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Motion-induced blindness as a noisy excitable system 
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A B S T R A C T   

Perceptual disappearance of a salient target induced by a moving texture mask (MIB: Motion-Induced Blindness) 
is a striking effect, currently poorly understood. Here, we investigated whether the dynamics of MIB qualify as an 
excitable system. Excitable systems exhibit fast switches from one state to another (e.g., visible/invisible) 
induced by an above-threshold perturbation and stimulus-independent dynamics, followed by a refractory 
period. In the experiments, disappearance was induced by masks consisting of slowly rotating radial bars with a 
gap at the target location, leading to periodic perturbation of the visual field around the target (a bright par-
afoveal spot). When passed around the target location, masks frequently induced an abrupt target disappearance, 
pointing to locality. As expected from excitable systems, the disappearance time was not affected by additional 
bars crossing the target during invisibility, and there was little dependence on the mask configuration. After the 
target reappeared, it stayed for at least 0.5–2 s (the refractory period). Therefore, the dynamics governing MIB 
represent an example of an excitable system, where the transition to the invisible state is induced by the mask. 
The dynamics that follow were determined mostly by the internal network properties.   

1. Introduction 

Motion-Induced Blindness (MIB) is a striking phenomenon where a 
moving mask suppresses the perception of a physically present static 
target (Bonneh, Cooperman, & Sagi, 2001). MIB disappearances are an 
all-or-none phenomenon and can last up to several seconds, even with a 
high-contrast target located near fixation (Bonneh, Donner, Cooperman, 
Heeger, & Sagi, 2014). Furthermore, invisibility can be perturbed by a 
similar visible cue flashed at the target neighborhood (Meital-Kfir & 
Sagi, 2018), indicating that the neuronal networks involved in invisi-
bility preserve sensitivity. Despite the detailed experimental exploration 
of MIB, the underlying mechanism remains unknown. Here, we 
considered applying the theory of dynamical systems, which was found 
to be useful in describing bistable phenomena. 

MIB, with the corresponding spontaneous transition between seen 
and not-seen states, is often treated as a bistable phenomenon (Bonneh 
et al., 2014; Devyatko, Appelbaum, & Mitroff, 2017; Hsu, Yeh, & 
Kramer, 2006; Jaworska & Lages, 2014). MIB was found to be affected 
by stimulation parameters in a way similar to that of binocular rivalry; 
the two phenomena show a highly correlated pattern of perceptual 

transitions across individuals (Carter & Pettigrew, 2003). Others point 
to the large individual differences in MIB measurements as a modeling 
challenge, arguing that “normative models of MIB may not be practical” 
(Sparrow, LaBarre, & Merrill, 2017). 

One interesting approach to describe bistable phenomena involves 
modeling a stable percept as an attractor state, which can be defined as 
the persistent activity of a group of neurons (Braun & Mattia, 2010; Cao, 
Pastukhov, Aleshin, Mattia, & Braun, 2021). In this model, the irregular 
switching between percepts is governed by intrinsic noise, which drives 
the network state between the two attractors. The mechanism under-
lying switching can be described as follows: there is a basin of attraction 
around attractor states, meaning that in the absence of noise, the system 
would return to the attractor state when perturbed, making switching 
impossible. However, the presence of noise introduces random pertur-
bations that can move the system outside of the current basin of 
attraction into the basin of another attractor. 

When an external periodic perturbation or signal is introduced, an 
intriguing phenomenon can occur. The external signal effectively alters 
the relative sizes of the basins of attraction for the two attractor states. A 
smaller basin of attraction increases the probability of escaping it. When 
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the size change is significant, there is a marked difference in switching 
probability during the different phases of the signal. The level of noise 
plays a crucial role in determining the system’s behavior. For instance, a 
small amount of noise introduces weak perturbations, resulting in a low 
probability of switching during all signal phases. Conversely, in the 
presence of high levels of noise, the system dynamics are predominately 
governed by noise, leading to a similar switching behavior across all the 
phases. However, with intermediate noise levels, the switching proba-
bility varies substantially across the different signal phases. Here, 
switching predominantly occurs during the favorable phase of the 
signal. This phenomenon, characterized by an increased frequency 
component in the switching behavior, a frequency corresponding to the 
stimulus frequency, is known as stochastic resonance (see the Supple-
mentary Material for an illustration). 

An important difference between MIB and other bistable phenom-
ena, such as binocular rivalry, lies in the number of stable states. 
Whereas in bistable phenomena two percepts may equally last for pro-
longed periods, in MIB the invisibility state is unstable, exhibiting a 
transient behavior. In dynamical systems theory, such behavior char-
acterizes excitable systems. For example, consider a spiking neuron. In 
the absence of a strong input, the neuron is in a resting state – small 
input fluctuations lead to small fluctuations in the membrane potential, 
tracking the input frequency. However, when the input exceeds the 
threshold level, the neuron responds with a large-scale excursion in 
phase space (action potential). Once an action potential is initiated, the 
membrane potential changes substantially and is weakly dependent on 
the input. The temporal profile of the spike largely depends on the 
properties of the neuron, but not on the properties of the input. When 
the action potential ends, there is a measurable refractory period during 
which the neuron cannot emit spikes. 

