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Abstract. The present paper presents a model for 
texture discrimination based on Gabor functions. In 
this model the Gabor power spectrum of the micro- 
patterns corresponding to different textures is cal- 
culated. A function that measures the difference be- 
tween the spectrum of two micropatterns is introduced 
and its values are correlated with human performance 
in preattentive detection tasks. In addition, a two stage 
algorithm for texture segregation is presented. In the 
first stage the input image is transformed via Gabor 
filters into a representation image that allows dis- 
crimination between features by means of intensity 
differences. In the second stage the borders between 
areas of different textures are found using a Laplacian 
of Gaussian operator. This algorithm is sensitive to 
energy differences, rotation and spatial frequency and 
is insensitive to local translation. The model was tested 
by means of several simulations and was found to be in 
good correlation with known psychophysical charac- 
teristics as texton based texture segregation and micro- 
pattern density sensitivity. However, this simple model 
fails to predict human performance in discrimination 
tasks based on differences in the density of "ter- 
minators". In this case human performance is better 
than expected. 

1 Introduction 

In a number of recent papers (Julesz 1984a, 1986; 
Treisman 1986) it has been suggested that visual 
perception operates in two modes, one preattentive 
and the other attentive. In the preattentive mode 
(which is parallel), differences in a few local structural 
features are detected over the entire visual field. In the 
attentive mode (which is sequential), a serial search 
over a narrow aperture of attention is performed in fast 
steps (20-80ms). Only in this mode recognition is 
possible. According to the above mentioned works 

texture segregation in the preattentive mode is based 
on local feature differences in the picture. Psychophys- 
ical experiments (Beck 1972, 1983; Julesz 1975, 1981, 
1986) have shown that texture discrimination in the 
preattentive mode depends mainly on some simple 
properties such as brightness, color, size and slope (of 
lines, blobs) of the basic texture elements that compose 
the picture. 

Julesz (1980, 1984a, 1986) has suggested that tex- 
ture discrimination could be explained in terms of first- 
order differences between local features called textons, 
rather than global second-order differences between 
points in the image as he had suggested before (Julesz 
1962). Textons are defined as elongated blobs of 
specific color, orientation, length and width, along 
with their terminators and line crossings. Differences in 
texton densities are necessary for discrimination in the 
preattentive mode. In a series of experiments Gurnsey 
and Browse (1987) reported that properties such as 
terminators and line crossings appear not to play an 
important functional role in texture discrimination, 
hence they speculated that they were not textons. They 
found that performance in texture discrimination tasks 
depended mainly on (1) the particular micropattern 
pair used, (2) which member of the pair forms the 
foreground and which forms the background, (3) the 
time available to inspect the image and (4) the 
familiarity that the subject has with the patterns and 
procedure. They suggested that energy differences in 
the minimal circle enclosing the basic features creating 
the picture enable discrimination in the preattentive 
mode. However, they did not suggest that the human 
visual system computed the minimal enclosing circle 
for each micropattern in the display: rather, they 
suggested that when two micropatterns composed of 
the same line segments are enclosed by different circles, 
they will stimulate different sets of simple receptors. 

Another model was suggested by Krose (1987) who 
examined the (r, 0) chord space for each micropattern 
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(texture element) and defined a measure function to 
measure the dissimilarity between them. (A chord is a 
virtual line between two pattern points, the chord 
space is the size and orientation distribution of all 
those chords, for binary pictures the chord space is 
identical to the autocorrelation function.) Krose con- 
cluded that the use of a local autocorrelation algorithm 
on binary images in combination with a multi-layer, 
multi-resolution sampling array plus dissimilarity 
measure function is a flexible method for the extraction 
of local structure features. Other models such as 
Fourier transformation have also been investigated 
(Bajcsy 1973; Julesz and Caelli 1979). 

