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SUMMARY oscillators at least in part by imposing rest-activity rhythms and
Circadian clocks in peripheral organs are tightly
coupled to cellular metabolism and are readily en-
trained by feeding-fasting cycles. However, the
molecularmechanisms involvedare largely unknown.
Here we show that in liver the activity of PARP-1, an
NAD+-dependent ADP-ribosyltransferase, oscillates
in a daily manner and is regulated by feeding. We
provide biochemical evidence that PARP-1 binds
and poly(ADP-ribosyl)ates CLOCK at the beginning
of the light phase. The loss of PARP-1 enhances the
binding of CLOCK-BMAL1 to DNA and leads to
a phase-shift of the interaction of CLOCK-BMAL1
with PER and CRY repressor proteins. As a conse-
quence, CLOCK-BMAL1-dependent gene expres-
sion is altered in PARP-1-deficient mice, in particular
in response to changes in feeding times. Our results
show that Parp-1 knockout mice exhibit impaired
food entrainment of peripheral circadian clocks and
support a role for PARP-1 in connecting feeding
with the mammalian timing system.

INTRODUCTION

Physiology and behavior of light-sensitive organisms are subject

to circadian oscillations that are driven by endogenous biological

clocks. Inmammals, a central pacemaker in the suprachiasmatic

nucleus (SCN) of the brain synchronizes slave oscillators in

peripheral organs. Circadian clocks can measure time only

approximately and must therefore be readjusted every day by

external time cues (Zeitgebers) in order to stay in resonance

with geophysical time (Reppert and Weaver, 2002). Although

light is the predominant Zeitgeber for the central clock in the

SCN, feeding rhythms are strong Zeitgebers for peripheral

clocks in many tissues (Damiola et al., 2000; Stokkan et al.,

2001). It is therefore likely that the SCN synchronizes peripheral
thus feeding-fasting cycles.

Both master and subsidiary oscillators are believed to utilize

a similar clock gene circuitry for rhythm generation (Yagita

et al., 2001). This molecular clockwork seems to rely on the inter-

play between transcriptional activators and repressors that

generate a negative feedback loop of core clock gene expres-

sion (Hardin et al., 1990). CLOCK-BMAL1 heterodimers bind

to E box motifs present in the Per and Cry genes and stimulate

their transcription. Once PER and CRY proteins reach a criti-

cal concentration and/or activity, they form a complex with

CLOCK-BMAL1 and repress the transcription of their own

gene loci. In addition, interconnecting feedback loops involving

orphan nuclear receptors of the REV-ERB and ROR families

coregulate the expression of core clock genes (Preitner et al.,

2002; Sato et al., 2004).

Several lines of evidence suggest a strong interplay between

metabolism and the circadian clock. The dominance of feeding

cycles as Zeitgebers (ZTs) for peripheral clocks implies that

circadian oscillations play an important role in nutrient process-

ing and energy homeostasis (Damiola et al., 2000; Stokkan et al.,

2001). Indeed, transcriptome profiling studies revealed that

many genes involved in metabolic control are rhythmically ex-

pressed (Green et al., 2008). Whereas several aspects of circa-

dian metabolism have been elucidated, little is known regarding

themolecular mechanisms that adjust body clocks to the cellular

metabolic state.

Accumulating evidence suggests that cellular NAD+/NADH

levels, which are generally considered as readouts of cellular

metabolic states, regulate the function of the circadian oscillator.

At least in vitro the DNA-binding activities of CLOCK-BMAL1 are

strongly affected byNAD(P)+/NAD(P)H levels (Rutter et al., 2001).

Furthermore, SIRT1, an NAD+-dependent deacetylase, binds

to CLOCK-BMAL1 and regulates circadian gene expression

through the covalent modification of clock transcription factors

and chromatin-associated proteins (Asher et al., 2008; Nakahata

et al., 2008). Subsequent studies corroborated the connection

between NAD+/NADH levels and the circadian clock by showing

that nicotinamide phosphoribosyltransferase (NAMPT), the
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Figure 1. Analysis of Circadian PARP-1 Expression and Auto-ADP-

Ribosylation Levels

Mice were sacrificed at 4 hr intervals around the clock and liver nuclear protein

extracts were prepared. Protein levels of PARP-1, REV-ERBa, and U2AF65

were analyzed by immunoblotting (IB). Auto-ADP-ribosylation levels of endog-

enousPARP-1 (autoradiography)were analyzedwith nuclear extracts obtained

from (A) wild-type (WT) mice fed ad libitum, (B) Parp-1 knockout (Parp-1 KO)

mice fed ad libitum, (C)mice expressing aRev-Erba transgene in the liver under

negative control of tetracycline (Rev-Erba TG) fed ad libitum with doxycycline

(+Dox) (liver clockoperative), (D)Rev-ErbaTGmice fedad libitumwithout doxy-

cycline (�Dox) (liver clock arrested), (E) wild-type mice fed exclusively during

the dark phase (Night fed), (F) wild-type mice fed exclusively during the light

phase (Day fed). ZT is the Zeitgeber time; white and dark bars indicate light
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rate-limiting enzyme of the NAD+ salvage pathway, is expressed

in a circadian manner and generates daily oscillations of NAD+

levels (Nakahata et al., 2009; Ramsey et al., 2009).

The mounting evidence supporting the involvement of NAD+-

dependent enzymes in the clockwork circuitry encouraged us

to test whether PARP-1 (poly(ADP-ribose) polymerase 1), an

NAD+-dependent ADP-ribosyltransferase (Altmeyer and Hot-

tiger, 2009; Hassa and Hottiger, 2008; Schreiber et al., 2006),

also executes circadian functions. PARP-1 modulates the activ-

ities of several transcriptional regulatory proteins either by direct

protein-protein interaction or by NAD+-dependent poly(ADP-

ribosyl)ation (Hassa et al., 2006; Petesch and Lis, 2008). Interest-

ingly, ADP-ribosylation has already been implicated in circadian

gene expression in plants (Dodd et al., 2007; Panda et al., 2002).