In a manner similar to a bistable system, excitable systems can also 
exhibit stochastic resonance. In the absence of noise or external 
perturbation, the dynamics of a bistable system converge to one of the 
stable states, whereas in an excitable system would converge to its 
resting state. In the presence of a sufficient amount of noise, a bistable 
system switches between stable states, whereas an excitable system 
repeatedly undergoes a large excursion; each trajectory ends at its 
resting state. The detailed dynamics underlying these transitions, which 
depend on the strength of the noise and the properties of the system, can 
be explored using periodic external stimulation. A stimulation period 
that is close to the characteristic system time constant is expected to 
facilitate switching at a stimulation frequency. In contrast, when the 
stimulation frequency is too high, the system, while in transit toward its 
stable state, is insensitive to external stimulation and is not expected to 
be affected by the frequent incoming stimulation. When the stimulation 
frequency is too low, since intrinsic dynamics is faster than the driving 
frequency, several switches are possible during a single stimulation 
period that broadens the response in the frequency domain. Overall, this 
looks like a noise-assisted resonance – there is a specific noise-dependent 
frequency of stimulation that leads to optimal switching (Longtin & 
Chialvo, 1998; Muratov, Vanden-Eijnden, & Weinan, 2005; Volkov, 
Ullner, Zaikin, & Kurths, 2003; Gammaitoni et al., 1998). 

Bistable models assume that perception corresponds to the proximity 
of the dynamical system state to one of the attractors. However, when 
considering perception in an excitable system, this assumption needs to 
be clarified. Regarding motion-induced blindness (MIB), the perceptual 
disappearance of a target does not align with any specific attractor state. 
We can draw a parallel to memory retrieval in an attractor neural 
network, where retrieval occurs when the system approaches one of its 
attractor states associated with a memory. Similarly, in MIB, when the 
system diverges sufficiently from the attractor state representing the 
target and there are no attractor states near the system trajectory, the 
target perceptually disappears. Under this interpretation, within the 
limit of low noise, we can anticipate several characteristics: (1) excita-
tion of the system leads to a long excursion, determined by the system 
dynamics, followed by relaxation to a visible resting state. This 

excursion results in a substantial, non-zero duration of invisibility; (2) 
there is a refractory period, which represents the minimal visibility time 
required before the target can disappear again; and (3) the signal-to- 
noise ratio (defined as the switching amplitude at stimulus frequency 
relative to other frequencies, see the Methods section) exhibits a non- 
monotonic dependency on the mask frequency. Regarding high noise 
levels, we still expect a substantial mean visibility period, and the 
dependence of the signal-to-noise ratio on the mask frequency may be 
less pronounced or even disappear together with the refractory period. 

In our study, we employed two types of stimulation to investigate 
motion-induced blindness (MIB):  

1. Static Mask: We used a fixed mask that did not change over time or 
an absent mask, which resulted in perceiving the Troxler effect. The 
Troxler effect (Troxler, 1804) refers to the perceptual disappearance 
of a static target when it is presented away from the viewer’s fixation 
point.  

2. Periodic Stimulation: We employed periodic stimulation to study the 
dynamics of MIB while considering the mask as a driving force. This 
allowed us to explore how the presence of a moving mask influences 
the perceptual switches in MIB. 

Although perceptual fluctuations in the presence of static and peri-
odic masks were found to be affected differently by the stimulation 
parameters, some similarities were noted (Bonneh et al., 2014). The 
experiments with a static mask allowed us to define a switching baseline 
of a resting state, shared by the two stimulation types. We found that the 
frequency of the disappearance events in the static mask condition 
varied continuously 5-fold across observers. In our experiments, ob-
servers displaying a small frequency of disappearance events in the 
static condition exhibited the behavior expected from excitable systems, 
whereas observers having a large frequency of disappearances in the 
static condition showed smaller effects. This suggests that a significant 
portion of the switches observed in the latter group were not directly 
related to the presence of the moving mask. Observers that had many 
disappearance events in the static mask condition also had short indi-
visibility periods, whereas observers with few invisibility periods in the 
static mask condition had longer invisibility periods, rarely shorter than 
400 ms, indicating the presence of a minimum duration of invisibility in 
MIB conditions (similar to the findings by Meital-Kfir et al., 2016). 
Furthermore, for most participants, regardless of the mask condition, the 
visible periods were not shorter than 1–2 s, indicating the presence of a 
refractory period. Our results indicate that a non-monotonic relationship 
exists between the SNR and the stimulation frequency. This suggests that 
the switching behavior in MIB is influenced by the frequency of the 
applied stimulation. 