The model presented here is based on Gabor  filters 
(Gabor 1946; Turner  1986; Caelli and Moraglia 1985; 
Daugman 1987; Beck et al. 1987). The class of Gabor  
functions was described by Gabor  (1946) and was 
extended to two dimensions by Daugman (1980, 1987). 
Daugman showed that Gabor  filters are optimal in the 
sense that they minimize the product of effective areas 
occupied in the 2-D space and 2-D frequency domains. 
This class of filters can be described in terms of a 
sinusoidal plane wave of some spatial frequency and 
orientation within a two dimensional Gaussian enve- 
lope. Beck et al. (1987) suggested that Gabor  filters play 
a role in tripartite segregation and in texture segre- 
gation in general. We have chosen Gabor  filters because 
they have properties similar to those of early visual 
channels, being localized in the space and frequency 
domains. In addition each filter encodes both spatial 
frequency and orientation thus predicting preattentive 
detection of spatial frequency and orientation conjunc- 
tions (Sagi 1988). In the first part of this article we apply 
the Gabor  filter model to isolated micropatterns and 
find the power spectrum of each basic element (by 
means of Gabor  filters) then we calculate the dis- 
similarity between the two spectra. According to the 
result of the measure function we decide whether or not 
the two basic elements are preattentively distinguish- 
able. The calculated measure is compared with data 
from psychophysical experiments done by Krose 
(1987). In the second part we describe the Gabor  based 
algorithm for texture segregation (GGL) for textures 
composed of many micropatterns thus capturing some 
properties ofmicropat tern groups. A basic assumption 
we make here is that the only information available for 
preattentive discrmination is differences between first 
order statistics of filter responses, computed as spectral 
energy. 

2 Measuring Similarity Using Gabor Filters 

A 2-D Gabor  function is a harmonic oscillator, which 
is a sinusoidal plane wave of some frequency and 
orientation within a Gaussian envelope. Its frequency, 

orientation and bandwidth are controlled by its pa- 
rameters. The Gabor  function is defined as follows: 

G(x, ylW, O,~p,X, Y) 
- [ ( x  - X )  2 + ( y  - y ) 2 ]  

=exp  2~2 x sin(W(xcosO-ysinO)+(p), 
0) 

where a is the Gaussian width, 0 is the filter orien- 
tation, W is its frequency and q~ is its phase shift. X, Y 
define the center of the filter. Let L(x, y) be the input 
element matrix and G(x, y)] W, O, (p, X, Y) the Gabor  
operator. We find the G * L spectra for various orien- 
tations and shifts. This spectrum identifies the texture 
element. More exactly: 

GLI(X, YI W, O) = E G(x, Yl W, O, O, X, Y) x L(x, y) 
xy  

GLz(X, Y] W, O) = ~. G(x, Y l W, O, ~/2, X, Y) x L(x, y) (2) 
X, y 

S2(X, Y[ W, O) = GL](X, Y I W, O) + GL2(X, Y I W, 0), 

where x, y are indices over the basic matrix elements 
(x, y = 0 ,  32). q~l=0, q~2=n/2, W=2nw/17 where w is 
the number of cycles in 17 pixels (the size of the input 
pattern). GL1, GL2 are the convolutions of the Gabor  
filter and the texture. S is the locally shift invariant 
output of the filters (by means of GL 1 and GL2). We 
next introduce a measure function that estimates the 
level of dissimilarities between the two micropatterns. 

The measure function Dtb is defined as follows: 

S2(X, YIW, O) - ~. S2(X, YIW, O) 
D2b(W) x,Y.O x,Y,O , (3) 

Y~ S2(X, YIW,,O) + X S~(X, YIW, O) 
X,Y,O X,Y ,O 

where Sb is the convolution of the first input micro- 
pattern (background) with Gabor  filter, Sr is the 
convolution with the second micropattern (target), 0 
ranges between 0 ~ to 360 ~ in 10 ~ steps, X and Y were 
varied at steps of a across a range of 4o (25 samples). 
This measure function has values between 0 and 1, and 
indicates the dissimilarity between the two input 
micropatterns. These results are invariant to rotation 
and local shift. If the two input patterns are identical up 
to rotation and shift within the integration area the 
result will be small; the higher the dissimilarity be- 
tween them the closer to I the result gets. The 
integration over different orientations is necessary, 
since we apply this measure to cases where the patterns 
are randomly rotated. The integration over spatial 
positions is due to the uncertainty in pattern position. 
We integrate filter responses (energy), relying on the 
assumption that the preattentive system uses only 
differences of averaged responses and no higher order 
statistics. 



