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NASA’s Juno spacecraft will make microwave and gravity measurements of Jupiter. These can reveal
information about the composition of Jupiter's atmosphere and about the temperature and density struc-
ture below the visible clouds, which is in balance with the structure of the zonal winds. Here we show
that there exist strong physical constraints on the structure of the off-equatorial deep zonal winds,
and that these imply dynamical constraints on the thermal and gravitational signals Juno will measure.
The constraints derive from the facts that Jupiter is rapidly rotating, has nearly inviscid flow, and has
strong intrinsic heat fluxes emanating from the deep interior. Because of the strong intrinsic heat fluxes,
Jupiter’s interior is convecting, but the rapid rotation and weak viscosity constrain the convective
motions away from the equator to occur primarily along cylinders parallel to the planet’s spin axis. As
a consequence, convection is expected to approximately homogenize entropy along the spin axis, thereby
adjusting the interior to a convectively and inertially nearly neutral state. In this state, entropy gradients
perpendicular to the spin axis are constant but generally not zero on cylinders concentric with the spin
axis. Additionally, thermal wind balance relates entropy gradients perpendicular to the spin axis to the
zonal wind shear between the observed cloud-level winds and winds in the deep interior (pressures of
order 106 bar), which must be much weaker because otherwise the Ohmic energy dissipation produced
by the interaction of the zonal winds with the planetary magnetic field would exceed the planetary lumi-
nosity. Combining these physical constraints with thermal and electrical properties of the atmosphere,
we obtain that zonal winds away from the equator likely extend deeply into Jupiter (to a depth between
about 0.84R; and 0.94R; with Jupiter radius R;) but have strengths similar to cloud level winds only within
the outer few percent of Jupiter’s radius. Meridional equator-to-pole temperature contrasts in thermal
wind balance with the zonal winds increase with depth and reach ~1-2 K at 50 bar; they would reach
0(10K) if the winds were shallowly confined, as has been proposed previously. Such temperature con-
trasts will be detectable by Juno’s microwave instrument and are expected to be much larger than those
associated with variations in water vapor abundance. The associated gravitational signals of the zonal
winds will also be detectable by Juno, but they will be more difficult to distinguish from those implied
by other flow models with deep zonal flows. The combination of Juno’s gravity and microwave instru-
ments should be able to distinguish deep flows (detectable gravitational signals) from shallow flows
(detectable thermal signals), providing strong constraints on the penetration depth of substantial zonal
winds.
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1. Introduction It will make microwave and gravity measurements from orbit

around Jupiter. These measurements will contain information

The only available data about the zonal wind, temperature, and
density of Jupiter below the visible clouds come from the descent
of the Galileo probe into the planet in 1995, delivering data about
the atmosphere at the entry point (6.5°N) up to pressures of
~21 bar (Atkinson et al.,, 1997, 1998). NASA’s Juno mission will
reach Jupiter in 2016 and is expected to deliver the first data set
of the temperature and density structure below the visible clouds.
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about the composition of the atmosphere (which affects emissivi-
ties and the equation of state) and about the flow (which affects
temperature and density gradients). To disentangle compositional
and dynamical information, it is essential to have independent
constraints on either. Here we show that there exist strong dynam-
ical constraints on the density and temperature structure, and we
calculate the gravity and temperature signals they imply under
plausible assumptions for free parameters in the flow structure.
The dynamical constraints derive from the well known facts
that Jupiter is rapidly rotating, has strong intrinsic heat fluxes
emanating from the deep interior, and has nearly inviscid flow
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(Ingersoll et al., 2004; Guillot et al., 2004). The intrinsic heat flux
(~6 W m™2) is sufficiently strong to lead to convection in Jupiter’s
deep interior, up to near the tropopause (Guillot, 1999). Convective
plumes penetrating into the upper troposphere have indeed been
observed (Gierasch et al., 2000; Porco et al., 2003; Sanchez-Lavega
et al., 2008). Jupiter’s rapid planetary rotation (small Rossby num-
bers) and negligible viscosity imply that convective motions are
predominantly confined to surfaces of constant angular momen-
tum per unit mass (Busse, 1976, 1994; Christensen, 2001; Heimpel
et al., 2005; Aurnou et al., 2008; Kaspi et al., 2009; Jones and Kuza-
nyan, 2009; Gastine and Wicht, 2012). These angular momentum
surfaces are approximately cylinders concentric with the planet’s
spin axis because the small Rossby number means the angular
momentum is dominated by the contribution from the planetary
rotation. Because viscous dissipation is negligible in Jupiter’s atmo-
sphere and radiative adjustment timescales below the upper tro-
posphere are longer than convective timescales (Guillot et al.,
2004; Guillot, 2005), we expect that, in the interior, entropy is
approximately materially conserved in convective motions and
so will become approximately homogenized along angular
momentum surfaces. That is, we expect that convection homoge-
nizes entropy in the direction of the planet’s spin axis, establishing
a state that is nearly neutral with respect to convective and inertial
instabilities, in which entropy and angular momentum surfaces are
aligned (Emanuel, 1983, 1994; Thorpe and Rotunno, 1989). Indeed,
data from the descent of the Galileo probe show that the stratifica-
tion of the atmosphere below the clouds is close to convectively
neutral (Magalhdes et al., 2002). But because the rapid planetary
rotation constrains motion perpendicular to angular momentum
surfaces to be weak, entropy need not be approximately homoge-
nized perpendicular to the spin axis—a restrictive assumption that
has often been made in models of Jupiter’s interior (e.g., Ingersoll
and Porco, 1978), but that, as we will discuss, is unlikely to be sat-
isfied for dynamical reasons (Liu and Schneider, 2010). Instead, en-
tropy homogenization along the spin axis implies that entropy
gradients perpendicular to the spin axis are constant along cylin-
ders—a less restrictive assumption that we will exploit to constrain
the flow structures at depth.

