1–3]. We noticed that the predictable mutations

are distributed throughout the ribosome, mostly on

or in proximity to the ribosome surface (Fig. 1). By

placing the DBA mutation sites on the human ribo-

some structure, we gained insights into how such

modifications may influence ribosome functionality

and thus may reveal some aspects of cellular mal-

functioning. We pursued comparative structural and

genomic analyses related to the expected mutations

at the RP level and their expected implications in

the contexts of (a) ribosomal biogenesis and (b) the

functionality of the ribosome. We studied the antici-

pated locations of each previously described DBA

mutation within the RPs, based on the positions of

the related features in the human ribosome structure

(PDBID 4UG0) [2]. Then, we examined the distribu-

tion of viable DBA mutated ribosomal proteins

within the human ribosome for selecting those suit-

able for predictive evaluation of the expected interac-

tions with their rRNA surroundings.

Specifically, we focused on RPS19, and its encoded

small ribosomal subunit protein, eS19, owing to the

vast number of mutations identified in it in the DBA

patients [10,79,82]. We expected that some of these

mutations would be involved in the ribosome assembly

as, in all states of the pre-assembled ribosome, it is

located in close proximity to the surface of the pre-

small subunit [14,15,128].

Structural implications of RPS19 mutations in

DBA

To assess the various consequences of the RPS19

mutations on its protein product, eS19, we mapped the

positions of all known mutations on the eS19 3D

structure within the human ribosome. We marked

them according to their types, namely missense, non-

sense, insertion, and deletions mutations (Fig. 2). As

seen, the missense and nonsense mutations tend to

cluster in the helical regions, whereas the insertions

and deletions are located in loops or the less structured

termini, which are less expected to cause substantial

structural alterations but may be needed for interac-

tions with the proximate rRNA.

In addition, we examined the regions of the rRNA

that interact with, or are located in close proximity to,

eS19 (i.e., nucleotides 1365–1595, comprising helices

Fig. 2. Expected Diamond Blackfan anemia (DBA) mutations in eS19 mapped on its 3D structure within the human ribosome. (A) The

structure of the human eS19. (B) Zoomed view of the region of 18S rRNA that is interacting or located in close proximity to mutated amino

acids of eS19. The 18S rRNA is shown in light brown. The rRNA bases interacting or located close to eS19 (1365–1595, i.e., h37–h41) are

shown using atoms representation. eS19 residues affected by insertion/deletion mutations, nonsense mutations, and missense mutations

are shown in red, blue, and purple, respectively. The mutation sites were taken from previous reports [46,59,88–93] of DBA patients’ data.
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h37-h41). These rRNA residues may be affected by

structural changes in eS19 upon mutations and conse-

quently, should modify the ribosome structure and

either affect ribosome biogenesis or intervene with

ribosome functional activity. Our analysis was based

on (a) the notion that several RPS19 mutations could

lead to impaired ribosome assembly and (b) the high

conservation of eS19 structure (Fig. 3). Practically, this

analysis was an attempt to structurally analyze the fate

of the various mutations, namely to predict which

mutations can be connected to failed biogenesis and

which could be incorporated into assembled ribosomes

and then be involved in ribosome malfunctioning.

Furthermore, based on the accumulated knowledge

of ribosomal structure/function relationships, we

assumed that RP mutations are likely to trigger struc-

tural modifications in their surroundings, which may

generate additional structural modification in the

rRNA or the RPs of the second or third shells around

the mutations, and these may even propagate further

and trigger additional modifications. For this analysis,

we (a) classified the distribution of RPS19 mutations

according to their structural motifs (Table S1) (b)

Fig. 3. Structural similarity of human and

the archaeal Pyrococcus abyssi protein

eS19 [104], showing the cleft and main

helix that seem to be involved in mRNA

binding. (A) Left: The structures of human

eS19 (PDBID 4UG0), in gray and colored

mutations as in Fig. 2; middle: The

structure of P. abyssi eS19 [104] (PDBID

2V7F). Note the partial lack of the

observation of the flexible regions, or their

modified structure, in the isolated protein

vs. the ribosome-incorporated protein;

right: Overlay of both structures of eS19,

of P. abyssi in green, and in gray within

the human ribosome, on which residues

W52 and R62 that are interacting with

eS19 own mRNA [98] are marked. (B)

Assumed mutated amino acids are marked

as class I (pink) and class II (blue) on the

structure of the human eS19, according to

[104]. (C) Space-filling surface

representation of eS19 (gray). Amino acids

W52 and R62 are marked in pink. The

arrow points at the mRNA binding cleft.

