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ABSTRACT
During the past few years, both the Cassini mission at Saturn and the Juno mission at Jupiter provided measurements with
unprecedented accuracy of the gravity and magnetic fields of the two gas giants. Using the gravity measurements, it was found
that the strong zonal flows observed at the cloud level of the gas giants are likely to extend thousands of kilometres deep into
the planetary interior. However, the gravity measurements alone, which are by definition an integrative measure of mass, cannot
constrain with high certainty the exact vertical structure of the flow. Taking into account the recent Cassini magnetic field
measurements of Saturn, and past secular variations of Jupiter’s magnetic field, we obtain an additional physical constraint on
the vertical decay profile of the observed zonal flows on these planets. Our combined gravity–magnetic analysis reveals that
the cloud-level winds on Saturn (Jupiter) extend with very little decay, i.e. barotropically, down to a depth of around 7000 km
(2000 km) and then decay rapidly in the semiconducting region, so that within the next 1000 km (600 km) their value reduces to
about 1 per cent of that at the cloud level. These results indicate that there is no significant mechanism acting to decay the flow
in the outer neutral region, and that the interaction with the magnetic field in the semiconducting region might play a central role
in the decay of the flows.

Key words: planets and satellites: atmospheres – planets and satellites: detection – planets and satellites: gaseous planets –
planets and satellites: general – planets and satellites: interiors – planets and satellites: magnetic fields.

1 IN T RO D U C T I O N

The strong east–west zonal winds at the cloud level of Jupiter
and Saturn have been observed to be largely stable over the past
several decades, based on the detection of cloud motion (Sánchez-
Lavega, Rojas & Sada 2000; Porco et al. 2003; Garcı́a-Melendo et al.
2011; Tollefson et al. 2017). The winds on Jupiter are organized
in alternating zonal jets that reach ∼140 m s−1 at low latitudes,
with a strong asymmetry between the jets around latitude 20◦

north and south. The winds on Saturn are mostly hemispherically
symmetric, with a wide, strong eastward flow of nearly 300 m s−1

at the equatorial region, and alternating mid-latitude jets that are
weaker and less hemispherically symmetric (Fig. 1, black). On both
planets, the observations carry uncertainties from different sources,
of up to ±50 m s−1 on Saturn (Garcı́a-Melendo et al. 2011) and
up to ±20 m s−1 on Jupiter (Tollefson et al. 2017; Fletcher et al.
2020). In addition, since the winds are measured relative to some
reference rotation rate, uncertainty in Saturn’s spin implies a possible
range of the wind velocities, depending on whether the Voyager-
based rotation (Smith et al. 1982) or the more recently calculated
faster rotation rates (Helled, Galanti & Kaspi 2015; Mankovich et al.
2019) are used (Fig. 1, white shading). In spite of the multitude of
observations of the cloud-level winds, the only direct measurement
below the cloud level comes from the Galileo probe at Jupiter,
which showed that at latitude 6.5◦N the zonal wind increases
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with depth in the top few bars and then remains nearly constant
(barotropic) down to 21 bars (130 km deep; Atkinson, Pollack &
Seiff 1996).

Recently, the latitudinally dependent gravity fields of Jupiter and
Saturn were measured with high accuracy by the Juno and Cassini
spacecraft, respectively. On Jupiter, the gravity field was found to
have significant hemispherical asymmetries (Iess et al. 2018), which
can be explained by the cloud-level winds extending deep into the
planet (Kaspi 2013; Kaspi et al. 2018). On Saturn, even the symmetric
part of the gravity field was found to differ substantially from
that predicted with a rotating rigid body, especially for the higher
gravity harmonics (Iess et al. 2019; Fig. 1, blue). This difference
was attributed to the winds extending thousands of kilometres deep
(Galanti et al. 2019). For both planets, the gravity measurements
indicate not only the overall depth of the winds but also that the same
meridional profile of the zonal flows likely extends to these depths
(Kaspi et al. 2020).

The measurements of the gravity field, which is by definition an
integrative measure of mass, cannot constrain with high certainty the
detailed vertical structure of the flow, since different distributions of
density anomalies can be expressed in the same gravity field at the
planet’s surface (Galanti & Kaspi 2017c). Therefore, in both planets,
the solutions for the flow fields discussed above are not unique (see
discussion in Kaspi et al. 2018 & 2020), and other solutions that
are not tied to the cloud-level winds can be found to give an exact
match to the gravity measurements, as discussed for Jupiter (Kong
et al. 2018) and Saturn (Qin et al. 2020). However, given the small
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Figure 1. The three measurements used in this study to calculate the
Saturnian flow structure; the cloud-level wind (Garcı́a-Melendo et al. 2011)
adjusted with the recently estimated rotation period of 10 h 34 min (Helled
et al. 2015; Mankovich et al. 2019; black) and a range of winds calculated for
rotation periods between 10 h 32 min (Read, Dowling & Schubert 2009) and
10 h 39 min (Smith et al. 1982; white shading); the residual gravity field at
the planet’s surface RS (blue) based on the dynamical contribution to gravity
harmonics J3 and J5 to J10 (Galanti et al. 2019; Iess et al. 2019); and the
residual radial magnetic field at 0.875RS (red) based on the measured Gauss
coefficients g0

4 to g0
11 (Dougherty et al. 2018; Cao et al. 2020). All values

composing the gravity and magnetic fields appear in Table 1. Measurements
are shown on top of a Saturn picture taken during the Cassini mission
(NASA/JPL-Caltech).

number of gravity measurements in both planets, and the fact that
taking the observed cloud-level flows and extending them into the
interior in a simple way match both in sign and in magnitude the
measured gravity harmonics give a good indication that indeed the
interior flows resemble those at the cloud level. Furthermore, the flow
structures suggested in Kong et al. (2018) and Qin et al. (2020) exhibit
a flow of the order of 1 m s−1 at depths of 0.2R for Jupiter and 0.3R
for Saturn. However, while not fully determined, current estimates of
the conductivity at these depths (Liu, Goldreich & Stevenson 2008;
Wicht et al. 2019b) would imply a generation of a very strong Lorentz
force, which would act to diminish the flow (Cao & Stevenson 2017b;
Duer, Galanti & Kaspi 2019; Moore et al. 2019). Finally, in a recent
study, a wide range of possible flow structures was examined in the
context of the Jupiter gravity measurements (Duer, Galanti & Kaspi
2020). Varying both the cloud-level wind profiles and the way the
wind decays with depth, it was found that while the measured gravity
field can be explained by various flow structures, within the range
examined in the study, solutions that differ considerably from the
observed cloud-level winds are statistically unlikely.