Entropy gradients perpendicular to the spin axis are related to
the zonal wind and its shear through the thermal wind balance
(Smith et al., 1982; Vallis, 2006; Kaspi et al., 2009). The zonal wind
shear below the visible clouds is not generally known (except in
the upper layers of the atmosphere and at the Galileo entry site);
however, the zonal wind at the cloud level is known (Limaye,
1986; Porco et al., 2003). It is very unlikely that the zonal winds ex-
tend into the deep interior unabatedly because if they would, their
interaction with the planetary magnetic field would generate elec-
tric currents deep in the interior, where the atmosphere is electri-
cally conducting (Nellis et al., 1996). The Ohmic energy dissipation
of these electric currents (and thus ultimately the dissipation of ki-
netic energy) would exceed the net planetary luminosity (Liu et al.,
2008). This is impossible since the kinetic energy dissipation can-
not exceed the total energy available to drive the flow from intrin-
sic heat fluxes and absorption of solar energy combined. Liu et al.
(2008) showed that at 0.96R; (Jupiter radius R;), the zonal winds
must be weaker than the observed upper-tropospheric winds for
the Ohmic dissipation to be smaller than the net planetary
luminosity.

The notion that zonal winds in Jupiter’s interior are much weak-
er than at cloud level is supported by recent numerical simulations
that take a radially varying electrical conductivity into account and
that show slow convection in the dynamo region (with higher elec-
trical conductivity) coexisting with strong zonal flows higher up in
the atmosphere (Heimpel and G6émez Pérez, 2011). It is also sup-
ported by measurements of the secular variation of Jupiter’s mag-
netic field, which suggest flow velocities of order of 107> ms~! in

the planetary interior (Russell et al., 2001; Guillot et al., 2004).
So the zonal wind shear is constrained by observations of the
winds at cloud level, by the thermal wind balance, by the assump-
tion of entropy gradients perpendicular to the spin axis being con-
stant along cylinders, and by the requirement that the winds at
depth are negligibly weak compared with the cloud-level winds.
We will exploit these constraints to make predictions of the ther-
mal and gravitational signals of Jupiter’s deep zonal winds, assum-
ing a fixed composition (equation of state) of the atmosphere.

Section 2 begins with a review of thermal wind balance in a
deep atmosphere and calculates the temperature structure implied
by the zonal winds, under different assumptions about the level at
which they are negligibly weak. Section 3 calculates the gravita-
tional signals implied by the zonal winds. Section 4 summarizes
the results and implications for measurements by the Juno
mission.