3 Psychophysical Discriminability 
as a Measure of Similarity 

Most of the models for texture discrimination are 
based on finding local differences in the image. In the 
present model the local differences are taken into 
account by the dissimilarity function. We shall show 
that this model is in high correlation with psychophys- 
ical results. For  more details about  psychophysical 
experiments see Bergen and Julesz (1983). In brief: 

The stimulus containing the target element and 
many distractors is presented for a short time 
(20-80 ms) and is followed by a mask constructed from 
the conjunction of the target and distractor at a 
variable time (SOA) after the onset of the stimulus. 
Increase in SOA is expected to increase available 
stimulus processing time and thus improve perfor- 
mance. Some popular  target/distractor pairs are pre- 
sented in Fig. 1 (from Krose 1986). According to 
Julescz's texton theory preattentive discrimination is 
expected in the first pair and attentive discrimination 
in the second pair. The fifth pair (where the two basic 
elements have the same number of terminators and line 
crossing) is preattentively indistinguishable. On the 
other hand discrimination in the sixth pair is in the 
preattentive mode since the basic elements differ in 
four terminators and in line crossing. These pairs were 
tested by Krose (1987) using experimental procedures 
as used by Bergen and Julesz (1983). Krose found a 
high detectability for pairs 6, 1, 4 (ordered by the level 
of detection) and a low one for pairs 2, 3, 5. These 
results are only in partial agreement with Julesz's 
model. Next we shall discuss the performance of our 
model on these pairs. 

3.1 A Single Spatial-Frequency Filter Model 

Experiment 1. In this experiment we used simple basic 
elements (Fig. 1) employed also by Krose (1987) and 
Julesz (1984b, 1986). All the input elements had the 
same number of pixels to prevent texture discrimina- 
tion based on energy differences. 

The size of each input micropattern used was 
17 x 17 and it was embedded in a matrix of order 
33 x 33 to allow variations in orientations and shifts. 

Pattern I 2 3 4 5 6 7 

Targe t  

Ground 

+ T + IZ 2" O ':' 

�9 1 [ F /1  -I-  -t- -I- �9 

Fig. 1. Combinations of target and distractor micropatterns used 
in experiment 1. (After Krose 1987) 

105 

Table 1. The discriminability results of the micropattern pairs 
used in experiment 1 

Pattern Dtb 

1 0.46 
2 0.24 
3 0.39 
4 0.09 
5 0.27 
6 0.72 
7 0.56 

Pixels belonging to the basic element will be at gray 
level 255; other pixels will get the gray value 0. Gabor  
filter parameters were o- = 8 and w = 0.875 (one cycle for 
19 pixels). The input for the model consists of two 
patterns and the outputs is their dissimilarity. We shall 
compare these results to those from the human visual 
system for a fixed SOA. Since we did not introduce the 
temporal dimension to our model, we chose an arbi- 
trary SOA (240 ms, from Krose 1987). 

We calculate S (2) for the two basic elements, as a 
function of 0 and find the distance between the spectra 
of the convolutions (3). The results of this model are 
given in Table 1. 

The results depicted in Table 1 are in high corre- 
lation with the results for the human visual system 
(Krose 1986, 1987), the discriminability orders of the 
pairs are almost the same. A comparison between these 
results is presented in Fig. 2. Note that our model has 
low performance, compared to the human perfor- 
mance, in the case where the two micropatterns differ 
in the number of terminators (see Table 1 pair 4). 

c,O 

1 O0 - -  

90 - -  

8 0 - -  

70 - -  

6 0 - -  
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I 
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. 7  

, ,1 

, 5  
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Fig. 2. Correlation between our model predictions (w=0.875) 
and Krose's psychophysical data, for the patterns shown in Fig. 1 
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Table 2. The discriminability results of the micropattern pairs 
used in experiment 2 

(%) Dtb 

9 0.21 
18 0.33 
27 0.39 
36 0.42 
50 0.46 

Experiment 2. Following Krose 's  experiment, we will 
find discrimination values for the following pairs: the 
background elements in this experiment are L shapes 
and the target element vary from L to + .  See the 
variation as a function of ~ in Fig. 3. 