Both missions have also measured at an unprecedented accuracy
the magnetic fields of both planets, which differ dramatically between
the two planets. On Jupiter, the field has a complex latitudinal and
longitudinal structure (Connerney et al. 2018), a characteristic that
might be exploited to constrain the flow structure using magnetic
secular variations (SVs; Duer et al. 2019; Moore et al. 2019).
Conversely, the magnetic field on Saturn is extremely axisymmetric

(Dougherty et al. 2018; Cao et al. 2020), with latitudinal variability
reflecting not only low-order harmonics but also the contribution
from higher harmonics (Fig. 1, red), which may be related to the
structure of the flow below the cloud level (Gastine et al. 2014; Cao
& Stevenson 2017b).

On both planets, the magnetic field measurements provide valuable
information that can potentially be used to further constrain the
structure of the zonal winds below the cloud level. Here, we report,
for the first time, on the well-confined structure of the flow field
of Saturn, calculated based on the measured cloud-level wind and
both the gravity and magnetic measurements. We then extend our
analysis to include the structure of Jupiter’s flow field, using both
the measured gravity field and the estimated SVs of the measured
magnetic field.

2 M E T H O D S

2.1 The thermal wind balance

Large-scale flows on rapidly rotating planets have a direct relation
to density anomalies and, therefore, affect the gravity field if the
flows are deep enough (i.e. involve a large mass; Hubbard 1999;
Kaspi et al. 2010). Such a flow is governed by a geostrophic balance
between the anomalous pressure gradient and the Coriolis force
(Pedlosky 1987; Kaspi, Flierl & Showman 2009). Given that on
Saturn and Jupiter the flow is predominantly zonally symmetric
and assuming sphericity (Galanti, Kaspi & Tziperman 2017b), the
resulting vorticity dynamical balance is between the flow gradient
in the direction parallel to the axis of rotation and the meridional
gradient of density perturbations, known as thermal wind (TW)
balance, given by

2�r
∂

∂z
(ρ0u) = g0

∂ρ ′

∂θ
, (1)

where u(r, θ ) is the zonal flow field, � is the planet’s rotation
rate, ρ0(r) and g0(r) are the rigid-body density and gravity fields,
respectively, ρ

′
(r, θ ) is the anomalous density field, and z is the

direction of the axis of rotation. Note that this is not the standard
atmospheric form of the TW equation (Holton 1992) as the derivative
on the left-hand side is not in the radial direction, but in the direction
of the spin axis (Kaspi et al. 2009). Other effects not included in
this balance, such as the anomalous gravity and centrifugal forces
induced by the density anomalies (Zhang, Kong & Schubert 2015;
Cao & Stevenson 2017a), were shown, for the large-scale zonal flows,
to have a small effect on the gravity solutions (Galanti et al. 2017b;
Kaspi et al. 2018), and therefore are not taken into account here. For
the background density ρ0(r), we use the same profiles as were used
in the gravity-only studies for Saturn (Galanti et al. 2019) and Jupiter
(Kaspi et al. 2018).

The anomalous density field ρ
′

can then be used to calculate the
wind-induced gravity harmonics

�J mod
n = − 2π

MRn

∫ π/2

−π/2
cos θdθ

∫ R

0
rn+2drPn(sin θ )ρ ′(r, θ )dr,

(2)

where �J mod
n , n = 2, . . . , N are the coefficients of the wind-induced

gravity harmonics, R is the planetary radius, and M is the planetary
mass. This principle was successfully used to calculate the overall
depth of the winds on Jupiter and Saturn using the Juno- and Cassini-
measured gravity field (Kaspi et al. 2018; Galanti et al. 2019; Iess
et al. 2019). For the case of Jupiter, the calculation was based on the
odd gravity harmonics only (Kaspi et al. 2018), and for the case of
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2354 E. Galanti and Y. Kaspi

Saturn also the even harmonics were used, with the expected rigid-
body solution subtracted from the measurements (Fig. 1, blue; see
also Table 1a). These are the solutions we reinvestigate in this study
with the new constraints from the magnetic field measurements.

2.2 The mean-field electrodynamic balance

The large-scale flow field in Saturn and Jupiter can be also related
to a residual magnetic field, induced by the flow in the semicon-
ducting region where the fluid begins to become conductive (Cao &
Stevenson 2017b; Galanti, Cao & Kaspi 2017a; Duer et al. 2019).
The steady-state balance between the residual magnetic field and the
flow, named the mean-field electrodynamics (MFED) balance (Cao
& Stevenson 2017b), is

ηE

(
∇2 − 1

s2

)
B + 1

r

dηE

dr

∂(rB)

∂r
= −B0 · ∇u, (3)

ηE

(
∇2 − 1

s2

)
A = −αB, (4)

where A(r, θ , t) and B(r, θ , t) compose the residual magnetic
field B = ∇ × (Aêφ) + Bêφ , B0 = Br

0 êr + Bθ
0 êθ is the background

planetary magnetic field, ηE(r) is the effective magnetic diffusivity
that is inversely proportional to the electrical conductivity σ , and
s = rsin θ is the distance from the axis of rotation. The function
α(r, θ ) = α0

η0
η

erf( θ
0.005π

) is the dynamo α-effect (Cao & Stevenson

2017b), where α0 = 10−4 m s−1 is the value at the base of the
semiconducting region (set by taking the convective velocity there
as 1 mm s−1, and assuming that the effective dynamo alpha-effect
is 10 per cent of the velocity) and η0 is the value of the magnetic
diffusivity at the base of the semiconducting region.

In this study, we set the electrical conductivity σ as an analytical
function (Cao & Stevenson 2017b) that reproduces well the measured
values (Liu et al. 2008; French et al. 2012). The outer boundary is
set where σ = 10−4 S m−1 (0.9RS for Saturn and 0.98RJ for Jupiter),
and the inner boundary is set where σ = 103 S m−1 (0.845RS for
Saturn and 0.93RJ for Jupiter) following Cao & Stevenson (2017b).
The transition depth is set where σ = 0.01 S m−1, resulting in
RT = 0.875RS for Saturn and RT = 0.972RJ for Jupiter. Note that
the transition depth RT might be defined differently (Wicht et al.
2019b); however, this should not affect substantially our results,
as long as the conductivity profile remains the same. The model
solution is given in terms of the Gauss coefficients g0

n, similar to the
measurements (Table 2). The relation between the Gauss coefficients
and the latitude-dependent magnetic field in the radial direction
(Dougherty et al. 2018), estimated at the transition depth RT, is
given by

Br (θ ) =
∑

n

(n + 1)

(
R

RT

)n+2

g0
nPn(sin θ ). (5)

In the MFED balance, it is assumed that the background field
is known, and the residual field induced by the flow is small in
comparison to the background. Saturn’s measured magnetic field
(Dougherty et al. 2018), given in terms of the Gauss coefficients
g0

i (Table 2), can be separated into the main field, composed of
g0

1 through g0
3 (used as the background field), and the residual

(potentially wind-induced) field, composed of g0
4 through g0

11 (Fig. 1,
red), potentially related to the flow field. The separation into the main
and residual fields stems from the significant reduction in the value
of g0