2. Thermal signals of deep zonal winds
2.1. Thermal wind balance in a deep atmosphere

Jupiter’s rapid rotation means that the Rossby number Ro = U/
(2QL,) is small (with zonal velocity scale U, angular velocity of
planetary rotation €2, and length scale of zonal-flow variations L,
in the direction perpendicular to the planet’s spin axis). With typ-
ical scales for upper-tropospheric zonal winds (U < 100ms™!,
L, ~ 2000 km), the Rossby number is <0.1, and it is even smaller
for the weaker zonal winds expected in the planetary interior
(Schneider and Liu, 2009). Additionally, viscous and other momen-
tum dissipation is expected to be weak (small Ekman number)
above any dissipative layer at depth, e.g., where the interaction
of magnetic fields with flows generates dissipation. Therefore,
the atmospheric flow above any dissipative layer at depth is ex-
pected to be in geostrophic balance to leading order, and to the ex-
tent the atmosphere is also in hydrostatic balance, thermal wind
balance holds. For a deep atmosphere (i.e., not making the thin-
shell approximation), the thermal wind balance in the anelastic
approximation is (Ingersoll and Pollard, 1982; Kaspi et al., 2009)

2Q0-Vu-20V - u=uVs x g. (1)

Here, Q is the planetary angular velocity vector, u is the 3D atmo-
spheric velocity vector, g(r) is the gravitational acceleration, and s is
the specific entropy; primes denote fluctuations about a reference
state with constant entropy S and with hydrostatically balanced
pressure p(r) and density p(r)

Vp(r) = p(rg(r), @)

where r is the spherical radius. (We neglect Jupiter's oblateness
throughout this paper. The gravitational acceleration g(r) depends
on the density p(r) in the hydrostatic reference state and varies
with r.) The coefficient

b

is an entropic expansion coefficient that relates isobaric density
fluctuations to entropy fluctuations (i.e., p'/p = —ass" at p’ = 0); for
an ideal gas, o = 1/c,, where ¢, is the specific heat capacity at con-
stant pressure. Because of the generally nonzero baroclinic term
osVs' x g on the right hand side of the thermal wind Eq. (1), the
Taylor-Proudman theorem does not necessarily apply, although
both the Rossby and Ekman numbers are small in Jupiter’s off-equa-
torial region (Pedlosky, 1987). Instead of the homogenized entropy
and vanishing zonal wind shear along the spin axis under Taylor-
Proudman conditions, the zonal wind shear along the spin axis
and the corresponding entropy perturbations perpendicular to it
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are not necessarily small on Jupiter but are related by the thermal
wind equation and are coupled dynamically through a mean merid-
ional circulation (Schneider and Liu, 2009).

For our purposes, it is convenient to use cylindrical coordinates
(with cylindrical radius r, and height z above the equatorial plane
measured in the direction of the planet’s spin axis), and to focus on
the zonal (azimuthal) wind component u. Thermal wind balance
then becomes

296—2 = 0g Sin ¢

5 o 0lsg COS ) ——

os’' os'
=3 )

where ¢ is latitude, related to the cylindrical coordinates through

4

sing(z,r,) = 7 (5)
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This thermal wind equation relates the zonal wind shear along
the spin axis to the entropy variations in Jupiter's deep atmo-
sphere; it generalizes the standard thermal wind equation for an
ideal-gas atmosphere in a thin shell (e.g., Ingersoll and Cuzzi,
1969).!

The observed intrinsic heat flux emanating from Jupiter’s deep
interior is so strong that, in the interior, heat is transferred
primarily by convection (Guillot et al., 2004). This convection is
expected to be sufficiently vigorous to homogenize entropy along
the direction of convective motions (Guillot and Morel, 1995;
Guillot, 2005). Because the Rossby number is small and viscous
momentum dissipation and thermal diffusion are negligible,
convective motions are approximately aligned with surfaces of
constant planetary angular momentum, which are cylinders con-
centric with the planet’s spin axis (Busse, 1976; Aurnou et al.,
2008; Kaspi et al., 2009). Therefore, where solar radiative fluxes
are sufficiently weak and thermal radiative adjustment timescales
are sufficiently large (below the upper troposphere), convection
tends to homogenize entropy in the direction of—but not
necessarily perpendicular to—the planet’s spin axis. The radiative-
convective equilibrium state with entropy homogenized along
angular momentum surfaces is neutral with respect to convective
and inertial axisymmetric instabilities and has zero slantwise
convective available potential energy, which convection tends to
deplete (Emanuel, 1994; Thorpe and Rotunno, 1989). The ten-
dency of convection to homogenize entropy in the direction of
the spin axis (9s'/0z < 0s'[or,) means that the thermal wind
balance (4) reduces to