All the target elements have the same number  of 
line crossings and terminators.  Hence according to the 
texton theory we expect the discrimination to be the 
same for all pairs, up to the resolution of crossing 
detection. Psychophysical  results show discrimina- 
bility variat ion from 0, where the target is L, up to a 
certain value indicating the discriminability of the 
(L, + )  pair, where the target is + .  The results of our 
model are given in Table 2. They are found to be in 
high correlation with the psychophysical results. 

The correlation between the results of the G a b o r  
model with the psychophysical experiments are pre- 
sented in Fig. 4. 

3.2 A Multi Spatial-Frequency Filter Model 

In the previous Sect. (3.1) we computed the model 
discrimination values (in frequency domain) for a 
single G a b o r  filter with center frequency of w = 0.875. 
However  the human  visual system contains many 
filters with different peak spatial frequencies operating 
in parallel (Wilson 1983; Watson  1983), and it is 
reasonable to assume that  discrimination is based on 
the filter that yield the best discrimination for the pair 
of patterns involved. We tested our model on a spatial 
frequency range ofw = 0.5 to w = 4.25. For  each pattern 
we selected the filter with the best discrimination value 
(Dtb) and took this value as the discrimination level for 
the pattern. The results are depicted in Fig. 5. This 
modified model gives somewhat  better fit to the 
psychophysical data  of Krose (1986, 1987) with a 
correlation coefficient of r = 0.71. Pattern 4 is again out 
of range, and may be considered as an exception, 
without it the correlation coefficient is r=0.91.  The 
deviation of patterns 3 and 5 are due to the high spatial 
frequency components.  Limiting the frequency range 
to w < 1.25 (highest filter), where most  of the patterns 
energy lies improves correlation up to 0.96. Most  
discrirninability functions have a major  peak at w 

Pattern I 2 3 4 5 

e(%) 9 18 27 56 50  

Target I I'" 1 1 -  + 

Groundl [ I i I ..... 
Fig. 3. Combinations of target and distractor micropatterns used 
in experiment 2. (After Krose 1987) 
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4. Correlation between our model predictions (w=0.875) 
Krose's psychophysical data, for the patterns shown in Fig. 3 
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Fig. 5. Correlation between our multi-filter model predictions 
and Krose's psychophysical data. Textures pairs 1-7 are the same 
as Fig. i, pairs a-e are the same as in Fig. 3. Open symbols are for 
discriminability values obtained using only low frequency filters 
(w < 1.25), solid symbols are for values obtained adding higher 
frequencies filters (w<4.25). The correlation coefficients are 
r = 0.96 and r = 0.91 respectively (without pair 4 and 0.71 with it). 
Note that e and 1 are the same patterns ( +, L) and the distance 
between them reflects variations in the psychophysical data 
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around 0.75 and a secondary one at w around 1.5. 
Patterns 3 and 5 are significantly better discriminated 
at w= 1.5 then at w = 0.75. 

The Gabor filter model, in its present form, cannot 
account for pattern discrimination based on ter- 
minators. Note that for pattern 6, discrimination also 
may be based on differences in terminators density, 
and human performance is superior to our model 
performance (in this case human performance is error 
free, thus the performance differences may be larger 
than seen). Thus we may have to modify the Gabor 
filter model in order to deal with pattern discrimi- 
nation based on terminators. 

3.3 Summary 

In the first experiment we tested seven input pairs, 
where in some of them preattentive discrimination was 
generated. According to the results of this model the 
transition from attentive to preattentive mode is 
gradual throughout the interval between 0 to 1. If a 
division to preattentive/attentive mode existed we 
would expect psychophysical data to be close to 100% 
if the discrimination were preattentive and close to 0% 
if it were attentive. But the spread of the results 
implicates that this division is too coarse. Another 
possibility is that such a division exists and we must 
add a threshold level to the model above which 
preattentive mode operates and below which attentive 
mode is necessary. 