4 compared to g0
3 (a factor of ∼25), and might be attributed to

the existence of both a deep dynamo and an outer shallow dynamo
(Dougherty et al. 2018). A recent analysis of the Saturn magnetic

field (Cao et al. 2020) has pointed to a very similar behaviour,
with similar conclusions regarding the possibility that the residual
field is induced by the flow in the semiconducting region. None the
less, it can be argued that in the newer analysis (Cao et al. 2020;
in which g0

12 to g0
14 are also calculated), aside from g0

3 , g0
4 , and

g0
6 , the higher Gauss coefficients roughly correspond to a straight

line in the Lowes–Mauersberger power spectrum (Lowes 1974),
which is an indication that higher harmonics are being generated
by the internal dynamo. As we will demonstrate, even if part of
the residual magnetic field is not induced by the flow, the results
presented here regarding the flow structure in the semiconducting
region remain the same. We therefore separate the measured gravity
field into the main field composed of g0

1 to g0
3 , and the residual

(potentially wind-induced) field composed of g0
4 to g0

11, which we
attribute to the flow field. For simplicity, we set the background
magnetic field B0 as a function of g0

1 only (Equation 5). Including
g0

2 and g0
3 causes the wind-induced residual magnetic field to have a

somewhat smaller amplitude, but does not change qualitatively any
of the results reported here.

The constraint on the flow structure used to calculate the decay
function in the semiconducting region is taken as the magnitude of
the magnetic field Br, calculated as the root mean square (RMS)
defined between 60◦S and 60◦N

I =
√

3

2π

∫ π/3

−π/3
Br (θ )2 dθ, (6)

being for the measured field I = 560 nT for Saturn. Using the
MFED model, we calculate I for different combinations of the two
parameters defining the decay function Q in the semiconducting
region: 0 < fM < 1 and 50 km < HM < 800 km (see Section 2.3).

In the MFED approximation, all the non-axisymmetric dynamics
are parametrized for (using the dynamo α-effect), and only the
axisymmetric magnetic field is solved for. This is an excellent
assumption for Saturn (Garcı́a-Melendo et al. 2011; Dougherty et al.
2018), while for Jupiter where the magnetic field was found to exhibit
strong east–west variations (Connerney et al. 2018) a method based
on magnetic SVs is more appropriate (Duer et al. 2019; Moore
et al. 2019). Another requirement for using the MFED balance is
that the magnetic Reynolds number would satisfy Rm(u) < 1 (Cao
& Stevenson 2017b). In Appendix D, we demonstrate that this is
indeed the case for Saturn and Jupiter. Few other factors might
affect the MFED solutions: First, the rotation period of Saturn is
still not fully known. In this study, we use the more recent estimates
of 10 h 34 min, but other rotation periods cannot be excluded.
While it was shown that the rotation period has very little effect
on the wind-induced gravity harmonics (Galanti & Kaspi 2017), it
might have an effect on the latitudinal variability of the residual
magnetic field. Secondly, the electrical conductivity used in this
study is based on a limited set of measurements and is estimated
to have two orders of magnitude uncertainty (Liu et al. 2008).
In Appendix C, we discuss in detail how this uncertainty affects
our solutions. Finally, a more complex α-effect with latitudinal
dependence, as well as the γ -effect (Kapyla et al. 2006), is certainly
possible and might be calculated from 3D dynamo models, but
there is currently uncertainty of what values should be used for
Saturn. However, while adding complexity to the solutions, includ-
ing these parameters should not change the main results reported
here.
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Magnetic–gravity probe of gas giants’ deep winds 2355

Table 1. (a) The Saturn gravity harmonics J2 to J10. Shown are the Cassini measurements (Iess et al. 2019), the rigid-body contribution based on an average
of ensemble model solutions (Galanti et al. 2019), the dynamical contribution calculated as the difference between the measurements and the rigid-body
contribution, the gravity-optimized solution (Galanti et al. 2019) based on the gravity measurements only, the new gravity-optimized and MFED-restricted
solution, where the MFED restricts the inner part of the decay profile but is not optimized for, and the new gravity and MFED-optimized solution where the
cloud-level wind is optimized to allow a fit for both gravity and magnetic fields. Note that J2 and J4 are not optimized for. (b) The Jupiter gravity harmonics.
Shown are the dynamical contributions (measured odds and estimated evens; Kaspi et al. 2020), the solution based only on the gravity measurements (Kaspi
et al. 2018), and the new gravity-optimized and MFED-restricted solution. Note that in the Jupiter case, only J3, J5, J7, and J9 are optimized for.

(a) Saturn (b) Jupiter

Gravity
harmonics
× 108

Cassini
measurement

Rigid-body
contrib.

Dynamical
contrib.
(�Jn)

Gravity
optimized

Gravity
optimized
+ MFED
restricted

Gravity
optimized
+ MFED
optimized

Juno
dynamical

contrib. (�Jn)
Gravity

optimized

Gravity
optimized
+ MFED
restricted

J2 1629 057.33 ± 2.8 1630 000 − 142.67 5053.98 − 1053.70 − 117.35 0 54.62 39.57
J3 5.89 ± 2.3 0 5.89 8.73 7.60 7.13 − 4.24 − 5.71 −3.96
J4 −93 531.36 ± 3.7 −92 576.65 − 955.71 758.83 156.90 229.23 0 − 5.18 −3.05
J5 −22.41 ± 5.4 0 − 22.41 − 25.24 − 21.94 − 20.63 − 6.90 − 7.73 −7.10
J6 8633.99 ± 8.7 8232.55 401.44 409.32 404.04 406.24 1.00 0.33 −0.34
J7 10.77 ± 12.2 0 10.77 11.04 6.20 8.42 12.39 12.77 12.94
J8 −1462.36 ± 20.5 −922.60 − 539.77 − 550.55 − 543.50 − 532.08 3.50 5.41 4.01
J9 36.91 ± 26.1 0 36.91 38.06 37.48 39.11 − 10.58 − 8.84 −7.83
J10 467.24 ± 42.1 118.79 348.45 366.00 352.85 362.47 − 3.00 − 5.36 −3.12
RMSE – – – 0.61 0.34 0.38 – 0.94 0.41

Table 2. The Gauss coefficients composing the magnetic field of Saturn.
Shown are the Cassini measurements (Dougherty et al. 2018), the gravity-
optimized and MFED-restricted solution, and the optimized model solution
corresponding to column 7 in Table 1. Note that in column 3 none of the
Gauss coefficients are optimized for, and in column 4, g0

1 , g0
2 , and g0

3 are not
optimized for.