2. Methods 

2.1. Human observers 

This study was approved by the Weizmann Institute of Science Ethics 
Committee and the Helsinki Committee. Ten human observers with 
normal or corrected-to-normal vision participated in the experiment. 
Before the experimentation, all observers provided their informed con-
sent under the approved Declaration of Helsinki. 

Six observers with normal or corrected-to-normal vision participated 
in all experiments. 

2.2. Stimuli 

This study included 6 experimental conditions. Stimuli consisted of a 
static target (yellow dot, 0.5 deg in diameter) placed at 6 deg in the 
upper-left visual field and a fixation point (a white dot 0.25 deg in 
diameter). These elements were present in all conditions. In the Troxler 
condition, no additional elements were present on the screen. In the 
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other 5 conditions, there was either a static or a rotating mask. The mask 
consisted of lines placed along six rays originating near the fixation 
point and form a 60◦ angle between each pair of rays. Each ray was 
composed of two distinguishable lines to avoid local interactions with 
the target during mask rotation. A similar “protection zone” was also 
maintained between the mask and the fixation point. The inner line 
started at 1.25 deg of visual angle and ended at 4.6 deg, whereas the 
outer line started at 7 deg and ended at 10.5 deg. In the rotating mask 
conditions, the rays were rotated clockwise with constant angular ve-
locity. The angular velocity was chosen so that the periods of motion (i. 
e., the time between identical images on the screen) were 1, 2, 4, or 8 
sec. 

2.3. Procedure 

After signing a consent form, the observers performed several daily 
sessions (minimum 6, maximum-12). In each daily session, the observers 
performed three blocks of trials, 20 minutes each. A mandatory 15-min-
ute break separated the blocks. Each trial was self-initiated by the 
observer and lasted 120 sec. During the trial, the observers were 
instructed to fixate on a central fixation point and report when the target 
is perceptually invisible by pressing and holding the space bar on a 
computer keyboard until the target becomes visible. 

2.4. Empirical characteristic function 

The characteristic function is formally defined as. 

φX(ω) = E
[
eiωX]

where E[.] is the expected value, and i =
̅̅̅̅̅̅̅
− 1

√
and X are random vari-

ables. Empirical distribution functions were computed by substituting 
samples from X, 

φX(ω) =
∑n

k=1
eiωxk  

where Xk is the k-th data point out of n. Absolute values of φX(ω) are 
shown on graphs. φX(0) = 1 by definition, and if X has a periodic density 
function, there is only one non-zero value of φX(ω) corresponding to the 
period of density function. 

2.5. Fitting procedure 

We fitted the disappearance distributions as the sum of two random 
variables: one having a Weibull distribution and the other having a 
Gamma distribution. 

X = X1 + X2

X1 ∼
1

σ
̅̅̅̅̅
2π

√ xa− 1e− x
b

X2 =
b
a

(x
a

)b− 1
e
−

(
x
a

)b

, x⩾0

(1) 

The Gamma distribution was previously used to fit bistable phe-
nomena (Carter & Pettigrew, 2003; Devyatko et al., 2017). Additionally, 
we assumed that there is a minimal delay required for the deterministic 
trajectory to return to a stable fixed point when the system is excited, 
and that some jitter exists in the motor responses, which we attempted to 
capture by the Weibull distribution. We used many tuples of samples 
(106 for each set of parameters) where the first elements of a tuple 
consisted of samples from the Gamma distribution, and the second 
element of a tuple consisted of samples from the Weibull distribution. 
The values of tuples were added to have a sample from the theoretical 
distribution, which in turn, were used to form an empirical cumulative 
distribution, and finally, the intermediate values of the theoretical 

cumulative distribution function (CDF) were estimated by linear inter-
polation. Using interpolated CDF, we estimated the p-value of the Kol-
mogorov–Smirnoff goodness of fit. The obtained p-values were used as a 
cost function in an optimization procedure that consisted of 2 consec-
utive runs of Genetic Algorithm (GA (Deb, 1999), as implemented in the 
Matlab ® optimization toolbox). Repeating this procedure with the best 
value found in the first round as seed values for a second round of GA 
increased the chances of finding better solutions. However, this method 
does not guarantee that no good fit to the data exists when our procedure 
failed to find one. 