The psychophysical performance on the pairs 2 and 
3 is almost the same. According to the texton theory, 
supported by many demonstrations, pair 2 (T,L) is 
preattentively indistinguishable because texton dif- 
ferences are very low (one terminator), while in the 
third pair (T, +) preattentive discrimination is possible 
due to the high texton density differences (one ter- 
minator and one line crossing). Introducing a thres- 
hold between the two pairs may resolve this problem. 
Another resolution to this problem comes from the 
observation that (X, T) discrimination requires high 
frequency filters while (T, L) and (X, L) discrimination 
are affected only by low frequency filters. This may 
result lower sensitivity to (X, T) differences in experi- 
ments using short presentation time, due to the longer 
integration time of high frequency filters (Watson 
1983; Wilson 1983). 

In the second experiment we held the number of 
terminators and line crossings constant while varying 
(the spatial location of the lines that composes the 
micropattern, see Fig. 3). The psychophysical and the 
Gabor model results have changed from close to zero, 
which means o segregation, up to the level of the 
detectability of the L, + pair. According to the texton 
theory texture discrimination should not be greatly 
affected by increasing ~, up to the + resolution. 

A quantitative comparison based on correlation 
coefficients can be made between our model and the 
local cross -correlation model of Krose (1986, 1987). 
Taking into account all the patterns used in Sect. 3.2 
Krose's model gives a correlation coefficient of 0.65 
while ours yields 0.71. Our correlation coefficient can 
be improved by not considering pair 4 (terminators) up 
to 0.96, his can be improved by not considering pair 5 
up to 0.84 (Krose 1986). The two models fail on 
different patterns, an observation that may imply that 
a model combining features from the two models may 
have a better predictive value. For example, as Krose 
(1987) points out his model may have better results 
using the chord space of patterns which are low - pass 
filtered and then thresholded. 

Finally, the model prediction may be affected by 
the choice of the dissimilarity measure. We took the 
differences between energies at a particular spatial 
frequency band as a correlate of discriminability. This 
was done by integrating over all orientations and is 
justified since all patterns are randomly rotated. Most 
pattern pairs, although having the same energy when 
averaged across all orientations, differ in the distri- 
bution of energies across the different orientations 
(different second order statistics). Krose (1986) used a 
dissimilarity measure (Euclidean distance) that is sensi- 
tive to this differences in some cases. Replacing (3) by 
the Euclidean distance measure improves our corre- 
lation value up to 0.91 (all patterns), mainly due to the 
improved discriminability on pair 4. It is interesting to 
note that the energy distribution across the different 
orientation filters is translated in all stimuli considered 
here into spatial distribution. This spatial variation 
may limit discrimination, but on the other hand it can 
enhance discrimination between textures differing in 
the second order statistics of the orientation spectrum. 

4 Texture Segregation Based on Gabor Filters 

The task of the next algorithm (GGL) is to find borders 
between regions of different textures. This is a subset of 
the general problem of locating and characterizing 
different textures. A number of techniques for texture 
discrimination have been suggested. Most of them 
limit the number of features and fall into one of the 
following classes: Template matching (Hall 1979), 
pattern sampling (Fairhurst and Stonham 1976), 
spatial transforms, geometrical moments and feature 
extraction (Rosenfeld and Kak 1976). The algorithm 
has two stages. In the first stage the input image is 
transformed into output image by convolution with 
Gabor signals and enables discrimination between 
features by means of intensity differences. The target 
region and the background region will have different 
intensity levels if they contain different features, hence 
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they can be segregated easily on this basis. The second 
stage finds the borders. The algorithm is sensitive to 
energy differences, rotat ion and spatial frequency and 
is insensitive to local translation. 

4.1 The GG L Algorithm ( Gabor-Gaussian-Laplacian ) 

A. Convolve the input image with odd and even 
Gabor  filter and compute sum of squares for each 
position. 
B. Smooth the output  of A (by Gaussian). 
C. Threshold. 
D. Remove noise (small connected components). 
E. Find border  lines (by Laplacian). 
F. Change parameters in Gabor  filter and repeat steps 
A-E. 