Magnetic
Gauss
coefficients

Cassini
measurements

Gravity optimized +
MFED restricted

Gravity optimized +
MFED optimized

g0
1 21 140.2 ± 1.0 1452.1 543.9

g0
2 1581.1 ± 1.2 − 67.0 − 2.1

g0
3 2260.1 ± 3.2 693.0 217.4

g0
4 91.1 ± 4.2 14.2 95.6

g0
5 12.6 ± 7.1 − 54.3 8.8

g0
6 17.2 ± 8.2 29.4 18.1

g0
7 − 59.6 ± 8.1 − 35.4 − 47.5

g0
8 − 10.5 ± 8.7 4.6 − 5.7

g0
9 − 12.9 ± 6.3 11.1 − 12.7

g0
10 15.0 ± 7.0 − 11.1 3.8

g0
11 18.2 ± 7.1 − 0.3 26.3

RMSE – 7.69 0.99

2.3 Definition of the flow structure

In all variants of flow structure discussed in this study, the same flow
field is used to generate both the gravity and the magnetic fields. We
start by taking the observed meridional profile of wind at the cloud
level (Fig. 1, black line, for Saturn, and Fig. 4b, grey line, for Jupiter)
and decompose it into the first N Legendre polynomials

uobs(θ ) =
N∑

i=0

Aobs
i Pi(sin θ ), (7)

where Aobs
i are the coefficients determining the latitudinal shape of

the observed wind, θ is the latitude, Pi are the Legendre polynomials,
and N = 99 is the number of polynomials to be used. Defining a

modified cloud-level wind

usol(θ ) =
N∑

i=0

Asol
i Pi(sin θ ), (8)

where Asol
i are the modified coefficients, we allow these coefficients

to vary during the optimization process while making sure they do
not deviate considerably from their observed values. Note that we
construct the wind using a very large number of polynomials to
allow the wind solution to follow closely the observed wind. The
optimization procedure described in Appendix A ensures that the
large number of coefficients is well constrained. Next, the modified
cloud-level wind usol(θ ) is projected parallel to the axis of rotation
(Kaspi et al. 2009) to get the basic non-decaying field u0(r, θ ). This
field is then decayed in the radial direction to give

u(r, θ ) = u0(r, θ )Q(r), (9)

where r is the radial direction. The decay function Q(r) is defined as

Q(r) = tanh

(
r − RT

δHT

)
1 − fM

tanh
(

R−RT
δHT

) + fM, RT < r < R,

(10)

Q(r) = fM exp

(
r − RT

HM

)
, r ≤ RT, (11)

where δHT is the width of the hyperbolic tangent function, fM is the
ratio between the flow strength at the transition depth and the flow at
the cloud level, and HM is the decay scale height in the inner layer.
This functional form of the flow’s radial decay allows two distinctly
different behaviours in the regions above and below the transition
depth RT. In the outer region, the decay function represents a non-
magnetic dynamical effect, with the baroclinic shear being in TW
balance (Kaspi et al. 2009), and the free parameter δHM allowing a
range of decaying profiles, from a gradual decay to a case where the
cloud-level winds keep their value almost constant until reaching the
transition depth. In the inner region, the exponential decay function
is assumed to be a result of the increased electrical conductivity
σ . Based on the choice of the parameters Asol

i , fM, HM, and δHT,
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2356 E. Galanti and Y. Kaspi

the flow structure is defined, and can be used to generate both the
wind-induced gravity field and the wind-induced magnetic field.

3 R ESULTS

The methodology presented above can be more readily applied to
Saturn given its highly axisymmetric magnetic field (Dougherty
et al. 2018; Cao et al. 2020), while the magnetic field of Jupiter
is highly non-axisymmetric (Connerney et al. 2018; Moore et al.
2018), making the usage of the MFED approximation much more
challenging. We therefore first investigate the Saturn case with the
combined magnetic–gravity analysis, and then discuss the Jupiter
case where we substitute the MFED method with insights gained
from past measurements of the planet’s magnetic field SVs (Moore
et al. 2019).

3.1 The Saturn case

We start by using the Saturn magnetic field to constrain the flow
field. This constraint is set by the magnitude of the measured
residual magnetic field, defined here as the RMS of the radial
component, Br, between 60◦S and 60◦N (Fig. 1), calculated to be
I = 560 nT (equation 6). This is the maximal residual magnetic
signature expected from the flow field. By using the MFED balance
(Section 2.2) and varying the two parameters defining the flow
structure in the semiconducting region, fM and HM (Section 2.3), the
full range of possible solutions for the wind-induced magnetic field is
revealed (Fig. 2a). As expected, higher values of HM and fM (deeper
flows) give larger magnetic signatures, with HM being the dominant
parameter. Since the measured value of 560 nT can be obtained
with different combinations of the two parameters (Fig. 2a, dashed
black contour), the zonal wind’s radial decay in the semiconducting
region cannot be determined uniquely. However, different parameter
combinations located along the 560 nT contour give very similar
solutions for Br. For example, the three combinations denoted by the
red dots in Fig. 2(a) result in almost identical profiles of Br (Fig. 2b,
red lines). Most importantly, the shape of the new decay profiles in the
semiconducting region (Fig. 3a, red lines deeper than the transition
depth) is very different from the solution constrained with only the
gravity field (Galanti et al. 2019; dashed black line). The magnetic
field measurements imply that the flow must decay sharply at the
transition depth. This depth is much shallower than the depth where
the gradually decaying gravity-only solution loses most of the wind
strength. In addition, due to the magnetic field constraint, in the new
solution the long tail does not extend deep into the planet’s interior
(grey area).

3.1.1 A magnetically restricted solution

Having determined the wind decay functions in the semiconducting
region that are consistent with the magnetic field measurements
(Table 2), an optimal solution is sought for the wind decay function
above the transition depth, such that the associated residual gravity
field matches the measured gravity field (Appendix A). Using TW
balance (Section 2.1), the optimal decay function above the transition
depth (Fig. 3a, red lines) and the optimal cloud-level wind structure
(Fig. 3b, red lines) are found, such that the resulting wind-induced
gravity field best explains the measured residual gravity field (Fig. 1,
blue; see also values in Table 1a). Note that since the decay function
is optimized only above the transition depth, the solutions still satisfy
the magnetic field constraint (Appendix A).
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Figure 2. The residual magnetic field induced by the flow structure. (a)
The RMS of the residual magnetic field Br at 0.875Rs for a range of flow
decay parameters HM (km) and fM. Also shown is the value of the measured
field of 560 nT (dashed contour) and three representative combinations of
parameters matching the measurements: HM = 450, 300, and 250 km and
fM = 0.1, 0.45, and 0.8, respectively. (b) The resulting latitude-dependent
residual magnetic field Br for the three representative combinations: dashed,
solid, and dashed–doted, respectively. Also shown is the measured field
(grey).