2.6. Signal-to-noise ratio analysis 

To compute the Signal-to-Noise Ratio (SNR), we created a signal 
representing the perceptual states as a function of time. The visible 
target was assigned the value ‘1’ and the invisible target was assigned 
the value ‘0’ discretized at 1 ms precision. All trials were concatenated, 
sequentially forming a single signal for every observer. SNR was defined 
as the ratio between the peak amplitude at a stimulation frequency 
within a narrow band (~2–10 mHz) of an expected stimulation fre-
quency and an average amplitude in a wider frequency window (16 2

3 
times wider). More specifically, a Fast Fourier Transform was computed 
on the generated signal and a narrow band was selected as 5 frequency 
bins around the expected frequency, whereas the wide band contained 
100 frequency bins. An illustration is provided in Fig. 7 

3. Results 

To efficiently track the dependence of perceptual transitions on a 
mask structure, we employed masks consisting of discrete, well-defined 
parts. The mask (Fig. 1) consisted of bars rotating around a fixation point 
(with breaks inserted to avoid physical interference with the target); the 
number of bars and their speed was varied to control the mask angular 
frequency (see the Methods section). The important timescale is the time 
interval between consecutive events where a bar passing the target 
shows indistinguishable displayed images. Therefore, we report the 
period of the mask as the minimal time between identical image ap-
pearances on the screen. 

Fig. 2 depicts the dependence of the perceptual state on the phase of 
the mask for two observers. Clearly, the disappearance report (the black 
lines) lacks a structure for short periods (1 sec) of mask rotation, but it 
was phase locked for longer periods (4 sec). The results for all observers 
are shown in the Supplementary Materials. For the longer rotation 
period (4 sec), the target was reported as visible during some phases of 
the stimulation cycle on practically every mask cycle, whereas during 
other phases, visibility reports were recorded on only 65–80 % of the 
cycles. This indicates that the moving bars are effective inducers of MIB. 
In contrast, with the shorter mask period (1 sec), the invisibility reports 
were uniformly distributed during the stimulation cycle, indicating that 
the system does not have sufficient time for relaxation from the invisible 
state. The simple mathematical properties of this mask enable a sys-
tematic study of the specific mechanisms governing disappearances. 
Moreover, at slow rotation speeds, this mask can be used to study in-
teractions across the boundary of awareness, since for slow presentation 
periods the invisibility time is highly predictable. Is it possible that the 
moving bars amplify the phase-dependent visibility effect present in 
experiments with static masks? Ruling out this possibility is experi-
mentally a challenging task, since it is well known that disappearances 
in the Troxler condition are rare, and the static mask is not much 
different in this respect (Bonneh et al., 2014). Therefore, it would 
require an unreasonable number of trials to collect sufficient data for the 
different phases of the static mask. However, Bonneh et al. (2014) 
showed that perceptual disappearances with a static mask display a 
behavior similar to that of Troxler fading, which is very different from 
that of MIB. For example, increasing the target contrast reduces the 
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disappearance rate in static conditions (with or without a mask), while 
increasing the rate in MIB. Furthermore, we observed a 5-fold variation 
of the disappearance rate in the Troxler condition, ranging from a few 
events for observer O3 to a number comparable to disappearances in the 
moving mask conditions for observer O4 (see the distributions in Sup-
plementary Figures S3 1–6). Observers with a high disappearance rate in 
the Troxler condition show reduced phase dependency in the moving 
mask condition. Fig. 3 illustrates the relationship between the average 
duration between disappearance events in the Troxler condition and the 
ratio between the maximum and minimum of invisibility during a 
stimulation period (the modulation index). Therefore, it is unlikely that 
MIB here results from amplification of phase dependency in the static 
condition. 

To determine whether a refractory period is present, we examined 
the distribution of visible periods (Fig. 4, and Supplementary Material). 
One can see that all visible periods, except one in this example, are 
longer than 800 ms. This cannot be explained by limits on the reporting 
speed, since there are many invisible periods with shorter durations. 
Within the context of the current theory, this minimal duration is due to 
the system’s refractory period, i.e., the system needs to recover from one 
invisibility epoch before transitioning to a new invisibility epoch. Thus, 
when the target becomes visible, it will stay visible for some minimum 
time. The time interval distributions for visible and invisible periods for 
all observers are depicted in Supplementary Fig. S3 1-6. Of the six ob-
servers, four show evidence of a refractory period when excluding a few 
very brief visibility events that could potentially be attributed to acci-
dental key presses or releases during the reporting of target visibility, or 
rare short events influenced by the presence of noise. For observers O4 
and O6, as well as observer O2, when the mask has a period of 1 s, there 
is a notable occurrence of numerous short visibility events. This 
behavior aligns with what would be expected in an excitable system 
with a significant noise level, as supported by the simulations presented 
in the Supplementary Material. However, we acknowledge that it is 
possible that a different mechanism may be responsible for perception in 

these observers. 
Previous studies have explored the distribution of bistable domi-