@ _osgsing(z,r,) 0s 7)
oz~ 20 o,

This relates entropy gradients perpendicular to the spin axis to
the zonal velocity shear along the spin axis. Evidence that this is in
fact the dominant balance comes, for example, from the general
circulation model simulations of Jupiter’s upper atmosphere in
Schneider and Liu (2009) and Liu and Schneider (2010), which have
radiative and intrinsic energy fluxes consistent with Jupiter obser-
vations and equilibrate to a statistically steady state with entropy
approximately homogenized along angular momentum surfaces
below ~0.7 bar and away from the equator. At deeper levels in
the simulations, the meridional entropy gradient (the thin-shell
analog of 9s’/or ) varies with latitude, and the vertical entropy gra-

1 The thermal wind equation reduces to the standard thermal wind equation for an
ideal-gas atmosphere (s’ = c,log 0 with potential temperature 0) in the limit of a thin
atmospheric shell (r = a = const., neglecting vertical Coriolis accelerations),
ou g a0
2__s2 6)
0z fo oy
Here, y = a¢ is the meridional coordinate, Z is the altitude (spherical radius) coordi-
nate (with zsin¢ =z and Zcos ¢ =), and f=2Qsin ¢ is the Coriolis parameter.

dient is about an order of magnitude smaller than the meridional
entropy gradient. Within a few degrees of the equator, this is not
necessarily true, as the Rossby number may not be small and the
thermal wind equation does not hold accurately (Aurnou et al.,
2008); however, our focus here is on the off-equatorial regions.
Additionally, simulations of deeper atmospheric shells show that
thermal plumes away from the equatorial region indeed generally
align with the planet’s spin axis and that the dominant component
of the convective heat transfer is axial (Aurnou et al., 2008; Kaspi
et al., 2009).2

2.2. Constraints on the depth of zonal winds and on entropy gradients

The thermal wind balance (7) shows how a given zonal wind
shear along the spin axis is associated with an entropy gradient
perpendicular to the spin axis. The zonal wind shear is related to
the penetration depth of substantial zonal winds. If the zonal
winds are confined to a shallow weather layer (e.g., Ingersoll
et al., 2004), the zonal wind shear along the spin axis and the asso-
ciated entropy gradient perpendicular to it are large. If the zonal
winds penetrate deeply (e.g., Busse, 1994), the zonal wind shear
along the spin axis and the associated entropy gradient perpendic-
ular to it are smaller.

Within the atmospheric shell with substantial zonal winds, the
zonal winds are almost certainly sheared in the direction of the
spin axis, and the associated entropy gradients perpendicular to
the spin axis are nonzero. The reason is that the zonal winds and
entropy gradients must satisfy two constraints: (i) they must be
approximately in thermal wind balance where dissipation is weak
and (ii) along any angular momentum surface (approximately a
cylinder), the net angular momentum flux convergence by eddies
must be balanced by angular momentum dissipation at depth
(Schneider and Liu, 2009; Liu and Schneider, 2010). These twin
constraints generally cannot be satisfied with zonal winds that
do not vary in the direction of the spin axis. Rather, zonal winds
generally must be sheared along angular momentum surfaces, as
seen in the simulations in Schneider and Liu (2009) and Kaspi
et al. (2009). The Taylor-Proudman state, in which entropy is com-
pletely homogenized and the zonal winds are constant along the
spin axis, is unlikely to be attained in the atmospheric shell of sub-
stantial zonal winds.