All three optimal solutions are within the measurement uncer-
tainty, with an RMS error (equation A4) of 0.34, 0.34, and 0.33
for the main decay profile (solid red) and the two variants (dashed
and dotted–dashed), respectively (Table 1a; note that an RMSE of 1
means that the solution harmonics are on average at the measurement
error distance from the measurement itself). Note also that the
new solutions derived by the magnetic field measurements that
dramatically restrict the flow to shallower depth are not deteriorated
compared to the gravity-only solution (with an RMSE of 0.61). In
fact, they are better solutions in terms of the RMSE (Table 1a). This
improvement is predominantly due to the different decay functions
used in the semiconducting region. While in the set-up of the
gravity-only solution the possible decay function is a combination
of synthetic smoother functions, here the physically driven, much
sharper decay in the transition depth allows a better fit to the
measurements. Moreover, the required modification in the cloud-
level wind (Fig. 3b, solid red) is marginal with respect to the gravity-
only solution, strengthening the robustness of the wind solution with
respect to the observed wind. The shape of the new decay function
in the outer neutral region implies that, unlike in the gravity-only
solution (Fig. 3a, dashed black), the winds in the new solution barely
decay in the first 7000 km below the cloud level (i.e. barotropic);
only below that depth a decay commences. Only such strong flow in
the outer region can generate sufficient mass advection that would
be able to explain the gravity measurements.
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Figure 3. The implication of the magnetic field constraint for Saturn’s flow
structure. (a) The new solution for the wind’s radial decay (solid red) together
with the gravity-only constrained solution (Galanti et al. 2019; dashed black).
The difference between the solutions is emphasized by the grey area. Also
shown are two representative variants of the new solution corresponding to the
red dots in Fig. 2(a) (dashed and dotted–dashed red), the conductivity profile
σ (S m−1, green), and the transition depth (0.875RS) separating the outer
neutral region and the inner semiconducting region (vertical dashed line). (b)
The cloud-level wind profiles. Shown are the observations (Garcı́a-Melendo
et al. 2011; grey), the new solution with the magnetic field restricting the decay
profile (red), the fully optimized new solution with the residual magnetic field
optimized in addition to the gravity harmonics (blue), and the gravity-only
restricted solution (Galanti et al. 2019; dashed black). (c) The magnetic field
of the fully optimized solution (blue) and the measured residual magnetic
field (Dougherty et al. 2018; grey).

3.1.2 A fully combined gravity–magnetic solution

The new, depth-confined, solution fits all the relevant gravity har-
monics (Table 1a) and the magnitude of the residual magnetic field
(Fig. 2b, solid red line, and Table 2), but its latitudinal dependence
is different from the measured magnetic field. By setting the wind
decay profile to the solution already obtained (Fig. 3a, solid red line),
we perform a full optimization of the cloud-level wind, looking for
a solution for which the values of both the induced gravity and
magnetic fields are within the uncertainties of the measurements
(Appendix B). We obtain an optimal solution (Fig. 3b, blue line)
with an RMSE of 0.38 for the residual gravity field and an RMSE of
0.99 for the residual magnetic field (Fig. 3c and Table 2). Therefore,

with the same decay profile, and with only minor modifications to the
cloud-level wind, well within the measurement uncertainty (Garcı́a-
Melendo et al. 2011), a flow field is found that can explain the
latitudinal dependence of both the gravity and the magnetic fields. In
summary, we find that the values of the higher Gauss coefficients pose
an upper bound on the wind-induced magnetic field of Saturn. No
matter whether the residual field comes from the winds or the deep
dynamo, the contributions of the wind in the semiconducting region
to the residual field cannot be higher than the measurements, and this
strongly constrains the magnitude of the flow in the semiconducting
region.

3.1.3 Applicability of the solution

The ability of the MFED balance to constrain the flow field in
the semiconducting region should be examined from several as-
pects. First, a basic requirement for using the MFED balance is
that the magnetic Reynolds number, defined as Rm(u) = uHσ σμ0

(Hσ = σ/ dσ
dr

is the scale height associated with it), would satisfy
Rm(u) < 1 (Cao & Stevenson 2017b). We find that Rm(u) calculated
with the optimal flow solution (Fig. 3a) satisfies this condition
everywhere (Appendix D). Moreover, the wind-induced residual
magnetic field Br can be roughly related to the background field
B0 via Br ∼ Rm(α)maxRm(u)max|B0|, where Rm(α) = αHσ σμ0 is
the magnetic Reynolds number associated with the dynamo α-effect
(Cao & Stevenson 2017b). Since Rm(α) reaches a maximal value
of 0.25 (at the lower boundary of the semiconducting region) and
Rm(u) < 1 everywhere, the resulting residual magnetic field is always
much smaller than the background field (Fig. 2b). Secondly, the
MFED balance depends on several parameters that are not strongly
constrained. Most importantly, the electrical conductivity σ is known
only within two orders of magnitude (Liu et al. 2008). In order to
evaluate the effect of this uncertainty on our solution, we examine
two extreme cases, for which σ is an order of magnitude larger and
lower than the mean value used here (Appendix C). In both cases,
solutions for the flow field that satisfy both the magnetic and gravity
measurements can be found. In the former case, the solution shows
an even more pronounced barotropic behaviour in the outer layers
and an even sharper decay of the winds near the transition depth.
In the latter case, the solution exhibits a more gradual wind decay,
asymptotically getting closer to (but still far from) the gravity-only
solution (Fig. B1). Moreover, these results also pose a limit on the
uncertainty in the conductivity profile, where conductivity that is two
orders of magnitude larger would not allow a physical solution, and
that such a limit does not exist for a lower value. Thirdly, the dynamo
α-effect, parametrizing the action of the small-scale 3D turbulence
on the wind-induced toroidal magnetic field, is assumed in our study
to be only a function of depth, with a sign change at the equator (Cao
& Stevenson 2017b). In the framework of the MFED balance, the
uncertainty associated with the magnitude of α is equivalent to an
uncertainty in σ . Therefore, its effect on our solutions is similar to
the one discussed in the analysis above. Finally, inhomogeneity of α

in space or time might also have an effect on the solution, yet these
effects are difficult to estimate, and might be compensated by small
alterations to the cloud-level wind.