Here we show that in mouse liver PARP-1 poly(ADP-ribosyl)

ation activity is circadian and regulated by feeding. PARP-1

binds to CLOCK-BMAL1 heterodimers and poly(ADP-ribosyl)

ates CLOCK in a daily manner. Poly(ADP-ribosyl)ation of CLOCK

modulates the DNA-binding activity of CLOCK-BMAL1 and its

interaction with components of the negative limb, the PER and

CRY proteins, which in turn alters circadian gene expression.

Remarkably, the entrainment of liver clocks to inverted feeding

is significantly delayed in the absence of PARP-1.
RESULTS

PARP-1 Activity in Mouse Liver Is Rhythmic
and Regulated by Feeding
To address a potential role for PARP-1 in circadian clock control,

we first analyzed the pattern of expression and auto-ADP-ribosy-

lation of PARP-1 in mouse liver. Mice were sacrificed at 4 hr

intervals around the clock, and liver nuclear extracts were

prepared. Whereas nearly constant levels of nuclear PARP-1

protein were observed around the day (Figure 1A), NAD+-depen-

dent auto-ADP-ribosylation of PARP-1 measured in vitro was

highly circadian with a maximum around ZT4 (Figure 1A and

Figure S1A available online). The identity and requirement for

PARP-1 in the ADP-ribosylation reactions were confirmed both

by performing the assay with nuclear extracts obtained from

Parp-1 knockout mice (Figure 1B) and by addition of different

PARP inhibitors (Figures S1B and S1C). To address whether

rhythmic auto-ADP-ribosylation of PARP-1 also occurs in vivo,

immunoprecipitation experiments were performed with poly

(ADP-ribose) antibodies and then analyzed with PARP-1 anti-

body. Similar to the results obtained in vitro, auto-ADP-ribosy-

lated PARP-1 was detected in vivo with a maximum around

ZT4 (Figures S1D–S1F).

Next, we asked whether rhythmic auto-ADP-ribosylation of

PARP-1 is under the control of the circadian clock. Using nuclear

extracts frommicewith a conditionally active liver clock express-

ing REV-ERBa in the liver under the control of tetracycline-

responsive elements (Tet-off system) (Kornmann et al., 2007),

circadian auto-ADP-ribosylation levels of PARP-1 were found

to be similar in the presence or absence of a functional clock
and dark phases, respectively. Each time point consists of a mixture of liver

nuclear extracts obtained from three or four single animals. The bar diagrams

show quantifications of the autoradiographies. See also Figure S1.
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Figure 2. Circadian Auto-ADP-Ribosylation

of PARP-1 in Mouse Liver Nuclear Extracts

(A) Analysis of auto-ADP-ribosylation of PARP-1 in

wild-type mice fed ad libitum in the absence or

presence of 40 mM of the PARG inhibitor ADP-

HPD (Calbiochem).

(B) Assay for PARG activity in liver nuclear

extracts. Recombinant human PARP-1 was pre-

ADP-ribosylated in the presence of radiolabeled

NAD+ and then incubated with liver nuclear

extracts obtained from wild-type mice supple-

mented with the PARP inhibitor PJ34. Auto-ADP-

ribosylation was determined by autoradiography.

(C) Recombinant wild-type human PARP-1 was

incubated alone or added to liver nuclear protein

extracts obtained from Parp-1 knockout mice

sacrificed at 4 hr intervals around the clock, and

its auto-ADP-ribosylation was determined by

autoradiography.

(D) Quantification of recombinant PARP-1 auto-

ADP-ribosylation incubated with three different

sets of liver nuclear extracts obtained from Parp-1

knockout mice fed ad libitum. Each set contains

a mixture of extracts harvested from 2 or 3 mice

per time point. Data represent themean± standard

deviation (SD).

(E) Schematic representation of the different

protein domains of PARP-1. The DNA-binding

domain (DBD, amino acids 1–373) contains three

zinc-binding motifs and is required for both the

DNA binding and activation of the catalytic domain

(CAT). The WGR domain (amino acids 525–656) is

essential for enzyme activation. The catalytic

domain (CAT, amino acids 656–1014) harbors the

enzymatic activity and contains the NAD+ binding

site. It exhibits low basal activity when expressed

alone. An additional loop domain (amino acids

476–525) harbors target amino acids for automodi-

fication and is required for full enzymatic activity.

The BRCT domain (amino acids 385–476) is

dispensable for enzymatic activity but is involved

in protein-protein interactions (Altmeyer et al.,

2009).

Nuclear extracts obtained from Parp-1 knockout

mice sacrificed at 4 hr intervals around the clock

were reconstituted with (F) truncated recombinant

PARP-1 (amino acids 533–1014) harboring the

WGR and the catalytic domain or (G) recombinant

PARP-1 lacking the BRCT domain (PARP-1 DBRCT), (lacking amino acids 385–476) and PARP-1 auto-ADP-ribosylation was determined by autoradiography.

The bar diagrams show quantifications of the autoradiographies. See also Figure S2 and Figure S3.
(Figures 1C and 1D). As expected, REV-ERBa protein levels

were oscillating in doxycycline-treated mice (Figure 1C) similar

to wild-type mice (Figure 1A) and were constant in the absence

of doxcycline in the clock-arrested mice (Figure 1D).

Maximal auto-ADP-ribosylation of PARP-1 occurred during

the light phase, when mice usually rest and ingest little food.

To examine whether auto-ADP-ribosylation of PARP-1 is regu-

lated by feeding, liver extracts from mice fed exclusively during

the circadian dark phase (night fed) or light phase (day fed)

were prepared and analyzed. As expected, the peak of REV-

ERBa expression was shifted by 12 hr in the day-fed animals

compared to the night-fed control animals (Figures 1E and 1F).

Maximal auto-ADP-ribosylation of PARP-1 was observed in

night-fed animals during the circadian light phase (Figure 1E)
similarly to mice fed ad libitum (Figures 1A, 1C, and 1D and

Figures S1A and S1D–S1F). In contrast, the peak of auto-ADP-

ribosylation of PARP-1 was shifted by almost 12 hr in day-fed

animals (Figure 1F and Figures S1G–S1I), suggesting that

feeding regulates auto-ADP-ribosylation of PARP-1.