For Jupiter, observations of the flow in the upper troposphere
provide constraints on the depth to which substantial zonal winds
can extend. It has been observed that in the upper troposphere, ed-
dies generally transport angular momentum out of retrograde and
into prograde jets, thus transferring kinetic energy to the mean zo-
nal winds (Ingersoll et al., 1981; Salyk et al., 2006). It is not clear
how deeply into the atmosphere this kinetic energy transfer ex-
tends. But if the eddy angular momentum fluxes per unit volume
extended unabatedly over a layer of only 50 km thickness (e.g.,
from about 0.3 to 2.5 bar pressure) and if vertical zonal-wind vari-
ations over this layer are weak (as is generally assumed), the total
energy conversion rate would already amount to 0.5W m™2, or
~4% of the total energy uptake of the atmosphere from intrinsic
heat fluxes and absorption of solar radiation. It would be

2 Simulations of deeper atmospheric flows on Jupiter generally use excessive
isotropic viscous dissipation of momentum and entropy throughout the interior,
rather than dissipation solely at depth. As a result, they exhibit a tendency toward
isotropic entropy homogenization (e.g., Aurnou et al., 2008; Jones and Kuzanyan,
2009). Zonal winds and the associated thermal wind shear do not satisfy the
constraints discussed in Section 2.2 in a way that is consistent with the angular
momentum fluxes observed in the upper troposphere, which for energetic reasons
must be baroclinic and cannot extend to great depths (Schneider and Liu, 2009; Liu
and Schneider, 2010). Therefore, it is difficult to infer relative magnitudes of entropy
gradients in the direction of the spin axis and perpendicular to it from such
simulations.
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correspondingly larger or smaller if the angular momentum fluxes
were confined to a deeper or shallower layer (Liu and Schneider,
2010). Therefore, the kinetic energy transfer from eddies to the
mean flow must be baroclinic and cannot extend to great depths.
In a statistically steady state, mean-flow kinetic energy must either
be dissipated at depth at a rate equal to the upper-tropospheric
transfer from eddies or must be transferred back to eddies by
angular momentum fluxes opposing those observed in the upper
troposphere. It is very unlikely that there are eddy angular
momentum fluxes at depth that exactly balance those in the upper
troposphere; no model has produced such angular momentum
fluxes, and no mechanisms to generate them have been proposed.
So the mean zonal winds likely experience dissipation at depth. A
plausible dissipation mechanism is the magnetohydrodynamic
(MHD) drag that is produced by the interaction of winds with
the magnetic field and the Ohmic dissipation of the resulting elec-
tric currents. This occurs at depths where the electrical conductiv-
ity of the atmosphere is sufficiently large.

The electrical conductivity of hydrogen (Jupiter’s main constit-
uent) can be calculated using a semiconductor model with linear
band gaps determined by experimental shockwave data (Nellis
et al., 1992, 1996; Liu et al., 2008). The derived electrical conduc-
tivity increases exponentially with depth up to a plateau at
~0.84R;, where it reaches 2 x 10° Sm™' (Fig. 1a). Above 0.94R,, it
is in agreement with the electrical conductivity determined by
ab initio simulations (French et al., 2012). Below 0.94R), the electri-
cal conductivity determined by ab initio simulations increases
more rapidly with depth and reaches 3.39 x 10°Sm~"' at around
0.1R; (Fig. 1a). For the inferences in this paper, we will primarily
use the electrical conductivity calculated from the semiconductor
model but will discuss results implied by the electrical conductiv-
ity determined from ab initio simulations where applicable.

The Ohmic dissipation produced by the interaction of a given
magnetic field with the zonal winds scales linearly with electrical
conductivity (Liu, 2006; Liu et al., 2008). At ~0.84R), zonal winds on

Electrical conductivity (S m™")
=
|

10 T T
0.4 0.6 0.8

Normalized radius

the order of 1072 m s~! would already experience a substantial dis-
sipation of more than 1 W m~2 (assuming the magnetic field can be
obtained by downward continuation of the upper atmospheric
field; see Appendix A). So the zonal winds likely are negligibly
weak at this and deeper levels (Liu, 2006). On the other hand, out-
side ~0.97R;, the electrical conductivity is so low (<102Sm™")
that zonal winds of the strength of those observed in the upper tro-
posphere would experience less than 1072W m 2 dissipation—
about an order of magnitude less than the total dissipation in the
simulation in Schneider and Liu (2009). So substantial zonal winds
likely extend to deeper levels. Hence, the Ohmic dissipation pro-
duced by interaction with the magnetic field constrains substantial
zonal winds to extend to a cutoff radius r. that lies somewhere be-
tween 0.84R; and 0.97R,, corresponding to between about 1.4 x 10°
and 3.6 x 10* bar pressure. Because the electrical conductivity in-
creases exponentially with depth, this constraint on the cutoff ra-
dius is not very sensitive to uncertainties about the strength of
the magnetic field (which increases with depth, toward the source
of the field). For example, a magnetic field an order of magnitude
stronger than that at the top of Jupiter’s atmosphere would in-
crease the lower bound on r. to 0.89R; (see Appendix A).