nance time, which refers to the duration of a single percept before 
switching to another percept. Some of these studies have attempted to 
model this distribution using a Gamma distribution (Brascamp, van Ee, 
Pestman, & van der Berg, 2005; Leopold & Logothetis, 1996). However, 
it has been reported that the data are not always well described by a 
Gamma distribution. Similarly, in our own experiments, we also did not 
obtain a good fit using the Gamma distribution. In the present experi-
mental setup, along with the fundamental perceptual events, there is a 
motor execution stage, often modeled as a normally distributed random 
variable. Thus, we posited, as is traditionally done in modeling human 
reaction times, that a combination of two random variables could pro-
vide a more accurate fit to the data (Heathcote, Popiel, & Mewhort, 
1991; Marmolejo-Ramos, Cousineau, Benites, & Maehara, 2015). Spe-
cifically, one variable adheres to a Gamma distribution representing the 
perceptual process, and the other follows a Weibull distribution. In all 
conditions reported here (34 conditions having more than 10 disap-
pearance events), we obtained an excellent fit (the smallest p-value in 
the Kolmogorov-Smirnoff test was 0.32; see Table 1). Nevertheless, in 
the exploratory experiment there are some conditions, mainly the ones 
that employed amplitude modulation of a target that resulted in fits with 
very small p-values. In 231 out of 248 conditions, the distribution of the 
invisible periods is well described by the sum of the Gamma distributed 
and the Weibull distributed random variables. The literature also sug-
gests that the Gaussian distribution describes the motor reporting (see, e. 
g., (Heathcote et al., 1991)). We have detailed the results of this model’s 
excellent fit in a biorxiv preprint with the same title. However, it is 
important to note that random variables following a Gaussian distribu-
tion may produce arbitrarily large negative values, potentially resulting 
in an overall negative value for the time interval, which lacks a mean-
ingful physical interpretation. 

We have presented evidence supporting the existence of a refractory 
period following the invisibility state, which is clearly observed in half 

Fig. 1. An example of stimuli used in the experiments. A screenshot of a stimulus shown on a 24″ display that was viewed from 120 cm. In the experiment the mask 
consisted of white bars rotating around the fixation point, thus leading to periodic stimulation; the time depended on the rotation speed and the number of bars. In 
the static condition the stimulus was presented as depicted in the picture. 
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of the observers (Supplemental Fig. S3 1-6). Additionally, we have 
observed a delay in the dynamics before the system returns to the resting 
state. Next, we show the presence of noise-assisted resonance. Fig. 5 
depicts the signal-to-noise ratio (SNR, see the Methods section for de-
tails) for each observer under different rotating mask periods. As one can 
see, for most observers there is a non-monotonic dependence of SNR on 
the mask frequency. One observer shows monotonic dependence, 
possibly indicating that the resonance is at a higher frequency. It is 
interesting that the optimal stimulation frequency is similar for all ob-
servers, except one, who does not show noise-assisted resonance within 
our experimental range. This result suggests that the dynamical prop-
erties of the mechanism underlying MIB is common to all people. 

The phase-locking analysis reveals that the effectiveness of the mask 
is 20–30 %. For slow speeds, the disappearance events are concentrated 
around a specific cycle phase. Additionally, the system spends a char-
acteristic time in the invisible state. By jointly considering these three 
observations, we can conclude that a bar passing near the target 
generally induces the target to disappear, but not always. However, 
when the rotation speed is fast, so that consecutive bars cross the target 
within a single disappearance epoch, a new disappearance event will not 
take place. Therefore, we would expect the statistics of the inter- 
disappearance events (the time between two consecutive disappear-
ances) to correspond to the statistics of spontaneous disappearances 
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Fig. 2. Examples of the disappearance patterns from 2 participants and 2 stimulation frequencies. Top row: A raster plot of the invisibility reports. The black 
regions represent moments when the target was reported to be absent. Consecutive periods of mask rotation are stacked vertically. Bottom row: The disappearance 
rates of a target as a function of time within one stimulation cycle. (A) and (B) are the results from one human observer for mask periods of 1 sec (A) and 4 sec (B). (C) 
and (D) are the same as (A) and (B) obtained from another human observer. One can observe that the disappearance rate toward the end of the cycle for both 
observers approaches 25%, indicating the high effectiveness of the mask to induce MIB. In contrast, in the middle of the cycle for slow mask periods (B, D). there are 
reduced disappearance rates. For example, in (B) the target is practically always reported visible in the middle of the cycle. 

Fig. 3. Relationship between the Troxler events and the phase modulation of 
visibility. For each observer, we calculated the average duration between dis-
appearances in the Troxler condition within the experimental session, and the 
visibility index in the MIB condition. The visibility index is defined as the 
maximum ratio (across all MIB conditions) between the highest and lowest 
fractions of periods during which the target was invisible (across different 
phases of stimulation). The graph illustrates a clear trend: as the frequency of 
Troxler events decreases, the visibility index tends to increase. 
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under the limit of high rotation speed. If the rotation speed is too slow, 
there will be longer periods of visibility (resting states) between the 
induced invisible events, allowing for infrequent spontaneous events of 
disappearance (as in the Troxler effect) when the mask is in a favorable 
phase. In both cases, the distribution of the inter-disappearance times 
would be smeared across many timescales and would weakly depend on 
the stimulation frequency. For intermediate rotation speeds, where the 
rotation period approaches the characteristic timescale of the system, 

upon a state switch triggered by a favorable stimulus event, the intrinsic 
dynamics bring the system to a resting state, and thus to a response that 
is time locked to a specific phase and frequency. Since the mask does not 
induce a disappearance in every period, one would expect the inter- 
disappearance times to be predominantly multiples of the rotation 
period. 