The rhythmic auto-ADP-ribosylation of PARP-1 could have

been caused by circadian PARP-1 activity, circadian but anti-

phasic poly(ADP-ribose) glycohydrolase (PARG) activity, or a

combination of both (Davidovic et al., 2001). Analysis of auto-

ADP-ribosylation of PARP-1 in the presence of an inhibitor of

PARG resulted in a general increase in PARP-1 auto-ADP-

ribosylation levels; however the rhythmic pattern of activity

was retained (Figure 2A). Furthermore, incubation of pre-auto-

ADP-ribosylated recombinant PARP-1 with liver nuclear extracts
Cell 142, 943–953, September 17, 2010 ª2010 Elsevier Inc. 945



in the presence of a PARP inhibitor resulted in constant yet

significantly lower auto-ADP-ribosylation levels of PARP-1

when compared to pre-auto-ADP-ribosylated PARP-1 incu-

bated alone (Figure 2B). Therefore, we concluded that the daily

changes in the auto-ADP-ribosylation levels of PARP-1 are

most likely the result of circadian PARP-1, rather than PARG

activity.

Circadian PARP-1 activity appeared to be clock independent

and regulated by feeding. Remarkably, rhythmic auto-ADP-ribo-

sylation of PARP-1 could be restored in vitro by the addition of

equal amounts of recombinant PARP-1 to nuclear extracts ob-

tained from Parp-1 knockout animals (Figures 2C and 2D). This

experiment suggested that liver nuclei contain a signal that can

activate PARP-1 in a daytime-specific manner. NAD+ levels

seemed to be an attractive candidate for such a signal, as

PARP-1 requires NAD+ for its enzymatic activity and NAD+ levels

have been shown previously to be circadian (Nakahata et al.,

2009; Ramsey et al., 2009). However, the circadian pattern of au-

tomodification of PARP-1 in nuclear liver extracts obtained from

wild-typemice fed ad libitum persisted in the presence of 250 mM

of unlabeled NAD+ (Figures S2A and S2B). Furthermore, per-

forming the experiment in the presence of 1 mM excess of

NAD+, this time using a poly(ADP-ribose) antibody to detect

the levels of poly(ADP-ribosyl)ation, showed a daily pattern of

activity similar to the one observed before formice fed ad libitum,

exclusively during the night or exclusively during the day (Figures

S2C and S2D). Finally, circadian changes in NAD+ levels were re-

ported to be under the control of the circadian clock (Nakahata

et al., 2009; Ramsey et al., 2009), whereas PARP-1 activity

was clock independent (Figures 1C and 1D). Our results there-

fore argue against a scenario in which fluctuations in nuclear

NAD+ levels are solely responsible for the rhythmic PARP-1

activity in liver nuclear extracts.

Similar towhat has been described previously, the presence of

DNA turned out to be absolutely required for PARP-1 activity

in vitro (Satoh and Lindahl, 1992). Both DNase treatment and

the addition of the recombinant DNA-binding domain (DBD) of

PARP-1 completely abolished PARP-1 auto-ADP-ribosylation

(Figures S2E and S2F). Yet, neither DNA nor RNA seemed to

determine the rhythmic properties of PARP-1 activity, as circa-

dian PARP-1 activity persisted in the presence of an excess of

exogenously added DNA (Figures S2G and S2H) or upon addi-

tion of equal amounts of DNA fragments following DNase treat-

ment (Figure S2I) or following treatment with RNaseI

(Figure S2J). Finally, zinc availability, which is required for the

binding of the PARP-1 zinc fingers to DNA (Mazen et al., 1989),

did not seem to participate in the regulation of daily PARP-1

activity (Figure S2K).

We further addressed known activation mechanisms that

could lead to daily PARP-1 activity. Posttranslational modifica-

tions of PARP-1, such as acetylation (Hassa et al., 2005) or phos-

phorylation (Kauppinen et al., 2006), have been described to be

involved in PARP-1 activation. However, neither pretreatment

with the HDAC inhibitors Trichostatin A and Sirtinol (Figures

S3A and S3B) nor in vitro preacetylation affected the circadian

activity of PARP-1 (Figures S3C and S3D). Similarly, phospha-

tase pretreatment did not alter the pattern of PARP-1 auto-

ADP-ribosylation in liver nuclear extracts (Figure S3E).
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In an attempt to identify protein domains in PARP-1 that might

be required for its circadian activity we utilized different deletion

mutants of PARP-1 and analyzed their activity in liver nuclear

extracts obtained from Parp-1 knockout mice. In contrast to

full-length recombinant PARP-1 (Figure 2C and Figure S3B),

a truncated PARP-1 (amino acids 533–1014) or the PARP-1

DBRCT mutant that lacks amino acids 385–476 showed

constant levels of activity around the day (Figures 2E–2G), sug-

gesting that the BRCT domain, previously reported to be

involved in protein-protein interactions (Mohammad and Yaffe,

2009), might be required for the circadian activity of PARP-1.

PARP-1 Binds to CLOCK-BMAL1
in a Daytime-Dependent Manner
Food intake serves as a strong Zeitgeber for peripheral clocks.

Because cyclic PARP-1 activity was found to be regulated by

feeding, we wanted to examine whether PARP-1 interacts

directly with components of the molecular clock machinery.

Immunoprecipitation of BMAL1 from mouse liver nuclear

extracts resulted in coimmunoprecipitation of PARP-1 in a highly

rhythmic fashion (Figures 3A and 3B). As a control, the interac-

tion of BMAL1 with other core clock proteins was followed. As

has been reported previously, the binding of BMAL1 to its dimer-

ization partner CLOCK was almost constant throughout the day,

whereas both PER2 and CRY1 exhibited circadian changes in

their interaction with BMAL1 (Figure 3B) (Asher et al., 2008). In

a reciprocal experiment, PARP-1 was immunoprecipitated

from mouse liver nuclear extracts harvested around the clock.

