Publications
2003
The dramatically increased frequency of opportunistic fungal infections has prompted research to diversify the arsenal of antifungal agents. Antimicrobial peptides constitute a promising family for future antibiotics with a new mode of action. However, only a few are effective against fungal pathogens because of their ability to self-assemble. Recently, we showed that the conjugation of fatty acids to the potent antibacterial peptide magainin endowed it with antifungal activity concomitant with an increase in its oligomeric state in solution. To investigate whether a high potency of the parental peptide is prerequisite for antifungal activity, we conjugated undecanoic acid (UA) and palmitic acid (PA) to inactive diastereomers of magainin containing four D-amino acids ([D]-4-magainin), as well as to a weakly active diastereomeric lytic peptide containing Lys and Leu ([D]-K 5L7). All lipopeptides gained potent activity toward Cryptococcus neoformans. Most importantly, [D]-K5L7-UA was highly potent against all microorganisms tested, including bacteria, yeast, and opportunistic fungi. All lipopeptides increased the permeability of Escherichia coli spheroplasts and intact C. neoformans, as well as their corresponding membranes, phosphatidylethanol (PE)/phosphatidylglycerol (PG) and phosphatidylcholine (PC)/PE/phosphatidylinositol (PI)/ergosterol, respectively. The extent of membrane-permeating activity correlated with their biological function, suggesting that the plasma membrane was one of their major targets. Circular dichroism (CD) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy revealed that their mode of oligomerization in solution, structure, and organization in membranes have important roles regarding their antibacterial and antifungal activities. Together with the advantage of using diastereomers versus all L-amino acid peptides, this study paves the way to the design of a new group of potent antifungal peptides urgently needed to combat opportunistic fungal infection.
We report on two new cyclic 17-residue peptides that we named ranacyclins E and T, the first isolated from Rana esculenta frog skin secretions and the second discovered by screening a cDNA library from Rana temporaria. Ranacyclins have a loop region that is homologous with that of an 18-mer peptide, pLR, isolated from the skin of the Northern Leopard frog, Rana pipiens, with no reported antimicrobial activity. Here we show that ranacyclins and pLR have antimicrobial and antifungal activity. However, despite the high structural similarity, they differ in their spectrum of activity. The data reveal that ranacyclins and pLR have several properties that differentiate them from most known antimicrobial peptides. These include the following: (i) they adopt a significant portion of random coil structure in the membrane as revealed by ATR-FTIR and CD spectroscopy (50% for ranacyclin T and 70% for both ranacyclin E and pLR); (ii) they bind similarly to both zwitterionic and negatively charged membranes as revealed by using tryptophan fluorescence and surface plasmon resonance (SPR; BIAcore biosensor); (iii) they insert into the hydrophobic core of the membrane and presumably form transmembrane pores without damage to the bacterial wall, as revealed by SPR, ATR-FTIR, and transmission electron microscopy (TEM); and (iv) despite being highly and equally active in permeating bacterial spheroplasts and negatively charged membranes, they differ significantly in their potencies against target cells. Furthermore, a significant fraction of a given secondary structure is not prerequisite for membrane permeation and antimicrobial activity. However, increasing the fraction of a secondary structure and reducing peptide assembly in the membrane make it easier for the peptide to diffuse through the cell wall, which is different for each microorganism, into the cytoplasmic membrane.
Cationic antibacterial peptides are produced in all living organisms and possess either selective activity toward a certain type of cell or microorganism, or a broad spectrum of activity toward several types of cells including prokaryotic and mammalian cells. In order to exert their activity, peptides first interact with and traverse an outer barrier, e.g., mainly LPS and peptidoglycan in bacteria or a glycocalix layer and matrix proteins in mammalian cells. Only then, can the peptides bind and insert into the cytoplasmic membrane. The mode of action of many antibacterial peptides is believed to be the disruption of the lipidic plasma membrane. Therefore, model phospholipid membranes have been used to study the mode of action of antimicrobial peptides. These studies have demonstrated that peptides that act preferentially on bacteria are also able to interact with and permeate efficiently anionic phospholipids, whereas peptides that lyse mammalian cells bind and permeate efficiently both acidic and zwitterionic phospholipids membranes, mimicking the plasma membranes of these cells. It is now becoming increasingly clear that selective activity of these peptides against different cells depends also on other parameters that characterize both the peptide and the target cell. With respect to the peptide's properties, these include the volume of the molecule, its structure, and its oligomeric state in solution and in membranes. Regarding the target membrane, these include the structure, length, and complexity of the hydrophilic polysaccharide found in its outer layer. These parameters affect the ability of the peptides to diffuse through the cell's outer barrier and to reach its cytoplasmic plasma membrane.