Fig 6 (top row) shows the inter-disappearance times for one observer. 
One can see that for mask periods (T) of 2, 4, and 8 s, there are peaks in 

Fig. 4. Example of the distributions of the visible and invisible periods for one observer (O3) and one condition (stimulation period 2 sec). Note that visible periods 
can be as long as the duration of a trial, especially for the Troxler effect. These long periods are not shown on the distribution, since the time axis was cut to 10 sec to 
see the structure of the distribution of invisible periods. 

Table 1 
The distribution parameters for the disappearance times. The distributions were assumed to be the sum of two random variables, one Weibull distributed and one 
gamma distributed. p represents the p-value of the Kolmogorov-Smirnoff goodness of fit. All six observers are shown (3 rows × 2 columns). The condition where there 
are fewer than 10 disappearance events was not fitted. The highlighted columns show the constant delay before the target reappears, representing a long excursion time 
(~0.5 sec) in an excitable system until it returns to a stable state. One can see that these times are relatively consistent for the same observer in all experimental 
conditions, probably indicating prototypical dynamics. The symbol σ probably indicates the jitter in the response. The parameters of the gamma distribution are more 
variable, even within the same observer, possibly indicating the differential effect of the mask. For instance, one can see that the κ values are more consistent in 
conditions with a moving mask than in the Troxler or static mask conditions (see the condition details in the Methods section).   

p Gamma Weibull p Gamma Weibull   

a b a b  a b a b  

O1     O2     
Troxler 0.98  0.23  0.49  1.04 2.62 0.94 1.1  0.44  0.23  2.15 
Static mask 0.98  1.13  0.35  0.67 3.4 1 1.24  0.32  0.17  2.68 
1 sec 0.89  0.75  1.15  1.4 4.75 0.38 0.11  0.86  1.1  1.2 
2 sec 0.86  0.67  0.63  1.82 2.44 0.78 1.27  0.77  0.17  2.27 
4 sec 0.92  0.31  1.09  1.36 4.47 0.97 0.44  0.88  0.79  1.37 
8 sec 0.98  0.62  0.89  1.12 4.75 0.83 1.12  0.41  0.64  1.04  

O3     O4     
Troxler      0.89 2  0.19  0.25  1.81 
Static mask      0.95 0.76  0.34  0.56  2.22 
1 sec 0.92  0.82  0.58  0.78 3.53 0.86 0.51  0.77  0.67  2.08 
2 sec 0.49  1.64  0.32  0.5 2.52 0.5 1.61  0.29  0.58  2.17 
4 sec 1  0.35  0.8  0.87 3 0.78 0.61  0.57  0.69  2.67 
8 sec 1  0.33  0.83  0.83 3.35 0.92 1.2  0.46  0.64  2.79  

O5     O6     
Troxler 0.9  2.02  0.14  0.82 4.36 0.92 0.85  0.25  0.54  4.3 
Static mask 0.91  0.27  0.2  1.1 4.49 0.97 0.82  0.02  0.52  4.9 
1 sec 0.91  0.44  0.85  0.97 4.16 0.95 1.8  0.31  0.41  2.42 
2 sec 0.55  0.45  0.41  0.97 4.73 0.32 1.11  0.32  0.6  2.4 
4 sec 0.68  0.16  1.07  1.11 6.04 0.97 0.57  0.52  0.61  3.61 
8 sec 0.92  0.13  0.74  1.31 3.87 0.93 0.3  0.59  0.69  5.22  
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Fig. 5. Dependence of the signal-to-noise ratio (SNR) on the stimulation frequency. Each plot shows the SNR for a single observer for different mask periods (see 
details in the Methods section). 

Fig. 6. Inter-disappearance times. Top row: Histograms of the inter-disappearance times for one observer during different mask periods (indicated in the subplot 
titles). Middle row: Amplitude for empirical characteristic functions of the distributions shown in the top row. Bottom row: Amplitudes from each characteristic 
function at the frequency corresponding to the frequency of the mask are shown. Each plot corresponds to the experiments performed by a single observer; the left 
one matches the data depicted in the top and middle rows. 
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the distributions of the inter-disappearance times corresponding to 
times nT, where n is an integer number, i.e., it frequently requires 
several mask periods before the target disappears. One can also observe 
that near the resonance frequency (T = 4sec, Fig. 5), the second and 
third times that the bar passes the target (peaks at 8 and 12 sec) are more 
successful in inducing disappearance than the first time is. This is ex-
pected if the rotation period is slightly faster than the characteristic 
timescale of the system. Here, when the system returns to a resting state, 
the mask has already passed the most favorable phase for switching (see 
Fig. 2). 