Here as well, BMAL1 coimmunoprecipitated with PARP-1 in

a daily manner. The strength of the interaction was again

maximal at the beginning of the light phase between ZT0 and

ZT4; CLOCK was also detected at the same time points in

a long exposure (Figure 3C). Finally, immunoprecipitation of

CLOCK from mouse liver nuclear extracts from wild-type mice

sacrificed at ZT4 and ZT16 resulted in coimmunoprecipitation

of PARP-1 and BMAL1 specifically at ZT4 (Figure 3D).

To confirm the identity of PARP-1 in the immunoprecipitation

experiments and to further characterize the interaction between

CLOCK-BMAL1 and PARP-1, a similar experiment was con-

ducted, this time with mouse liver nuclear extracts obtained

from wild-type and Parp-1 knockout mice sacrificed at ZT0. In

both wild-type and PARP-1-deficient mice, immunoprecipitation

of BMAL1 resulted in coimmunoprecipitation of CLOCK, indi-

cating that the interaction between BMAL1 and CLOCK is not

dependent on PARP-1 (Figure 3E). The absence of a PARP-1

signal in the Parp-1 knockout mice confirmed the specificity of

the PARP-1 antibody and the specific interaction of PARP-1

with CLOCK-BMAL1. Finally, the direct interaction of PARP-1

with CLOCK could also be reconstituted in vitro in a pull-down

assay with purified recombinant proteins (Figure 3F).

PARP-1 Poly(ADP-Ribosyl)ates CLOCK in a Circadian
Manner
PARP-1 has been described to modulate the activity of various

transcriptional regulators either through protein-protein interac-

tions or through poly(ADP-ribosyl)ation (Hassa et al., 2006; Kraus,

2008). We thus wished to determine whether the rhythmic

interaction of PARP-1 with CLOCK-BMAL1 also leads to
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Figure 3. PARP-1BindsandPoly(ADP-Ribosyl)ates

CLOCK in a Circadian Manner

Mice were sacrificed at 4 hr intervals, and liver nuclear

protein extracts were prepared.

(A) Protein extracts were analyzed by immunoblotting.

(B) BMAL1 and (C) PARP-1 were immunoprecipitated and

the precipitated proteins were analyzed by immunoblot-

ting.

(D) CLOCK was immunoprecipitated from liver nuclear

extracts obtained from wild-type mice sacrificed at ZT4

and ZT16. An antibody against yeast RAP1 was used as

a negative control.

(E) BMAL1 was immunoprecipitated from liver nuclear

extracts obtained from wild-type and Parp-1 knockout

mice sacrificed at ZT0.

(F) Pull-down assay with recombinant CLOCK and HA-

HIS-PARP-1. HA-HIS-PARP-1 was immunoprecipitated

using mouse HA antibody.

(G)Wild-type andParp-1 knockout micewere sacrificed at

ZT4, and mouse liver nuclear extracts were prepared and

subjected to immunoprecipitation with rabbit poly(ADP-

ribose) antibody (alx210-890, Alexis Biochemicals). The

nonspecific (N.S.) band probably reflects an interaction

of the secondary antibody with the heavy chain of the

poly(ADP-ribose) antibody.

(H) CLOCK was immunoprecipitated from liver nuclear

extracts from wild-type and Parp-1 knockout mice and

incubated with radioactively labeled NAD+. An antibody

against yeast RAP1was used as a negative control. Immu-

noprecipitated proteins were analyzed by autoradiog-

raphy and by Coomassie staining.

(I) Mouse liver nuclear extracts obtained from wild-type

mice sacrificed at 4 hr intervals were subjected to immu-

noprecipitation with rabbit poly(ADP-ribose) antibody

(alx210-890, Alexis Biochemicals), and with yeast RAP1

antibody as a negative control.

(J) Wild-type mice were sacrificed at ZT4 and ZT16, and

mouse liver nuclear extracts were prepared and incubated

either with NAD+ alone or together with the PARP inhibitor

PJ34 for 30 min at 30�C. Samples were separated by SDS

gel electrophoresis and analyzed by immunoblotting. The

asterisk marks the border between the stacking and the

separating gel in the denaturing SDS gel.

See also Figure S4.
PARP-1-dependent poly(ADP-ribosyl)ation of BMAL1 or CLOCK.

Immunoprecipitation experiments were performed using a poly

(ADP-ribose) antibody and liver nuclear extracts from wild-type

and Parp-1 knockout mice sacrificed at ZT4, the time point at

which maximal interaction between CLOCK-BMAL1 and PARP-1

has been observed (Figures 1A–1D). CLOCK was immunoprecip-

itated much more efficiently from extracts harvested from wild-

type as compared toParp-1 knockoutmice, whereas the absolute

levels ofCLOCKweresimilar in bothextracts (Figure3G). Although

auto-poly(ADP-ribosyl)ation of PARP-1 was also detected, no

similar modification of BMAL1, PER2, or CRY1 could be identified

(Figure 3G). To exclude the possibility that CLOCK precipitated

due to binding to automodified PARP-1, extracts were treated

with harsh denaturing conditions prior to the immunoprecipitation

with the poly(ADP-ribose) antibody.Under these conditions similar

results were obtained (Figure S4A).

In order to examine whether PARP-1 can directly poly(ADP-

ribosyl)ate CLOCK, a cell-free system was employed. Equal
amounts of CLOCK were immunoprecipitated from nuclear

extracts of wild-type and PARP-1-deficient mice and incubated

with radiolabeled NAD+. The autoradiography revealed that

CLOCK was ADP-ribosylated in a PARP-1-dependent manner

(Figure 3H). Auto-ADP-ribosylation of PARP-1, which coimmu-

noprecipitated with CLOCK, was only observed in PARP-1 con-

taining wild-type extracts. Taken together, our results suggested

that PARP-1 can poly(ADP-ribosyl)ate CLOCK both in vitro and

in vivo.