To address the structure-function relationship of discrete regions within the gp41 ectodomain, 70-residue peptide constructs corresponding to the N-terminal subdomain of the HIV-1 gp41 ectodomain were examined in a membrane-associated context. These fragments encompass both fusion peptide (FP) and N-terminal heptad repeat (NHR) regions, and model the N-terminal half of the pre-hairpin intermediate (PHI), which is believed to be the target of the potent entry inhibitor DP-178, recently approved by the FDA. Using mutants, we attempted to map the structural organization of the N-terminal subdomain. Our results suggest that the N-terminal subdomain contains two discrete structural regions: the FP adopts a β-sheet conformation and the NHR is α-helical. This structural make-up is essential for fusogenic function, since loss of function mutants exhibit both a significant reduction in region-specific secondary structure as well as significant impairment in lipid mixing of large unilamellar vesicles. Our results, delineating membrane-associated structure of the FP region differ from previous ones by inclusion of the autonomous oligomerization domain (NHR), which likely contributes to stabilization of the FP structure. Correspondingly, the α-helical structure for the NHR, in context of the FP, correlates with structural predictions for this region in both the hairpin and PHI conformations during fusion. Based on our results, we postulate how oligomerization of regions in this sub-domain is essential for fusion pore formation.
Despite significant advances in cancer therapy, there is an urgent need for drugs with a new mode of action that will preferentially kill cancer cells. Several cationic antimicrobial peptides, which bind strongly to negatively charged membranes, were shown to kill cancer cells slightly better than normal cells. This was explained by a slight increase (3-9%) in the level of the negatively charged membrane phosphatidylserine (PS) in many cancer cells compared to their normal counterparts. Unfortunately, however, these peptides are inactivated by serum components. Here we synthesized and investigated the anticancer activity and the role of peptide charge, peptide structure, and phospholipid headgroup charge on the activity of a new group of diastereomeric lytic peptides (containing D- and L-forms of leucine and lysine; 15-17 amino acids long). The peptides are highly toxic to cancer cells, to a degree similar to or larger than that of mitomycin C. However, compared with mitomycin C and many native antimicrobial peptides, they are more selective for cancer cells. The peptides were investigated for (i) their binding to mono- and bilayer membranes by using the surface plasmon resonance (SPR) technique, (ii) their ability to permeate membranes by using fluorescence spectroscopy, (iii) their structure and their effect on the lipid order by using ATR-FTIR spectroscopy, and (iv) their ability to bind to cancer versus normal cells by using confocal microscopy. The data suggest that the peptides disintegrate the cell membrane in a detergent-like manner. However, in contrast to native antimicrobial peptides, the diastereomers bind and permeate similarly zwitterionic and PS-containing model membranes. Therefore, cell selectivity is probably determined mainly by improved electrostatic attraction of the peptides to acidic components on the surface of cancer cells (e.g., O-glycosylation of mucines). The simple composition of the diastereomeric peptides and their stability regarding enzymatic degradation by serum components make them excellent candidates for new chemotherapeutic drugs.
In recent years, the simple picture of a viral fusion protein interacting with the cell and/or viral membranes by means of only two localized segments (i.e. the fusion peptide and the transmembrane domain) has given way to a more complex picture in which multiple regions from the viral proteins interact with membranes. Indeed, possible roles in membrane binding and/or destabilization have been postulated for the N-terminal heptad repeats, pre-transmembrane segments, and other internal regions of fusion proteins from distant viruses (such as orthomyxo-, retro-, paramyxo-, or flaviviruses). This review focuses on the experimental evidence and functional models postulated so far about the role of these regions in the process of virus-induced membrane fusion.
The high toxicity of most chemotherapeutic drugs and their inactivation by multidrug resistance phenotypes motivated extensive search for drugs with new modes of action. We designed a short cationic diastereomeric peptide composed of D- and L-leucines, lysines, and arginines that has selective toxicity toward cancer cells and significantly inhibits lung metastasis formation in mice (86%) with no detectable side effects. Its ability to depolarize the transmembrane potential of cancer cells at the same rate (within minutes) and concentration (3 μM), at which it shows biological activity, suggests a killing mechanism that involves plasma membrane perturbation. Confocal microscopy experiments verified that the cells died as a result of acute injury, swelling, and bursting, suggesting necrosis. Biosensor binding experiments and attenuated total reflectance-Fourier transform infrared spectroscopy using model membranes have substantiated its high selectivity toward cancer cells. Although this is an initial study that looked at tumor formation rather than the ability of the peptides to reduce established tumors, the simple sequence of the peptide, its high solubility, substantial resistance to degradation, and inactivation by serum components might make it a good candidate for future anticancer treatment.