Fig. 4. eS19 does not interact with any structurally studied

assembly factors [14,15].
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calculated the distances of all eS19 atoms to their

neighborhood in the mature 40S, as well as in its vari-

ous known assembly intermediate states of the creation

of pre-40S [14,15] (c) identified interatomic ‘contacts’

by selecting all of the eS19 atoms whose distances to

their neighbors are ≤ 4 �A (Table S2). We assumed that

mutations of these atoms have a higher chance to

influence the profile of the protein’s interactions, which

consequently may obstruct incorporation into the

assembling ribosome and hamper the entire ribosome

maturation. To assess whether the DBA mutations in

eS19 affect or disrupt the rRNA environment during

the small subunit (pre-40S) maturation, we compared

the different pre-40S stages of wild-type eS19 [14] and

of the predicted mutated eS19 (Fig. S2). Following

this, we inspected the potential H-bonds that may be

formed between eS19 and the surrounding environ-

ment. We analyzed the five states (A–E) that have

been identified [14] and noticed that State D and State

E had virtually identical H-bonds. Hence, we consid-

ered only states A–D. For each state, to predict the H-

bonds of the mutated eS19, we replaced the existing

eS19 chain with the mutated eS19 models that were

generated by SWISS-MODEL [123–127] and found

that, as for these regions in native eS19, its expected

mutants were not involved in any direct interaction

with the non-ribosomal factors, during the maturation

process. As the natural H-bonds are mostly between

eS19 and the surrounding rRNA, the missense muta-

tion should disrupt them, hence supporting the notion

that some RP mutations in DBA patients might affect

the ribosome maturation and assembly. Thus, by

analyzing the interactions of eS19 with its rRNA vicin-

ity in the assembly of 40S particle (Table S2), we

added a new dimension to the evaluation of possible

contributions of eS19 mutants to DBA. As the termini

and internal loops are supposed to be relatively flexible

and less structured (Fig. 3), intuitively, we expected

that these should create a variety of positive and nega-

tive contacts with their surroundings during assembly.

Indeed, we found that a few amino acids of these

regions do interact with their neighboring rRNA or

other RPs throughout the maturation process, but

many of them do not (e.g., among the loop of residues

114–116, only residue 115 reaches their neighbors in a

few stages). Similarly, in contrast to our initial

thought, not even a single contact between eS19 and

any assembly factors was found (Fig. 4).

It was shown that eS19 binds to its own mRNA in

a fashion likely connected to a regulation strategy [98].

The highly conserved region involved in this regulation

mechanism includes an a-helix composed of residues

52–67, located at a rather exposed central part of the

protein, on its polar face. In the DBA mutation data-

base, the respective genomic region was shown to con-

tain a large number of missense mutations in the

exposed residues W52, R56, S59, and R62, and hence,

it is called the ‘eS19 mutation hot spot’ [104]. Impor-

tantly, we found that residue R62, a part of this a-
helix, which is exposed on the surface of the mature

ribosomes, is heavily involved in contacts with the

neighboring rRNA during all assembly states [14,15]

(e.g., up to 45 contacts 2.9–4 �A with nucleotides

C1542 and U1543, in a single assembly state). This

Fig. 5. RPS19 insertion and deletion

mutations affect eS19 length in Diamond

Blackfan anemia. (A) Amino acid sequence

of eS19 with nucleolar localization signal

marked in a red box. (B) Structural

comparison of predicted mutated eS19

with c.25_42del mutation (cyan) and wild-

type eS19 (gray). (C) Structural comparison

of predicted mutated eS19 with c.331delC

mutation (purple) and wild-type eS19

(gray).
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unexpected finding seems to show that owing to the

location of R62, almost all of its mutations should

modify, disturb, or eliminate its contacts with its

neighboring rRNA. These disturbances and the conse-

quent non-native contacts should harm the correct

incorporation of the mutated eS19 into the pre-40S

particle, which should interfere with the creation of

the 40S particle, thus perturbing the delicate biogenesis

process and resulting in partially assembled ribosomal

small subunits. In this way, we revealed a natural pro-

cedure to prevent the formation of functionally failing

ribosomes as, if incorporated, its mutations are bound

to interfere with proper ribosomal function.