In the following simulations we used 32 filters 
having parameters as follows: 0 = 0  ~ 45 ~ 90 ~ 135 ~ 
w=0.5,  0.625, 0.875, 1. (p=0 ~ 90 ~ See the filters in 
Fig. 6. 

The parameter  a depends mainly on the input 
image scale and was tested in the region 6-18, the best 
choice was 12. There is almost no change in the 
convolved output  around o-= 12. Phase information is 
lost by taking only the energy values. The input 
pictures to this algorithm are of size 512 x 512 pixels 

and the graylevel are in the range 0-255, all the pictures 
are monochrome. We used computer generated images 
and also images taken by a video camera. Results did 
not differ in the two cases even though the camera 
images are noisy in nature. A grid of 32 x 32 is set on 
the input image. A convolution with Sine and Cosine 
Gabor  filters of size 65 x 65 are made around each grid 
point. Hence the number of output  energy values are 
( 3 2 - 4 ) * ( 3 2 - 4 ) = 7 8 4 .  The --4 come from the fact 
that we start at line and column 32 and stop at line and 
column 480, because the filter integration size is 65 
x 65. For  each grid point, the sum of squares of the 
Sine and Cosine filters outputs is calculated and then 
transformed into the region 0-255 by means of a linear 
transformation. The output  picture is then a collection 
of 28 x 28 squares of 16 x 16 pixel size, with graylevel 
distribution depending on the texture used. The edges 
are computed on each of the convolution outputs (for 
all 0, co combinations). As we mentioned earlier the 
output of the first step is a collection of 28 x 28 squares. 
This is a low resolution output. In addition, high 
graylevel squares may exist in the neighborhood of low 
graylevel ones and vice versa, this introduces high 
frequency noise relative to the texture size. For  these 
reasons a smoothing operation is necessary before 
calculating texture borders. A Gaussian filter of size 31 
x 31 pixels is convolved with the picture in order to 
smooth it and a threshold is then defined to be in the 
middle of the two peaks of the smoothed histogram. 
Since terminators and line crossings can not be 
trivially converted into Gabor  parameters and the 
basic elements are randomly ordered on the picture 
(which means variable local density), small connected 
components (noise) may be occurring. These compo- 
nents are then removed using a connected component 
algorithm (Rosenfeld and Kak 1976). At the end of this 
step a binary picture is presented where the graylevels 
for the discriminable textures are different. Hence by 
applying a Laplacian operator  the borders can be 
found. The optimal situation is to apply Gabor  filter 
just once. Usually this is not the case and a few 
application are required. We ran the algorithm a few 
times varying the Gabor  parameters. In the case of no 
discrimination the output pictures were smooth (no 
information), and were rejected. In the remaining 
results we found edges and if they did not differ 
significantly the average over all of them was taken. 
Otherwise there is no segregation. 

Fig. 6a and b. The set of Gabor filters used in the GGL 
algorithm. The set contains 4 frequencies (32, 26, 18, and 16 
pixels/cycle), 4 orientations (0 ~ 45 ~ 90 ~ 135 ~ and 2 phase pairs 
for each orientation and frequency. Variation in frequency along 
the X axis and variation in rotation along the Y axis, each figure 
(a, b) has a different phase 

4.2 Results 

The number of cycles within a Gabor  patch increases 
with ~. Therefore for a fixed ~r an optimal region for w 
can be defined, a was tested in the region 6-18 and the 
best choise was 12, 26 pixels per wave period was found 
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Fig. 7. a The input texture pair: +s 
embedded in Ls distractors, b The 
result of convolving a Gabor filter 
with the image (w=0.625, 0=90~ 
e The smoothing operation (Gaussian) 
result, d The threshold operation 
result, e The result of removing small 
connected components (noise). f The 
output (Laplacian) result of the GGL 
algorithm 