3.2 The Jupiter case

The above results have direct implications for Jupiter, whose gravity
measurements were also used to decipher the flow structure (Iess
et al. 2018; Kaspi et al. 2018), and whose optimal radial decay based
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on gravity alone was found to be quite gradual. If the mechanisms
governing the flow structure are similar to Saturn’s, constraining
Jupiter’s flow with the Juno magnetic field measurements should
show a sharp shear at a depth of around 2000 km below the cloud
level. As the magnetic field of Jupiter is highly non-axisymmetric
(Connerney et al. 2018; Moore et al. 2018), using the MFED
approximation is much more challenging, since it involves a non-
axisymmetric wind-induced magnetic field, making it more difficult
to disentangle this field from the internal field. Recently, using a
dynamo model, the effect of different flow structures on the magnetic
field in the semiconducting region of Jupiter was estimated, yielding
the conclusion that the effect might be measurable by the Juno
mission (Wicht et al. 2019b). However, the Lowes spectrum of the
higher magnetic harmonics of Jupiter (Connerney et al. 2018) fits
roughly a straight line, suggesting that the internal field might play
a dominant role in setting their values (Tsang & Jones 2020). Again,
this renders the task of separating the wind-induced magnetic field
highly challenging.

The effect of the wind on Jupiter’s magnetic field might be
identified in the magnetic field’s SVs (Ridley & Holme 2016; Duer
et al. 2019; Moore et al. 2019). Given that a time span of several
years of magnetic field measurements is required for calculating the
SVs, an analysis based on the Juno measurements is expected to
be available only towards the end of the nominal mission (Bolton
et al. 2017). However, we can already use the available studies,
and the results of this study, to examine the potential implications
for Jupiter. It has been shown, based on the past measurements of
Jupiter’s magnetic field and their decadal SV, that the magnetic drift
at a depth of 0.95RJ is of the order of a few centimetres per second
(Moore et al. 2019). The authors conclude that the flow itself can be
restricted to the values of the drift rate at 0.93RJ, and that Ohmic
dissipation considerations limit the flow to an order of 1 m s−1 in
the 0.94–0.95RJ region (Cao & Stevenson 2017b). Since the gravity
field is not very sensitive to this region, definitely not to variations of
the flow strength below 1 m s−1, we can confidently choose a decay
function that generates such a flow.

Assuming that the mechanism governing the structure of the
flow is similar to the one we find in Saturn, a flow structure in
the semiconducting region (0.95–0.972) can be set such that the
above constraint is met (Fig. 4a). The magnetic Reynolds number
associated with this solution ensures that the wind-induced residual
magnetic field is much smaller than the internal field (Appendix D).
Similar to the case of Saturn, we search for a solution for the flow
structure in the outer layers (r > 0.972RJ) such that the measured
odd gravity field is explained. By only slightly varying the cloud-
level winds (Fig. 4b), within the measurement uncertainty (Tollefson
et al. 2017), we find a solution for the full decay function (Fig. 4a,
solid red line). The fit to the gravity field has an RMSE of 0.43, an
even better fit to the measurement than the 0.90 achieved with the
gravity field alone (Kaspi et al. 2018; see Table 1b). Importantly,
the difference (grey area) between the gravity-only solution and the
new solution is substantial, even more than the one found in the
Saturn case. The new possible solution for Jupiter is of a structure
that is remarkably similar to the new solution for Saturn (Fig. 3a,
solid red), i.e. almost no decay of the winds from the surface to a
depth of around 1800 km, and then a sharp decay over a depth of
about 600 km. Similar to the Saturn case, if future studies find the
conductivity to be an order of magnitude larger than the values used
here (Liu et al. 2008), it will strengthen the conclusion regarding
the shape of the wind decay. However, an even larger conductivity
does not permit a physical solution. Conversely, if the conductivity is
found to be much weaker, then the magnetically constrained solution
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Figure 4. The implication of the magnetic field constraint for Jupiter’s flow
structure. (a) The new solution for the wind’s radial decay (solid red) together
with the gravity-only constrained solution (Kaspi et al. 2018) (dashed black).
The difference between the solutions is emphasized by the grey area. The
decay function in the semiconducting region is defined with HM = 200 km
and fM = 0.55, so that the wind is set to about 2 cm s−1 at 0.93RJ and
0.7 m s−1 at 0.95RJ. In the outer region, the decay function is defined with
δHT = 204 km. Also shown is the conductivity profile σ (green), and
the transition depth (0.972RJ) separating the outer neutral region and the
inner semiconducting region (vertical dashed line). (b) The cloud-level wind
profiles. Shown are the observations (Tollefson et al. 2017; grey) and the new
solution with the magnetic field restricting the decay profile (red).

will be more gradual, and closer to the one calculated based only on
the gravity field.

4 D I SCUSSI ON AND C ONCLUSI ON

The inclusion of the Cassini magnetic measurements as an additional
constraint on Saturn’s flow structure below the cloud level unveils
a well-confined flow field that can explain not only the residual
magnetic field but also better explain the measured gravity field.
Based on constraints from the magnetic SV, a similar structure is
plausible also in Jupiter. The sharp baroclinic shear of the flow in the
semiconducting region, as well as the barotropic structure of the flow
from the cloud level down to the transition depth, suggests that the
flow interaction with the magnetic field in the semiconducting region
(Liu et al. 2008; Cao & Stevenson 2017b) plays an important role
in the wind’s decay in the interior of Saturn, Jupiter, and potentially
other giant planets (Kaspi et al. 2013; Soyuer, Soubiran & Helled
2020). The barotropic nature above this region implies that the
observed momentum flux convergence at the cloud level of Jupiter
(Salyk et al. 2006) and Saturn (Del Genio et al. 2007) can drive
the flow to great depths, perhaps by the downward control principle
(Haynes et al. 1991; Liu & Schneider 2010), until dissipation due
to rising conductivity and interaction with the magnetic field causes
its almost abrupt decay. The downward propagation mechanism was
shown to be effective also in the presence of a stable layer (Showman,
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Gierasch & Lian 2006), which might also act to decay the flow
together with the action of the magnetic field (Christensen, Wicht
& Dietrich 2020). Such a stable layer was recently suggested to be
necessary for the case of Jupiter (Debras & Chabrier 2019).

The results reported here are also in agreement with simulations
of the magnetohydrodynamics of gas giants (Heimpel, Aurnou &
Wicht 2005; Gastine & Wicht 2012; Heimpel, Gastine & Wicht
2016; Duarte, Wicht & Gastine 2018), in which strong barotropic
flows are found above the fully conducting region, and much weaker
baroclinic flows inside it. In the barotropic region, the zonal flow is
aligned with the axis of rotation according to the Taylor–Proudman
theorem (for the compressible case), and horizontal entropy gradients
must be small (Jones 2014). This also implies that the entropy
expansion coefficient does not change considerably with depth, as
the decay rate of the flow is a product of the entropy gradients and the
entropy expansion coefficient (Kaspi et al. 2009). The barotropicity
of the neutral region indicates that there is no significant mechanism
acting to decay the flow until the semiconducting region is reached.
Compared to the gravity-only solution, the restriction of the flow at
depth by the magnetic field measurements requires the flow in the
neutral region to be larger, in order for the mass advection to be
enough to explain the gravity measurements. We expect the results
reported in this study, together with the better understanding of the
internal structure of Saturn and Jupiter, to enable better explaining the
exact mechanism by which the winds on the gas giants are generated,
extended into the planet interior, and finally decay at depth.
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APPENDIX A : A MAGNETICALLY
RE STR ICTED GRAV ITY OPTIMIZATION
M E T H O D