Another way to see the periodicity of the function is to take its 
Fourier transform. A single peaked amplitude spectrum will indicate a 
single dominant frequency. The characteristic function (Billingsley, 
1995) of the distribution is practically the Fourier transform of its 
probability density function (pdf). Since the pdf shape is not known, one 
can compute an empirical characteristic function (Cramér, 1946), and if 
the pdf is dominated by a periodic component, then a peak in the ab-
solute value of the empirical characteristic function is expected. The 
middle row in Fig. 6 shows the absolute value of the empirical charac-
teristic function for samples whose histograms are shown in the top row. 
The peaks at the stimulation frequencies are clearly seen for mask pe-
riods of 2, 4, and 8 s (red circles) – confirming that the disappearance 
events are predominantly spaced by the integer number of periods (nT), 
with many different values for the integer n. Interestingly, the amplitude 
of the mode corresponding to the stimulation frequency has a non- 
monotonic behavior (Fig. 6, bottom row for all observers). For 
example, for the observer shown in the top and middle rows, the peak 
amplitude for T = 4 sec is larger than for T = 2 sec or T = 8 sec. 

The distributions and empirical characteristic functions for all ob-
servers are presented in the Supplementary Materials. The data for one 
observer (O4, examples of raster plots are shown in Fig. 2C,D) show no 
peak in the characteristic functions for any stimulation frequency. These 
results indicate the domination of noise in the behavior but may also 
reflect the low efficiency of bars as inducers for this observer. One of the 
indications for the former case is the similarity of the inter- 
disappearance distributions between moving bars, static bars, and 
Troxler conditions (Supplementary Figures Fig. S2 1-6). 

4. Discussion 

The series of experiments performed in this work indicate that 
rotating bars are effective inducers of target disappearance in MIB. 
Moreover, the effect is phase locked to the mask for long periods (Fig. 2). 
We observed a refractory period for most observers (Figs. 4, S3 1-6). For 
two observers (O4 and O6), phase locking was less pronounced 
(Figure S.1. 4, Figure S.1. 6), suggesting inefficient stimulation. Signal- 
to-noise analysis of the temporal sequences of responses showed 

resonance at frequencies at around 0.25 Hz, corresponding to a mask 
period of 4 sec (Fig. 5). In analyzing the empirical characteristic func-
tions, we observed peaks at frequencies corresponding to integer mul-
tiples of the mask periods (Fig. 6). In other words, several mask periods 
are frequently required to induce a disappearance, indicating that 
moving bars are weak disappearance inducers and that the amount of 
intrinsic noise is relatively small. Additionally, in all experiments the 
distribution of invisibility times is well modeled by the sum of two 
random variables distributed according to the Gamma and Weibull 
distributions. The Gamma distribution was frequently considered for 
describing switching dynamics in bistable systems. We added the Wei-
bull distribution to absorb temporal jitter when executing a motor 
command to either press or release a keyboard key and the mean time 
required for a long excursion of the system until it returns to a resting 
state. In the Supplementary Materials we present the simulation of an 
excitable system that shows similar behavior. Therefore, we concluded 
that the mechanisms responsible for MIB may operate in the regime of 
an excitable system. 

Our data point to local effects of the mask on the target, since in the 
slow conditions there is an increased rate of disappearance at a specific 
phase of mask rotation. Uncovering the mechanisms underlying these 
effects is not easy, since there are observer-dependent relatively long 
delays in the observers’ reports. For example, (Donner, Sagi, Bonneh, & 
Heeger, 2008) replayed simulated MIB visibility sequences to observers, 
with the target physically erased at stimulation times when invisibility 
was previously reported in the presence of continuous stimulation. 
Observers’ reaction times to the physical disappearance ranged between 
500 and 800 msec. This delay needs to be added with the time required 
for perceptual visibility-invisibility transition, assumed to be around 
~400 ms (Meital-Kfir & Sagi, 2018). Therefore, the expected delay is 
about 1 sec, which is 1/8 of a cycle in our slowest condition with un-
defined variability of these delays. However, by introspection, the target 
disappears when the bars are near the target. Given the results obtained 
in (May, Tsiappoutas, & Flanagan, 2003) pointing out that an abrupt 
contrast decrement leads to target disappearance, and that known 
masking effects, such as metacontrast masking (Alpert, 1953) possibly 
affect the target, it suggests that the moving, but not the static mask 
induces local abrupt changes in perceived contrast by masking effects 
that consequently trigger target disappearance. 