Finally, we wished to examine the temporal changes in poly

(ADP-ribosyl)ation of CLOCK in vivo around the day. Remark-

ably, poly(ADP-ribosyl)ation of CLOCK was maximal at around

ZT4 (Figure 3I and Figure S4B) and therefore coincided with

the maximum of circadian binding of PARP-1 to CLOCK-

BMAL1 (Figure 3) and maximal auto-ADP-ribosylation of

PARP-1 (Figure 1 and Figure S1). Again, no similar modifications

of CRY1, PER2, or BMAL1 were detected. These temporal

changes in poly(ADP-ribosyl)ation of CLOCKwere also observed
Cell 142, 943–953, September 17, 2010 ª2010 Elsevier Inc. 947
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Figure 4. Temporal Analysis of Core Clock Protein Expression

Levels and Their Interactions in Wild-Type and Parp-1 Knockout

Mice

Wild-type and Parp-1 knockout mice were sacrificed at 4 hr intervals around

the clock, and liver nuclear protein extracts were prepared.

(A) Liver nuclear protein extracts were analyzed by immunoblotting.

(B) BMAL1was immunoprecipitated from liver nuclear protein extracts and the

immunoprecipitated proteins were analyzed by immunoblotting.
when liver nuclear extracts obtained from mice sacrificed at ZT4

and ZT16were incubatedwith NAD+, separated by SDS gel elec-

trophoresis, and analyzed with a CLOCK antibody (Figure 3J).

The accumulation of slower-migrating forms of CLOCK, specifi-

cally at ZT4 in the presence of NAD+, was abolished upon addi-

tion of a PARP inhibitor (Figure 3J).
PARP-1 Modulates the Interaction of CLOCK-BMAL1
with Proteins of the Negative Limb
The circadian interaction of CLOCK-BMAL1 with PARP-1 and

the rhythmic modification of CLOCK by PARP-1 encouraged

us to examine the expression levels of nuclear core clock

proteins and their interactions with each other in wild-type and

Parp-1 knockout mice around the clock. No significant differ-

ences in CLOCK, BMAL1, CRY1, and CRY2 protein levels

between wild-type and Parp-1 knockout extracts were observed

(Figure 4A, see also Figures 3E and 3G). However, PER2 protein

levels were slightly elevated in the absence of PARP-1, in partic-
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ular during the light phase (ZT0–ZT8), (Figure 4A, see also

Figure 3G).

Interestingly, when we performed immunoprecipitation exper-

iments addressing the interaction of BMAL1 with other core

clock proteins in wild-type and Parp-1 knockout mice, temporal

differences in the binding partners of BMAL1 became apparent

(Figure 4B). Although no significant changes in the binding of

BMAL1 to CLOCK could be observed, there were clear changes

in the temporal interactions of PER2, CRY1, and CRY2 with

CLOCK-BMAL1 (Figure 4B). At the beginning of the light phase

(ZT0), the binding of PER2, CRY1, and CRY2 was elevated in

the absence of PARP-1. Maximal binding of the negative limb

members PER and CRY occurred at around ZT16 in wild-type

mice, whereas in Parp-1 knockout mice maximal binding was

reached between ZT20 and ZT0 (Figure 4B). We concluded

that PARP-1 modulated the interaction of CLOCK-BMAL1 with

repressor components of the negative limb, possibly via poly

(ADP-ribosyl)ation of CLOCK.

PARP-1 Reduces the DNA-Binding Activity
of CLOCK-BMAL1
CLOCK-BMAL1 heterodimers exhibit rhythmic DNA binding to

specific elements such as E boxes and G boxes (an E box

variant) in the promoters of circadian target genes (Ripperger

and Schibler, 2006; Yoo et al., 2005). As PARP-1-dependent

poly(ADP-ribosyl)ation was reported previously to modulate

the DNA-binding activity of several transcription factors (Kraus,

2008), we used electrophoretic mobility shift assays (EMSA) to

examine the binding of CLOCK-BMAL1 to DNA in wild-type

and Parp-1 knockout mice. CLOCK-BMAL1 from wild-type liver

extracts exhibited circadian binding to a radioactively labeled

Gbox probe from thePer2 promoter withmaximal affinity around

ZT8; in contrast, binding of CLOCK-BMAL1 appeared to be

significantly stronger in PARP-1-deficient mice, particularly at

ZT4 (Figure 5A and Figure S5B).

The EMSA experiment with the Parp-1 knockout extracts

further revealed a protein complex that runs faster than the

CLOCK-BMAL1 complex and binds in a circadian fashion,

however with amaximal binding around ZT12 (Figure 5A and Fig-

ure S5B). To get further insight into the composition and speci-

ficity of the different complexes we performed supershift assays

and employed truncated/mutated G box probes or competitors

(Figure S5 and Figure S6). As expected, the slower-migrating

complex, which was previously reported to consist of CLOCK-

BMAL1 (Reinke et al., 2008), was completely supershifted

upon addition of specific antibodies against either BMAL1 or

CLOCK (Figure S5C) and was abolished either using a

mutated/deleted G box probe or in the presence of a G box

competitor (Figure S5 and Figure S6). In contrast, the faster-

migrating complex was not supershifted by CLOCK or BMAL1

antibodies and was not G box specific (Figures S5C–S5E). By

using truncated variants of the G box probe in direct labeling

as well as competition experiments, the binding site of this

complex could be narrowed down to a short fragment containing

a consensus SP1-binding site (Figure S5 and Figure S6). More-

over, point mutations in this site abolished the binding of the

faster-migrating complex (Figures S5F–S5H), and the complex

could be partially supershifted with an SP1 antibody
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Figure 5. Analysis of the DNA Binding of CLOCK-BMAL1Complexes

in Nuclear Extracts from Wild-Type and Parp-1 Knockout Mice

Liver nuclear protein extracts obtained from wild-type and Parp-1 knockout

mice sacrificed at 4 hr intervals around the clock were analyzed by EMSA using

different probes.

(A) G box probe. (B) PAR bZIP probe. (C) REV-ERBa probe and (D) SRF probe.