Mutation analysis of the links between ribosome

biogenesis and maturation

We carried out an extensive structural and compara-

tive analysis of the expected consequence of the geno-

mic modifications and their diverse phenotypic

implications. Prediction of the structure of the mutated

eS19 using SWISS-MODEL and its comparison with

the structure of the wild-type eS19 raised the possibil-

ity that the missense mutations might disrupt the

neighboring rRNA environment (Fig. 2 and Fig. S1).

In addition, our predicted structure of the eS19 with

insertion and deletion mutations revealed that most of

these DBA mutations would alter the length of the C

terminus or its conformation (Fig. 5B,C). This might

affect the protein localization in the nucleolus and/or

hinder its role in ribosome biogenesis (Fig. 5).

Genomic analysis of eS19 mutations in DBA and

its transcripts

We mapped the detailed distribution of the known

mutations on the exons of RPS19 [88,94] (Fig. S3) and

calculated their expected influence on the lengths of the

expressed proteins (Fig. S3). We also classified the

RPS19 mutations as per the distribution on the struc-

tural motifs of its protein product eS19 (Table S1). Our

calculations and predictions revealed that mutations of

the RPS19 gene, including frameshift and nonsense,

could result in a shorter eS19 (Fig. S4). These shorter

proteins may still be incorporated into the ribosome

and allow its function. An example is the C-terminal

tail, which extends into the rRNA environment.

Based on the extent of RP-ribosome possible inter-

actions, we assumed that although the C-terminal tail

is an integral part of the protein, its truncation might

Fig. 6. Mutation distribution and nonsense-mediated mRNA degradation (NMD) analysis for RPS19 in Diamond Blackfan anemia (DBA).

(A) distribution of mutation types reported in DBA patients. (B) NMD analysis of potential mRNA with DBA mutation.
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be less harmful. Conversely, these mutations may

result in a devastating event for the ribosome’s matu-

ration and/or function. These cases may result in a

reduced number of ribosomes in the cells, in agreement

with the results of genomic studies performed else-

where [129]. In addition, a nonsense-mediated mRNA

Fig. 7. eS19 pseudogenes in Diamond Blackfan anemia. (A) Sequence alignment of eS19 with pseudogenes. The sequence of the wild-type

eS19 was aligned with its seven pseudogenes (RPS19P1, RPS19P2, RPS19P3, RPS19P4, RPS19P5, RPS19P6, RPS19P7) with CLUSTALW

[121] and visualized using JALVIEW [122]. (B) Sequence alignment of RPS19P3 with predicted mutated protein eS19. Sequences of RPS19P3

were aligned with predicted mutated protein of c.53_54insAGA, (C)187_189insCAC RPS19 mutations with CLUSTALW and visualized using JAL-

VIEW. (C) Pairwise alignment of eS19 wild-type and the expected protein product of RPS19P3, left- the predicted structure of the protein pro-

duct of RPS19P3 (pink) overlapped onto wild-type eS19 (gray). Right- the differences in amino acid sequences are mapped onto the 3D

structure of eS19, in red.
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decay (NMD) analysis [111] revealed that almost half

of the mutated transcript variants (47%) might escape

NMD (NMD�; Table S3 highlighted in green),

whereas 29% undergo NMD (NMD+), possibly lead-

ing to protein depletion (Fig. 6). Notably, potential

mRNA with DBA missense mutations escaped NMD,

thus increasing the possibility of incorporating

mutated protein in ribosome (Fig. 6B).

eS19 pseudogene in DBA

Several ribosomal proteins are known to have pseudo-

genes [130,131], and we analyzed the properties of

seven of them [132]. An earlier report showed that

pseudogenes RPS19P1 and RPS19P2, which share

57% and 45% similarity with the wild-type eS19,

respectively, are not expressed [132], and a substan-

tially higher similarity was obtained when the compar-

ison was based on eS19 cDNA and pseudogene

sequence [132]. In addition, a recent study has

described an exciting suggestion of paralog-switching

in which canonical RPs are replaced by paralog RPs

in Drosophila testis and ovary, expecting to alter the

ribosome surface and regulate the process of transla-

tion. This study hints at the possibility of the incorpo-

ration of RP-like proteins in the ribosome [133].