The first set of solutions is performed in the following way. First,
the magnetic measurements are used to constrain the decay profile
in the semiconducting region. Then the TW model is used to find
the optimal decay function in the outer non-conducting region, as
well as the optimal cloud-level wind, so that the resulting gravity
field explains best the gravity measurements. For the Saturn case,
the values used as measurements are the Cassini measurements (Iess
et al. 2019) from which the static body harmonics (Galanti et al.
2019) are subtracted

J dyn
n = J obs

n − J rigid
n , (A1)

where J obs
n are the measured gravity harmonics and J rigid

n are the
rigid-body solutions taken from the average of an ensemble model
solution (Galanti et al. 2019). Note that J rigid

n have non-zero values
only for the even harmonics. For the Jupiter case, only the odd gravity
measurements are used (Iess et al. 2018), and since these are fully
wind induced, there is no need to subtract the solid body contribution
(Kaspi et al. 2018).

The parameters to be optimized, i.e. the parameter defining the
flow structure above the semiconducting region and the cloud-level
wind latitudinal profile, are defined as a control vector

XC = {XH, Xu}
= {

δHT/hnor,
[
Asol

1 , · · · , Asol
N

]
/unor

}
, (A2)

where hnor = 107 and unor = 103 are the normalization factors
for the decay structure and the wind coefficients, respectively. The
normalization factors are chosen so that 0 < δHT/hnor < 1 and
−1 < Asol/unor < 1. Minimizing the difference between the model
solution for the gravity field and the measurements, subjected to the
uncertainties of the measurements and the need to keep the optimized
control parameters regularized to physical values, is achieved with
the cost function

LT = ( Jm − Jo)W( Jm − Jo)T + εu(Xu − Xo)(Xu − Xo)T, (A3)

where for the Saturn case Jm = [J m
3 , J m

5 , J m
6 , J m

7 , J m
8 , J m

9 , J m
10] and

Jo = [J dyn
3 , J

dyn
5 , J

dyn
6 , J

dyn
7 , J

dyn
8 , J

dyn
9 , J

dyn
10 ] are the calculated and

measured gravity harmonics, respectively, W are the uncertainties
in the gravity measurements, Xo = [Aobs

1 , · · · , Aobs
99 ]/unor are the

observed wind profile parameters, and εu = 5 × 108 is the
weight given to the regularization of the wind solution to the
observed one. For the Jupiter case, Jm = [J m

3 , J m
5 , J m

7 , J m
9 ] and

Jo = [J dyn
3 , J

dyn
5 , J

dyn
7 , J

dyn
9 ]. The cost function is composed of two

terms: The first is the difference between the measured and calculated
gravity harmonics, and the second assures that the wind solution
does not vary too far from the observed one at cloud level. Given
the value of εU and the large number of coefficients defining the
wind latitudinal profile, the regularization of the wind is very strong,

thus ensuring that deviations from the observed cloud-level wind
are allowed only if they result in a significantly lower value of the
cost function. Given an initial guess for XC, a minimal value of
L is searched for using the Matlab function ‘fmincon’ and taking
advantage of the cost-function gradient that is calculated with the
adjoint of the dynamical model (Galanti & Kaspi 2016). Finally, the
round mean square error (RMSE) we discuss in Table 1 is calculated
by

RMSEgravity = 1

7

∑
N

Wnn

(
J m

n − J o
n

)2
, (A4)

where n = 3, 5, 6, 7, 8, 9, and 10, and N = 7, for Saturn, and n = 3,
5, 7, and 9, and N = 4, for Jupiter.

APPENDI X B: A COMBI NED
M AG N E T I C – G R AV I T Y O P T I M I Z AT I O N
M E T H O D

The solution for the fully optimized Saturn case is obtained in the
following way. The overall decay function is fixed to the function
obtained in the gravity optimization, and in the optimization process
we look for further modifications in the cloud-level wind so that
in addition to the residual measured gravity field explained by the
thermal model, the residual magnetic field is also explained by the
MFED solution. The MFED model solution is compared to the
measured field by minimizing, in addition to LT, the cost function

LM = εM

11∑
n=4

1

(en)2

(
g̃0

n − g0
n

)2
, (B1)

where g̃0
n are the MFED model solutions, en are the measurements

errors (Table 1), and εM = 105 is the weight given the cost function.
Note that we take into account only the Gauss coefficients g0

4 to g0
11

that compose the residual magnetic field. The overall cost function
to be optimized is then

L = LT + LM,

and the control vector is now

XC = {Xu} = {[
Asol

1 , · · · , Asol
N

]
/unor

}
, (B2)

so that only the parameters composing the cloud-level wind are
optimized. The optimization is done jointly. In each iteration, the
temporal solution for the flow structure is used to generate the gravity
harmonics with the TW model and the magnetic coefficients with the
MFED model. Then, the cost function L is calculated and a modified
cloud-level wind is calculated using Matlab ‘fmincon’. Finally, the
RMSE we discuss in Table 2 is calculated by

RMSEmagnetic = 1

8

11∑
n=4

1

(en)2

(
g̃0

n − g0
n

)2
, (B3)

where g̃0
n is the model solution.
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Figure B1. The effect of the uncertainty in the conductivity on the structure of the flow. (a) Similar to Fig. 2(a), but for a case of extremely high conductivity.
The parameters (HM = 150, fM = 0.25) result in a wind-induced residual magnetic field fitting the measurements (full red circle), indicating a very low wind
in the conductive region. (b) Same as (a) but for a case of extremely low conductivity. The parameters HM = 700 and fM = 0.65 (full red circle), needed for a
fit to the measurements, represent a stronger and deep wind in the conductive region. (c) The resulting residual magnetic fields corresponding to the radial flow
profiles chosen [full red circles in (a) and (b)]. (d) The solutions for the full radial profiles of the extreme cases (red dashed and dashed–dotted), which allow
fitting the gravity field as well. Also shown are the solutions from the main text (solid red), and the gravity-only (Galanti et al. 2019 solution; black). Note that
the transition depth RT is different for each case, denoting the depth where σ = 10−2 S m−1. (e) The cloud-level wind solutions for the two extreme cases. (f)
The optimal solution of the residual magnetic field for the two extreme cases (blue dashed and dashed–dotted).