Liver nuclear protein extracts obtained from Parp-1 knockout mice sacrificed

at ZT4 and ZT8were incubated without or with recombinant PARP-1, NAD+, or

both reagents together and subsequently analyzed by EMSA using (E) a G box

probe and (F) an SRF probe. The asterisk marks a protein-DNA complex that is

seen preferentially with liver nuclear extracts from Parp-1 knockout mice. As

analyzed in Figure S5 and Figure S6, this complex contains the transcription

factor SP1.

See also Figure S5.
(Figure S6E). These findings are in line with previous reports

claiming that ADP-ribosylation of SP1 by PARP-1 impairs its

DNA-binding activity (Zaniolo et al., 2007) and that SP1 can

bind DNA in a daily manner (Reinke et al., 2008).

Next, we examined the DNA binding of other known transcrip-

tion factors by using EMSA probes specific for circadian (PAR

bZIP and REV-ERBa) and constitutively expressed (SRF) tran-

scription factors. The binding of these proteins to their cognate

DNA sequences was not significantly affected in the absence

of PARP-1 (Figures 5B–5D).
We employed a cell-free assay to further investigate the

possible role of PARP-1 in the DNA-binding activity of CLOCK-

BMAL1. Liver nuclear extracts from Parp-1 knockout mice

were incubated with PARP-1 and NAD+ alone or with both

reagents together, and the DNA binding of CLOCK-BMAL1

was subsequently analyzed by EMSA. Only upon addition of

both recombinantPARP-1 andNAD+didweobserve a significant

decrease in the binding of CLOCK-BMAL1 to DNA (Figure 5E).

The same experiment performed with a DNA probe for SRF ex-

hibited only a slight impairment in the DNA-binding activity of

SRF (Figure 5F). Taken together our findings suggested that

poly(ADP-ribosyl)ation of CLOCK, or the association of CLOCK

with ADP-ribosylated PARP-1, attenuates the binding of

CLOCK-BMAL1 to DNA.
Food Entrainment of Peripheral Circadian Clocks
Is Impaired in PARP-1-Deficient Mice
The feeding-dependent changes in daily PARP-1 activity and the

PARP-1-dependent poly(ADP-ribosyl)ation of CLOCK incited us

to investigate whether PARP-1 might participate in the food

entrainment of peripheral clocks. If this was indeed the case,

the kinetics of feeding-dependent phase inversion would be ex-

pected to be altered in Parp-1 knockout mice (for explanations,

see Kornmann et al., 2007). To test this hypothesis, wild-type

and PARP-1-deficient animals were first fed ad libitum (which

corresponds largely to night feeding), and mice were sacrificed

every 4 hr. After a few weeks of ad libitum feeding, the feeding

regimen was changed, and food was offered to the animals

exclusively during the day. Starting 24 hr after changing the

feeding regimen, animals were sacrificed every 4 hr during

80 hr. Transcript levels of core clock genes under feeding ad

libitum and during the adaptation period to the day-feeding

regimen were determined by analyzing mRNA levels using real-

time quantitative PCR.

In animals fed ad libitum, no dramatic changes in gene expres-

sion between wild-type and PARP-1-deficient mice were

observed. Nevertheless at ZT4, the time when we observed

maximal PARP-1 activity and CLOCK ADP-ribosylation, we did

notice in Parp-1 knockout mice somewhat decreased mRNA

expression levels of genes (Dbp, Dec1, and Dec2) that have

been reported to be direct target genes of CLOCK-BMAL1

(Figure 6 and Figure S7).

Interestingly, upon changing to day feeding, we could observe

different adaption kinetics for different genes even in the wild-

type background. In particular, the expression of Per2 adapted

more quickly to daytime feeding than other tested genes

(Figure 6). Remarkably, however, there was a clear difference

in the expression of all genes examined (Per1, Per2, Cry1,

Rorg, Bmal1, Rev-Erba, and Dbp) between Parp-1 knockout

animals and their wild-type littermates (Figure 6). For example,

Per1, Per2, Cry1, and Rorg showed a phase delay in expression

levels inParp-1 knockoutmice compared towild-typemice of up

to 8 hr after 4 days of food shifting. The adaptation phase of the

other genes examined in Parp-1 knockout mice was also slower.

Taken together our analysis suggests that PARP-1 contributes to

the adaptation of circadian gene expression to food entrainment

in mouse liver.
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Figure 6. Temporal Analysis of mRNA Levels of Core Clock Genes in

Wild-Type and Parp-1 Knockout Mice in Animals Fed Ad Libitum or

Fed Exclusively during the Day

Wild-type and Parp-1 knockout mice were first fed ad libitum. After a few

weeks, the feeding regimen was changed and food was offered exclusively

during the light phase. Starting 24 hr after changing the feeding regimen,

animals were sacrificed every 4 hr during 80 hr. Total RNA was prepared

from liver and mRNA expression levels of Per1, Per2, Cry1, Rorg, Bmal1,

Rev-Erba, Dbp, and Parp-1 were determined by quantitative TaqMan real-

time PCR. Data points connected by a line present the mean values obtained

from two or three single mice per time point. Single mice values are shown as

black squares for wild-type mice and gray triangles for knockout mice. Arrows

indicate the time points of maximal expression of the respective genes in mice

fed ad libitum. See also Figure S7.
Parp-1 Knockout Mice Exhibit Altered Circadian
Rhythms of Locomotor Activity in Response
to Restricted Feeding
Our findings suggested a role for PARP-1 in connecting feeding

to circadian rhythmicity in the liver. We wished to examine
950 Cell 142, 943–953, September 17, 2010 ª2010 Elsevier Inc.
whether PARP-1 also affects the master clock in the brain and

recorded the locomotor activity of wild-type and Parp-1

knockout mice under different light and feeding regimens. Under

12 hr light–12 hr dark conditions, we did not observe any differ-

ences between Parp-1 knockout mice and their wild-type litter-

mates, neither in the activity pattern nor in overall locomotor

activity (Figures 7A–7B and 7H). In contrast, under free-running

conditions in constant darkness, Parp-1 knockout mice ex-

hibited a small but statistically significant lengthening of their

circadian period (wild-type mice 23.51 ± 0.144; Parp-1 knockout

mice 23.78 ± 0.138; p value 0.002) (Figures 7A–7D). This sug-

gested that PARP-1 also modulates to some extent the function

of the master clock in the brain. We did not observe any differ-

ences in wheel-running behavior under constant light conditions

(data not shown). Analysis of the food anticipatory activity (FAA)

of wild-type and Parp-1 knockout mice upon exposure to

restricted feeding during the light phase (ZT3–ZT9) did not reveal

any significant differences in FAA (Figures 7E–7H). We noted,

however, that upon restricted feeding, Parp-1 knockout mice

were markedly more active during most of the dark phase

compared to their wild-type littermates, whereas no significant

differences were observed when food was provided ad libitum

(Figures 7E–H).