One of the models used in the past to study bistable perception de-
scribes perceptual switches by the random motion of a “particle” in a 
double-well potential. In this model, the decision variable corresponds 
to a one-dimensional coordinate of a “particle” inside a potential with 
two local minima (two wells), separated by a barrier. In the absence of 
noise, the “particle” “falls” to the position of the nearest local minimum 
and stays there indefinitely. In the presence of noise, however, the 
“particle” has a chance to gain enough energy to overcome the barrier 

Fig. 7. Signal-to-Noise analysis. An example of an amplitude of a Fast Fourier Transform of a temporal signal that consisted of “1″ (target visible) and “0” (target 
invisible) sampled at 1 ms time steps for observer O5, and a 4 sec stimulation period. The Signal-to-Noise ratio was computed as the ratio between mean amplitudes 
of signal bins (expected stimulation frequency ± 5 bins, denoted in red) and noise bins (expected frequency ± 100 bins, excluding signal bins, denoted by a blue 
curve). Mean noise value is denoted by a black line. 
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and move to another well, and it will subsequently fall to another local 
minimum. Translating this to perception, it is usually assumed that 
when a “particle” is close to one minimum, one image is perceived, and 
when the “particle” is close to another minimum, another image is 
perceived. Kim et al., 2006, introduced this one-dimensional model to 
study binocular rivalry. Nevertheless, it is hard to extend this formalism 
to describe the quasi-stable perception in MIB or the Troxler effect 
(Troxler, 1804). Here we suggest that the theory of excitable systems is a 
suitable framework for describing MIB. Although the practical imple-
mentation in a biological network can be quite complicated, the simplest 
formal model describing excitable systems is the FitzHugh-Nagumo 
model (FitzHugh, 1961; Nagumo, Arimoto, & Yoshizawa, 1962; Sher-
wood, 2014). It assumes that the neuronal dynamics can be effectively 
described by two one-dimensional variables with substantially different 
timescales of evolution. The variable having fast dynamics can be 
interpreted as a decision variable in the double-well model. In contrast, 
the variable with slow dynamics is assumed to represent processes such 
as adaptation (Caetta, Gorea, & Bonneh, 2007; Gorea & Caetta, 2009), 
filling-in (Hsu et al., 2006), motion streaks (Wallis & Arnold, 2009), 
depth ordering, and surface completion (Graf, Adams, & Lages, 2002). 
Within this proposal, there is a perceptual criterion on the “fast” decision 
variable, so that a target is reported invisible when this criterion is 
crossed but is reported visible when the criterion crossing yields a de-
cision that is in the opposite direction. 

By changing parameters in the same noisy FitzHugh-Nagumo model, 
one can describe other bistable phenomena such as binocular rivalry. 
This description can be general enough to describe all stable, bistable, 
and quasi-stable perceptual phenomena. Furthermore, stable fixed 
points of dynamical systems, forming attractors, constitute the basis for 
the memory models in the attractor neural networks (ANN). In these 
networks, the memory items are assumed to be recalled, or perceived 
when the pattern of network activity is close enough to one of the stored 
patterns of activity (memory). Technically, when the overlap (correla-
tion) between the activity and the stored memory exceeds some 
threshold value, the model is assumed to recall this stored memory. In 
other words, the overlap measure can be considered a decision variable. 
A memory item is then recalled (perceived as this specific item) when 
the dynamics of the network activity are near the memorized pattern 
(the fixed point of the dynamics), for example, the resting state in MIB or 
stable percepts in bistable phenomena. Thus, a possible interpretation of 
MIB follows, so that both the static target and the moving mask are each 
consistent with some attractor states in the brain corresponding to their 
generated percepts, whereas both together are inconsistent with any 
attractor. Here, the mask plays the role of a force driving the network 
state away from an otherwise stable attractor that corresponds to the 
static target perception. It appears that there are no other stable 
attractors near the target (meaning that there is no stable illusory 
percept), and that the network dynamics relax (after a long excursion) 
into the stable state, yielding a visible target. During state transition, 
there is no stored pattern along the path of the dynamics that can be 
interpreted as target presence; therefore, the target stays perceptually 
invisible. 

By considering the dynamics of the nonlinear systems near the 
bifurcation point in the context of the Attractor Neural Network model 
of memory, we speculate that the conscious state consists of activating a 
specific attractor associated with a specific memory. Once the network is 
driven away from the attractor, the brain becomes unaware of the 
physical stimulus until the network dynamics return to the memory 
attractor associated with any stimulus. Despite that the brain is unaware 
of the physical stimulus, the stimulus drives the dynamics of the 
network, allowing an interaction across the boundary of awareness 
(Meital-Kfir & Sagi, 2018; Meital-Kfir, Bonneh, & Sagi, 2016). As in the 
initial stage of testing these speculations, we established here that MIB 
operates in a regime similar to that of an excitable system. 
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