to be the best choice in most cases (e.g. w = 0.625 which 
effectively resembles a D O G  function, since for the 
Gaussian we used there were no effective side bands in 
addition to the first negatives). In some cases w = 1 was 
found to be better than 0.625. So usually it was 
sufficient to run the algorithm with the parameters 
a = 1 2 ,  w=0.625, 0 = 0  ~ 45 ~ 90 ~ In the following 
experiments we attempted to discriminate between the 
different textures and to find the borders between 
them, using the G G L  algorithm. A picture is a 
combination of two different textures and the basic 
elements are of size 17 • 17 pixels randomly (orienta- 
tion- and translation wise) embedded in a matrix of 
size 33 • 33. The textures in the following experiments 
are a collection of Ls, Os, Ts and + s micropatterns. 
These micropatterns pairs have been investigated by 
Bergen and Julesz (1983) and Krose (1987). Bergen and 
Julesz (1983) found preattentive discrimination for 
pictures composed of L embedded in a background of 
35 + s and attentive discrimination when L was embed- 
ded in 35 Ts. Krose (1987) found high detectability 
performance for O embedded in + s. In the first pair 
(Fig. 7a) which is a collection of + s embedded in a 

background of Ls we found high discriminability 
between the different textures (Fig. 7b), in addition the 
borders between them were found (Fig. 7a-f). Almost 
the same results have been obtained when + s  were 
embedded in Os (Fig. 8a-d). Lower segregation was 
found for + s embedded in Ts (Fig. 9a--c) while there 
was no segregation at all for Ts embedded in Ls 
(Fig. 10a-d). 

5 General Discussion 

In general Gabor  functions can easily segregate images 
having regions differing in one of the following proper- 
ties: Spatial frequency, density of elements, orienta- 
tion, phase and energy. The larger the number of 
differences, the better the separation. These properties 
can be converted trivially to the Gabor  filter param- 
eters. In addition, Gabor  filters discriminate well 
pictures differing in their textons properties except for 
terminators. 

The failure of the Gabor  filter based model to 
predict terminator based discrimination is interesting 
in itself. Models based on linear filters are quite 
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Fig. 8. a The input texture pair: 
+ s embedded in Os distractors. 
b The result of convolving a Gabor 
filter with the image, e The result 
ofGaussian + Threshold+Noise 
removing, d The output 
(Laplacian) result of the GGL 
algorithm 

Fig. 9. a The input texture pair: +s embedded in Ts distractors, b The result 
of convolving Gabor filter with the image (w=0.625, 0=90~ e The output 
(Laplacian) result of the GGL algorithm 

successful in predicting visual phenomena, mainly at 
contrast threshold level (Daugman 1987; Watson 
1983; Wilson 1983), while above threshold some 
nonlinearities have to be postulated (Julesz 1980; Sagi 
and Hochstein 1983, 1985). The general validity of the 
linear filter based model is also supported by electro- 

physiological studies reflecting properties of single 
cortical cells (Mareelja 1980; Daugman 1980). The 
model examined here performs surprisingly well on all 
patterns examined except one, which, as can be seen 
from Fig. 5, (pattern no. 4), contains terminators. 
There is a very high correlation between human 



111 

Fig. 10. a The input texture pair: 
Ts embedded in Ls distractors. 
b The result of convolving Gabor 
filter with the image (w = 1, 
0=90~ e The result for the same 
frequency when 0=45 ~ d The 
result of w=0.625 and 0=90 ~ 

performance and the model performance, r = 0.96 when 
pattern 4 is not considered (r= 0.71 with pattern 4). In 
the light of the model's good performance, the failure 
on terminators deserves special attention. This failure 
is not totally unexpected, since textures composed of 
patterns used in pair 4 were shown to have identical 
power spectrum (Julesz and Caelli 1979). Our model 
computes local power spectrum and thus may provide 
useful local information for discrimination on pair 4. 
Thus we may not be forced to account for terminator 
detection by adding a special "terminator detector" to 
the Gabor filter model. A natural extension of the 
present model, that can give a better discrimination of 
pair 4, is a model utilizing second order statistics of 
filter responses (across orientation or space). Similarly, 
discrimination on pair 4 can be improved by introduc- 
ing a strong nonlinearity at the filters' outputs. How- 
ever, more experimental exceptions have to be found 
before any of this accounts can be implemented. 