APPEN D IX C : UNCERTAINTIES IN THE MFED
M O D E L

The electrical conductivity σ (see Section 2), essential to the
determination of the wind-induced magnetic field, is known within
two orders of magnitude in both Jupiter and Saturn (Liu et al. 2008;
Wicht et al. 2019b), and therefore the effect of its uncertainty on
the radial profile (Fig. 3) should be evaluated. While the uncertainty
in the electrical conductivity is indeed very large, its effect on the
wind-induced magnetic field is less dramatic, due to the exponential
nature of its dependence on depth. To illustrate this, we examine
two extreme scenarios discussed in the literature (Liu et al. 2008):
one in which the conductivity is an order of magnitude larger and
one in which it is an order of magnitude lower than the mean value.
The results are presented in Fig. B1. In both cases, a radial profile
of the flow in the semiconducting region can be found (Figs B1a,
b) such that the magnitude of the induced residual magnetic field
is similar to the measured one (Fig. B1c). Next, in both cases, a
radial profile in the outer region can be found such that the gravity
measurements are also explained (Fig. B1d), with a modified cloud-
level wind that is very similar to the solution with regular conductivity
(Fig. B1e). The RMSEs for the high and low extreme cases are 0.70
and 0.34, respectively. Note that in the case with the extreme low

conductivity, the gravity is slightly easier to match than the standard
case. Finally, a fully optimized solution that can explain both the
gravity and magnetic measurements can be found for both extreme
cases. The gravity RMSEs are now 0.92 and 0.30 for the high and
low cases, respectively. The magnetic RMSEs are now 1.90 and 0.47.
Note that, similar to the solutions without fitting the magnetic field
details, it is easier to fit the magnetic field latitudinal structure with
the extreme low conductivity and somewhat more difficult with the
extremely high values. The solutions for both extreme cases show
a similar behaviour in the outer region where the flow is found to
be mostly barotropic. They also show a similar behaviour in having
no tail in deep layers. The shift in the depth of the winds between
the two extreme cases (grey region in Fig. B1d) is about 1000 km,
and both solutions are distinctively different from the gravity-only
(Galanti et al. 2019) solution (dashed black). With that, it is evident
that the stronger electrical conductivity results in a sharper decay of
the winds, and the weaker conductivity results in a more moderate
decay that is closer to the shape obtained when fitting only the gravity
field.

Based on the above analysis, we can also discuss even more
extremes values of the conductivity. The solution with the order of
magnitude higher conductivity is already not as good as the regular
one (Fig. B1f), and more importantly, further increase in the value
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will push the shape of the decay function in the semiconducting
region to be unphysical. This is evident in Fig. B1(a), where the
values defining the decay function, HM and fM, are already quite close
to zero for the extreme case (solid red dot). Solving the model with
another order of magnitude larger conductivity makes the problem
unsolvable. In addition, the high conductivity already pushes the
winds to be completely barotropic in the outer region (Fig. B1d,
dashed red line). As we discuss in Section 3.1.1, this is necessary
in order to explain the gravity harmonics, since this extreme decay
function involves less mass (weaker winds) in the semiconducting
zone, and therefore more mass (stronger winds) has to be included in
the outer region. Pushing the decay depth even closer to the surface
will not allow a fit to the gravity measurements. As for the extremely
weak conductivity, there our model does not pose any constraint.
The weaker the conductivity (or α-effect) is, the more the solution
becomes similar to the gravity-only solution, and there can always
be a larger value for HM to define the exponential decay in the
semiconducting region.

Another source for uncertainty is the dynamo α-effect of which
the latitudinal dependence is not well known (Cao & Stevenson
2017b). However, modifying the latitudinal dependence of the α-
effect, as well as adding the γ -effect (Kapyla et al. 2006), might add
complexity to the solution but would not change the main results
(Cao & Stevenson 2017b; Galanti et al. 2017a). First, the magnitude
of α would not be significantly different. Secondly, while the latitude
dependence of the solution will change, but as demonstrated here,
with minor modification of the cloud-level wind, the details of the
measurements can be explained by the model solution. Finally, under
the assumptions taken in the MFED of small-scale turbulence in the
entire semiconducting region, modifying the overall magnitude of
the dynamo α-effect is equivalent in general to changing the value
of the conductivity (see equation 4); therefore, the exploration above
should suffice to account for that uncertainty. With that, it should
be noted that a strongly stratified layer would disconnect the region
below it from the winds above, and render the α-effect to be smaller.
However, such a stable layer, if existed, is expected to be in deeper
layers (Debras & Chabrier 2019).

APPENDIX D : ESTIMATES FOR THE
M AG N E T I C R E Y N O L D S N U M B E R

A basic requirement for using the MFED balance is that the magnetic
Reynolds number would satisfy Rm(u) < 1 [Cao & Stevenson 2017b;
it is defined as Rm(u) = uHσ σμ0, where u(r, θ ) is the flow velocity,
σ is the electrical conductivity, and Hσ = σ/ dσ

dr
is the scale height

associated with it]. In Fig. D1(a), we show Rm(u) calculated with the
Saturn’s optimal flow solution (Fig. 3a), where the maximal value
in the semiconducting region is 0.98; thus, the condition is satisfied.
Note that Rm(u) becomes extremely small close to the lower boundary
because the modelled flow goes to zero there, while in reality the flow
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Figure D1. The magnetic Reynolds number Rm(u) for the Saturn (a) and
Jupiter (b) solutions, in the semiconducting region. In the Saturn case
Rm(u)max = 0.98 and in the Jupiter case Rm(u)max = 0.88. Thus, in both
cases the basic requirement that enables using the MFED balance, Rm(u) <

1, is met.

strengthens, and so Rm(u) might be higher there. This has practically
no effect on our results and conclusion since the gravity harmonics
are not sensitive to O(1) m s−1 variations at these depths. Moreover,
the wind-induced residual magnetic field Br can be roughly related
to the background field B0 via Br ∼ Rm(α)maxRm(u)max|B0|, where
Rm(α) = αHσ σμ0 is the magnetic Reynolds number associated with
the dynamo α-effect (Cao & Stevenson 2017b). Since Rm(α) reaches
a maximal value of 0.25 (at the lower boundary of the semiconducting
region) and Rm(u) < 1 everywhere, the resulting residual magnetic
field is ensured to be much smaller than the background field
(Fig. 2b). With that, the Rm(u) associated with our solution is close to
1 in some regions indicates that the actual flow in the semiconducting
region, especially in its outer part, might be weaker than our solution.
The measured residual magnetic field will then not be solely due to
the winds (see above discussion). In such a case, the decay of the
wind around the 7000 km depth would be even sharper. A similar
analysis was performed with Jupiter’s optimal solution (Fig. 4a). The
magnetic Reynolds number associated with this solution (Fig. D1b)
has a maximum value of 0.88 in that region, and is less than 0.1 in
most of the domain, thus ensuring that the wind-induced residual
magnetic field will be much smaller than the internal field. Note that
other methods for estimating Rm(u) might be used (Wicht, Gastine
& Duarte 2019a), but this should not affect substantially the results
shown here.
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