DISCUSSION

PARP-1-Dependent Poly(ADP-Ribosyl)ation Modulates
the Activity of CLOCK
Over the past years, a variety ofmodifications such as phosphor-

ylation, acetylation, sumoylation, and others have been shown to

modulate circadian gene expression (Gallego and Virshup,

2007). We have shown here that CLOCK appears to be a target

of yet another posttranslational modification, namely poly(ADP-

ribosyl)ation by PARP-1, and that this modification might affect

CLOCK function at multiple levels.

PARP-1 seems to be a feeding-dependent regulator of the

circadian clock. In mice fed ad libitum, feeding occurs mainly

during the dark phase, and as a result, PARP-1 activity is low

during the dark and increases during the light phase. At around

ZT4, we observed maximal auto-ADP-ribosylation of PARP-1,

maximal binding of PARP-1 to CLOCK-BMAL1, and maximal

poly(ADP-ribosyl)ation of CLOCK. The daytime-specific interac-

tion of CLOCK-BMAL1 with PARP-1 and the poly(ADP-ribosyl)

ation of CLOCK were accompanied by temporal changes in

the binding of CLOCK-BMAL1 to PER and CRY repressor

proteins and an impaired affinity of the CLOCK-BMAL1 hetero-

dimer for its DNA recognition sequences. Although the DNA-

binding activity of CLOCK-BMAL1 was enhanced in PARP-1-

deficient mice at ZT4, the increased recruitment of repressor

proteins of the negative limb, such as PER and CRY, probably

led to a net decrease in the transcription of direct CLOCK-

BMAL1 target genes.

PARP-1 Participates in the Phase Entrainment
of Peripheral Oscillators to Feeding
Daily feeding-fasting cycles are dominant Zeitgebers for periph-

eral clocks (Damiola et al., 2000; Stokkan et al., 2001), but the

involved molecular signaling pathways are poorly understood
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Figure 7. Analysis of the Circadian Locomotor Activity and Food Anticipatory Activity (FAA) of Wild-Type and Parp-1 Knockout Mice

(A and B) The locomotor activity of mice lacking PARP-1 (Parp-1 KO) and their wild-type littermates (WT) was recorded as wheel-running activity. Representative

double-plot actograms obtained for two animals of each genotype are shown. In each actogram the first few days were recorded under 12 hr light-12 hr dark

conditions, after which the light was turned off and recording was continued in constant darkness. Time spans during which the lights were switched off are

marked by gray shading.

(C) Period lengths of wild-type and Parp-1 knockout mice in constant darkness. Free-running period lengths in hours were 23.51 ± 0.144 (wild-type) and

23.78 ± 0.138 (Parp-1 knockout). The bar diagram represents the mean ± SD. The Student’s t test was used to examine the data; the p value for the period length

difference was 0.002.

(D) Period length distribution in constant darkness for wild-type and Parp-1 knockout mice.

(E and F) FAA of mice lacking PARP-1 (Parp-1 KO) and their wild-type littermates (WT) was recorded as wheel-running activity. Representative double-plot acto-

grams obtained for two animals of each genotype are shown. Activity was recorded under 12 hr light-12 hr dark conditions. During the first few days, food was

provided ad libitum, then animals received for 12 days 80% of their normal food consumption between ZT3 and ZT9; subsequently food was again provided ad

libitum.

(G) Percentage of mean activity during a 24 hr period for animals subjected to temporally restricted feeding (ZT3–ZT9). Mean values ± standard error of the mean

(SEM) obtained from five animals of each genotype (recorded between day 3 and day 12 after the onset of restricted feeding) are shown.

(H) Percentage of mean activity during a 24 hr period for animals subjected to feeding ad libitum. Mean values ± SEM obtained from seven animals of each geno-

type recorded for 9 consecutive days. Time spans during which restricted feeding occurred are outlined in blue.

(I) The SCN synchronizes cellular circadian oscillators in liver (and other peripheral tissues) indirectly through circadian behavior (i.e., feeding-fasting rhythms) and

more directly (e.g., via controlling cyclic hormone secretion). PARP-1 activity, which is regulated by daily feeding cycles, affects the molecular clockwork by poly

(ADP-ribosyl)ating CLOCK. As feeding inversion does not affect the phase of the SCN, the direct Zeitgeber signals emanating from the SCN (direct signals) are in

conflict with the ones associated with feeding (indirect signals) upon inverting the phase of feeding. The phase inversion kinetics in liver depends on the compe-

tition between direct and indirect Zeitgeber signals. If one (or more) of the direct signaling pathways are inactivated, the food-regimen-induced phase inversion is

accelerated (as in the case for micewith liver-specific glucocorticoid receptor null alleles, see LeMinh et al., 2001). Conversely, if a feeding-dependent pathway is

impaired, the kinetics of food-regimen-induced phase inversion is slowed down, as in the case of PARP-1-deficient mice.
and probably redundant. Owing to this redundancy, the impact

of a single signaling pathway can probably only be measured

when phase-shifting kinetics during the transition from the old

to the new phase are recorded. Proof-of-concept for this

approach has been reported for the synchronization of liver

circadian oscillators by glucocorticoid hormones (Le Minh

et al., 2001; for review, see Kornmann et al., 2007). Such exper-

iments now revealed that, at least in the liver, PARP-1 appears to

be involved in a pathway connecting feeding to circadian oscilla-

tors. PARP-1 might convey signals associated with the feeding

status to the circadian oscillator via poly(ADP-ribosyl)ation of
CLOCK, thus in the absence of PARP-1 the hepatocyte oscilla-

tors adapt slower to an altered feeding regimen (Figure 7I).