There are no reported paralogs for RPS19; however,

our prediction of potential protein sequences of the

pseudogene revealed that one of them, RPS19P3,

shares 90.4% identity and 93.2% similarity with the

wild-type eS19 (Fig. 7 and Table 1). In addition, the

mutations that escape NMD share some homology

with RPS19P3 pseudogene (Fig. 7B). Notably, the

amino acid differences between eS19 and RPS19P3

coincide with DBA reported mutation, predicted struc-

ture of RPS19P3 is similar to eS19 (Fig. 7C).

Discussion and conclusions

In this study, we focused on the structure, location,

and spatial positioning of protein eS19, the product of

the ribosomal gene RPS19, which was suggested to

participate in a regulatory process by binding its own

mRNA in isolation [98], similar to a few other riboso-

mal proteins [99–103]. As this protein maintains the

same overall specific 3D structure within the active

ribosome and in isolation (Fig. 3), the preservation of

this inherent 3D structure may indicate its importance

and hints at functional conservation alongside compa-

rable tasks.

Our detailed predictive analysis indicates various

outcomes for the different eS19 mutations. Thus, we

expect that although many eS19 mutations may not

hamper ribosome biogenesis, those connected to func-

tional relevance, for example, R62, may obstruct ribo-

somes assembly. Hence, our analyses led to the

identification of nature’s ingenious selective strategy to

avoid ribosome function loss by impeding the biogene-

sis of ribosomes with a mutated member of its func-

tional site. This new understanding of the relative

functional and structural contributions sheds some

light on the so far unexplained mechanism of RPS19

involvement in impaired ribosome biogenesis. More-

over, the results of our analysis indicate the rather

unanticipated finding that mutations, which are impli-

cated mainly in dysregulation of ribosome biogenesis,

may result from nature’s attempts to avoid future

ribosome malfunction. On the other hand, this distinc-

tive procedure may allow the incorporation of eS19

with mutations located in positions away from the

functional region, a point that has not yet been

explored.

Owing to the assumption that some of the mutations

that were identified in RPS19 are expressed in eS19,

we identified common denominators among the

expected structural-functional outcome of the various

known RPS19 DBA mutations. Importantly, these

findings are supported by additional observations,

mainly (a) the existence of functional ribosomes with

truncated rRNA [134] and (b) the rRNA modification

patterns that supersede temperature variations [135].

Thus, we revealed a natural mechanism for controlling

ribosome biogenesis. We will not be surprised if simi-

lar associations will be detected in other cases related

to ribosomopathies.

In principle, it seems that the studies reported here

illuminate a fundamental aspect of natural mechanism

to minimize or eliminate the incorporation of riboso-

mal proteins with mutated functional sites by hamper-

ing ribosome maturation. However, although this

mechanism seems to avoid the creation of malfunc-

tioning ribosomes as it is based on disrupting ribo-

some biogenesis, it can lead to a reduction in the

number of ribosomes or ribosome insufficiency.

Table 1. Homology between RPS19P3 pseudogenes and the

expected mutated protein.

Pseudogenes Identity (%) Similarity (%) Gaps (%)

RPS19P1 51.0 57.2 24.8

RPS19P2 41.5 45.3 45.9

RPS19P3 90.4 93.2 0.7

RPS19P4 31.4 35.8 50.9

RPS19P5 24.7 27.4 67.8

RPS19P6 20.6 26.3 65.1

RPS19P7 11.7 11.7 86.9
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Our structural approach was accompanied by a

genomic analysis, based on recent studies showing that

some pseudogenes maintain or might have regained

protein-coding capacity [136], thus suggesting that

pseudogenes may also contribute to the transcriptome

and proteome of various species. Some pseudogenes

are evolutionarily conserved [137], a property that may

be a key to understanding unique disease subtypes

[138] and tissue-specificity [139]. This raises questions

about the expression of pseudogenes of RPs in riboso-

mopathies. Spatiotemporal expression pattern and

unique functions ascribed to pseudogenes of a few pro-

teins, including PTEN, HTR7, and SUMO1 [140–144],
may open a new direction for further investigations of

ribosomopathies.

About a decade ago, DBA was identified as a ribo-

somal puzzle [145]. Since then, the understanding of

the molecular basis of this disease underwent signifi-

cant progress, yet many unanswered questions remain.

We hope that our combined structural, bioinformati-

cal, and genetic approach to elucidate phenotype–
genotype correlations of genetic diseases creates an

opening for subsequent consequent evaluation of addi-

tional questions relating to the connection between

genetic modifications of components of human ribo-

somes and their expression in various riboso-

mopathies.
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