T20, a synthetic peptide corresponding to a C-terminal segment of the envelope glycoprotein (gp41) of human and simian immunodeficiency viruses, is a potent inhibitor of viral infection. We report here that C-terminal octylation of simian immunodeficiency virus gp41-derived T20 induces a significant increase in its inhibitory potency. Furthermore, when C-terminally octylated, an otherwise inactive mutant in which the C-terminal residues GNWF were replaced by ANAA has potency similar to that of the wild type T20. This effect cannot be explained by a trivial inhibitory effect of the octyl group added to the peptides, because the N-terminally octylated peptides have the same activity as the non-octylated parent peptides. The effects caused by octylation on the oligomerization, secondary structure, and membrane-interaction properties of the peptides were investigated. Our results shed light on the mechanism of inhibition by T20 and provide experimental support for the existence of a pre-hairpin intermediate.
gp41 is the protein responsible for the process of membrane fusion that allows primate lentiviruses (HIV and SIV) to enter into their host cells. gp41 ectodomain contains an N-terminal and a C-terminal heptad repeat region (NHR and CHR) connected by an immunodominant loop. In the absence of membranes, the NHR and CHR segments fold into a protease-resistant core with a trimeric helical hairpin structure. However, when the immunodominant loop is not present (either in a complex formed by HIV-1 gp41-derived NHR and CHR peptides or by mild treatment with protease of recombinant constructs of HIV-1 gp41 ectodomain, which also lack the N-terminal fusion peptide and the C-terminal Trp-rich region) membrane binding induces a conformational change in the gp41 core structure. Here, we further investigated whether covalently linking the NHR and CHR segments by the immunodominant loop affects this conformational change. Specifically, we analyzed a construct corresponding to a fragment of SIVmac239 gp41ectodomain (residues 27-149, named e-gp41) by means of surface plasmon resonance, Trp and rhodamine fluorescence, ATR-FTIR spectroscopy, and differential scanning calorimetry. Our results suggest that the presence of the loop stabilizes the trimeric helical hairpin both when e-gp41 is in aqueous solution and when it is bound to the membrane surface. Bearing in mind possible differences between HIV-1 and SIV gp41, and considering that the gp41 ectodomain constructs analyzed to date lack the N-terminal fusion peptide and the C-terminal Trp-rich region, we discuss our observations in relation to the mechanism of virus-induced membrane fusion.
Lytic peptides comprise a large group of membrane-active peptides used in the defensive and offensive systems of all organisms. Differentiating between their modes of interaction with membranes is crucial for understanding how these peptides select their target cells. Here we utilized SPR to study the interaction between lytic peptides and lipid bilayers (L1 sensor chip). Using studies also on hybrid monolayers (HPA sensor chip) revealed that SPR is a powerful tool for obtaining a real-time monitoring of the steps involved in the mode of action of membrane-active peptides, some of which previously could not be detected directly by other techniques and reported here for the first time. We investigated the mode of action of peptides that represent two major families: (i) the bee venom, melittin, as a model of a non-cell-selective peptide that forms transmembrane pores and (ii) magainin and a diastereomer of melittin (four amino acids were replaced by their D enantiomers), as models of bacteria-selective non-pore-forming peptides. Fitting the SPR data to different interaction models allows differentiating between two major steps: membrane binding and membrane insertion. Melittin binds to PC/cholesterol ∼450-fold better than its diastereomer and magainin, mainly because it is inserted into the inner leaflet (2/3 of the binding energy), whereas the other two are not. In contrast, there is only a slight difference in the binding of all the peptides to negatively charged PE/PG mono- and bilayer membranes (in the first and second steps), indicating that the inner leaflet contributes only slightly to their binding to PE/PG bilayers. Furthermore, the 100-fold stronger binding of the cell-selective peptides to PE/PG as compared with PC/cholesterol resulted only from electrostatic attraction to the negatively charged headgroups of the outer leaflet. These results clearly differentiate between the two general mechanisms: pore formation by melittin only in zwitterionic membranes and a detergent-like effect (carpet mechanism) for all the peptides in negatively charged membranes, in agreement with their biological function.