Interestingly, in wild-type animals core clock and clock-

controlled genes can differ in their responding kinetics to food

entrainment. For example, Per2, Cry1, and Rorg adapt their

expression faster to the new feeding regimen, and kinetics of

food entrainment of these genes also showed the most

pronounced differences between wild-type and Parp-1

knockout animals. In contrast, Per1, Rev-Erba, and Dbp

adjusted their expression considerably slower to the new phase.

Conceivably, in peripheral organs such as the liver, some clock
Cell 142, 943–953, September 17, 2010 ª2010 Elsevier Inc. 951



genes (e.g., Per1, Rev-Erba, andDbp) are strongly responsive to

regulatory cues from the SCN, whereas others (e.g., Per2, Cry1,

and Rorg) are more susceptible to food-derived signals. Per2 is

a strong candidate for a core clock gene whose expression is

responsive to feeding-dependent cues. First, the phase of its

expression responds rapidly to food shifting, and second, in

a mouse model with conditionally active liver clocks, Per2 was

identified as a system-driven gene, i.e., as a gene whose expres-

sion continues to be cyclic in the liver in the absence of functional

hepatocyte oscillators (Kornmann et al., 2007).

Circadian PARP-1 Activity
What are the signals generated by feeding-fasting cycles and

leading to the daily activation of PARP-1 and subsequently

poly(ADP-ribosyl)ation of CLOCK? As PARP-1 activity is NAD+

dependent, one could speculate that it correlates with cellular

NAD+ levels. Previous studies have indeed shown that the

NAD+ levels in mammals are cycling during the day (Nakahata

et al., 2009; Ramsey et al., 2009). Circadian NAD+/NADH levels

might therefore determine the activity of PARP-1, leading to daily

changes in the poly(ADP-ribosyl)ation of CLOCK. However, this

is unlikely to be the sole cause for circadian PARP-1 activity

in vivo, as an excess of NAD+ does not affect circadian PARP-1

activity in vitro. Moreover, circadian changes in NAD+ levels

were reported to be under the control of circadian oscillators

(Nakahata et al., 2009; Ramsey et al., 2009), whereas rhythmic

PARP-1 activity persisted in hepatocytes without functional

oscillators. As the circadian activation of PARP-1 could be

reconstituted in the test tube with recombinant PARP-1 and

temporally staged nuclear extracts, we consider it likely that

the underlying mechanism involves macromolecules that remain

associated with the nuclei during their purification. It will be an

enticing, but challenging task to identify these molecules and

the signaling cascade leading to the daily activity of PARP-1.

EXPERIMENTAL PROCEDURES

RNA Analysis by Real-Time Quantitative PCR

RNA extraction and transcript quantification by TaqMan real-time PCR tech-

nology were performed as previously described (Preitner et al., 2002). Real-

time PCR data were normalized to Eef1a1 andmTbp and relative mRNA levels

were calculated using the GeNorm method (Vandesompele et al., 2002).

Primers and probes are listed in Table S1.

Protein Extraction and Immunoblot Analysis

Proteins from mouse liver nuclei were prepared according to the NUN proce-

dure (Lavery and Schibler, 1993). SDS gel and immunoblot analysis were per-

formed according to standard protocols. Antibodies used were rabbit CRY1,

CRY2, PER2, REV-ERBa, BMAL1, and CLOCK (kindly provided by S. Brown

and J. Ripperger); rabbit PARP-1 (H-250, Santa Cruz); rabbit poly(ADP-ribose)

(alx210-890, Alexis biochemicals or LP-96-10, BD); mouse poly(ADP-ribose)

(alx804-220, mAb [10H], Alexis Biochemicals); rabbit PCNA (Santa Cruz);

and mouse U2AF65 and mouse HA (Sigma).

PARP-1 Activity Assays in Mouse Liver Nuclear Extracts

Five micrograms of mouse liver nuclear extract was diluted in 25 ml reaction

buffer (50 mM Tris-HCl, pH 8.0, 4 mM MgCl2, 250 mM DTT, 1 mg/ml pepstatin,

1 mg/ml bestatin, 1 mg/ml leupeptin, 250 nM 32P-NAD) and incubated for 30min

at 30�C. Proteins were separated by SDS-PAGE and ADP-ribosylation was

analyzed by autoradiography. PARP-1 auto-ADP-ribosylation was quantified

using the software ImageJ 1.42q.
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Coimmunoprecipitation Experiments

Coimmunoprecipitation experiments were carried out with mouse liver nuclear

extracts. Extracts were incubated for 12 hr with the indicated antibodies at 4�C
and further incubated with protein A beads (Roche) for an additional 2 hr at

4�C. The beads were collected by centrifugation and washed with NP-40

buffer (100 mM Tris-HCL, pH 7.5, 150 mM NaCl, 2 mM EDTA, and 1% NP-

40). Laemmli sample buffer was added and samples were heated at 95�C
for 5 min and separated on a polyacrylamide-SDS gel.
EMSA

EMSA reactions were performed with 5 mg of nuclear proteins in 25 mM

HEPES-KOH (pH 7.6), 150 mM NaCl, 0.1 mM EDTA, 1 mM DTT, 200 ng/ml

sheared salmon spermDNA, 50 ng/ml poly(dI-dC), and 1 ml of radioactive probe

in a volume of 10 ml. One microliter of loading dye (15% Ficoll, 0.4%Orange G)

was added, and the reaction mixes were loaded on 4% polyacrylamide

gels. Gels were run for 3 hr at room temperature (7.5 V/cm), vacuum-dried,

and exposed on a film. Supershift experiments were performed with 1 ml of

purified antibody added into the reaction before adding the radioactive

probe. The sequences of the EMSA probes are listed in Table S2.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, seven

figures, and two tables and can be found with this article online at doi:10.1016/

j.cell.2010.08.016.
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