Another problem to the linear filtering approach is 
a demonstration by Julesz and Krose (1988) where they 
show that texture discrimination between textures made 
of Ls and Xs is possible even when the relevant spatial 
frequencies (according to the filtering approach) 
are missing. That Xs and Ls can be discriminated by 
the Gabor filter model is clear from the fact that the 
datum point relating to X/L  discrimination falls along 
the same line as the other data points shown in Fig. 5, 
and from the fact that the G G L  algorithm presented 

here show a good segregation. It is also known that 
X/L  discrimination depends on the size of the Xs and 
when the Xs are made larger, discrimination is reduced 
(Bergen and Adelson 1988; Voorees and Poggio 1988). 
However, as Julesz and Krose (1988) points out, it is 
not clear whether their own demonstration argues 
against a specific linear-filter based model (laplacian of 
gaussian) or against the use of linear-filters in general. 
The assumption that the removal of certain frequencies 
from the input image results their removal from the 
output of the linear filters, is not necessarily true, 
simple nonlinearities as thresholding (or squaring) may 
introduce them back into the filters outputs. In our 
model this kind of nonlinearity (squaring) exists, thus 
the filtered image, after the nonlinearity, will contain 
frequencies related to the size of the X and L micro- 
patterns. This filtered image can be segregated by 
stages B-F in the G G L  algorithm which essentially are 
performing additional filtering (using a Laplacian of 
Gaussian). The interesting point here is that in this case 
the algorithm's output is a map with different gray 
levels corresponding to the different textures, while in 
the simple case (non-filtered original images) the 
output is a map describing the borders between the 
segregated areas. Although this explanation for the 
Julesz and Krose (1988) phenomena is speculative, it 
can be tested psychophysically. Evidence for the 
essential part of it, the secondary filtering stage, 
already exists (Sagi and Hochstein 1985; Sagi 1989). 
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In the G G L  algorithm the parameters  are set to 
certain values. The size of the Gaussian envelope is 
held constant for all frequencies and orientations, 
which has the effect of decreasing the bandwidth of the 
filter with increasing frequency. This makes the com- 
putat ion and the comparison between different fre- 
quency filters easier. For  many  images a small varia- 
tion in the filter size or the Gabor  envelope size did not 
produce any significant difference in the segregation 
results. In addition it was found that the discrimination 
ability did not depend critically on a specific frequency 
or orientation. In some cases the combination of 
several filters produces a better discrimination. The 
necessity of step D in the G G L  algorithm depends on 
the size of the smoothing operation: the larger the 
smoothing spread the less the noise. On the other hand 
the borders become less and less accurate, so for high 
resolution borders step D is necessary and for lower 
resolution it can be bypassed while increasing the 
smoothing operat ion scale. We used the isotropic 
Laplacian filter to find the borders in all directions. 
The Laplacian step comes after thresholding the 
image. These steps can be interchanged and in that case 
an algorithm for skeletoning the picture is needed after 
thresholding. We checked an iterative version of the 
G G L  algorithm and found that the borders between 
different textures become less accurate. Turner (1986) 
used G a b o r  filters iteratively and could discriminate 
well even texutres with identical third order statistics. 
Nothdurf t  (1985) and Sagi and Julesz (1987) have 
shown that texture discrimination is highly dependent 
on the density of the input micropatterns within the 
image. Denser texture leads to higher discrimination. 
The performance of our model improves when the 
density of the texture elements is being increased. 

We can summarize these results and conclude that: 
(1) Visual discrimination performance is continuous 
in the sense that discriminative ability increases with 
the differences between the micropatterns. (2) The 
human  visual system can be divided into preatten- 
tive/attentive modes, by introducing a threshold range 
that  separates the parallel and sequential modes. 
Similarity values around the threshold may produce 
preattentive detection depending on stimulus con- 
figuration, and noise level. Practically, this means that 
stimuli having discriminability values within this range 
can not serve as good indicators for preattentive or 
attentive processes. (3) The filtering approach seems 
to predict quite accurately human performance in 
preattentive tasks, and offers some natural ways to 
accommodate  for the unaccountable cases. 
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