The Ohmic dissipation constraint derives from the energy bal-
ance. Additional constraints derive from the angular momentum
and hydrostatic balance, which allow us to tighten the upper
bound of the depth range to which substantial zonal winds may
extend. At levels below the cutoff radius, either thermal wind bal-
ance has to break down or entropy must be isotropically homoge-
nized, so that the zonal winds can remain weak at these deeper
levels. (Otherwise, thermal wind balance and constant entropy
gradients perpendicular to the spin axis would continue to imply
shear in the direction of the spin axis, implying a reversal and
strengthening of zonal winds that would violate the energetic con-
straints.) Thermal wind balance breaks down where the electrical
conductivity is sufficiently large that the Maxwell stress determines
the zonal wind shear along the spin axis. Order-of-magnitude
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Fig. 1. (a) Electrical conductivity profile as a function of normalized radius. The solid line is from the semiconductor model with linear band gaps determined by experimental
shockwave data (Nellis et al., 1992, 1996; Liu et al., 2008). From 0.94R; to the top of the atmosphere, the electrical conductivity is obtained from Liu et al. (2008); below 0.94R;,
the electrical conductivity is adapted from Nellis et al. (1996). (See Nellis et al. (1992, 1996) and Liu (2006) for discussion of uncertainties.) The dashed line with circles is the
electrical conductivity along Jupiter’s adiabat determined by ab initio simulations (French et al., 2012). (b) Entropic expansion coefficient o as function of normalized radius

for the SCVH EOS.
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estimates indicate that the Maxwell stress starts to become impor-
tant at or below ~0.94R; (see Appendix B). So assuming that radi-
ative fluxes are too weak to isotropically homogenize entropy
outside ~0.94R;, it is unlikely that the cutoff radius for substantial
zonal winds is larger than that. Therefore, as a conservative bracket
for the cutoff radius, we assume it is in the range of 0.84 to 0.94R),
corresponding to 1.4 to 0.2 Mbar pressure. Additionally, calcula-
tions using the electrical conductivity profile from ab initio simu-
lations (French et al., 2012) do not change the 0.94R; upper
bound but likewise move the lower bound to 0.89R; because the
electrical conductivity below 0.94R; in the ab initio simulations is
significantly higher than that derived by simple semiconductor
models (Fig. 1a).

2.3. Possible zonal winds and entropy gradients

Integrating the thermal wind Eq. (7) along the planet’s spin axis
from the cylindrical depth z. = z(r,, r, ) corresponding to the spher-
ical cutoff radius r. (where u ~ 0) to the upper troposphere at cylin-
drical depth zz=2zg(R,r.) and spherical radius R gives a relation
between the upper-tropospheric zonal wind ug(¢) = ug(r.(¢)) and
the thermal structure of the atmosphere below:

1 o9s [= inod 3
u = 0sg sin ¢’ dz.
(6) =g 5 [ wesing ®)
Here, sin¢’ = z/(z2 +12)"/2, and the entropy gradient 8s'/or, per-
pendicular to the spin axis can be taken outside the integral because
the assumption that entropy is homogenized along the spin axis im-
plies that the gradient perpendicular to it must be constant going
down along the spin axis. Solving for this gradient gives

o5 20up(¢)
o, [Rogsing'dz’

9

which relates it to the observed upper-tropospheric zonal winds ug,
the cutoff-radius r, and the entropic expansion coefficient os.

To determine the entropic expansion coefficient os, an equation
of state (EOS) is needed. In Jupiter’s upper atmosphere, the EOS is
well approximated by that for an ideal gas. Deep in the interior, as
the pressure and temperature increase, hydrogen becomes semi-
conducting because of the effects of pressure ionization, electron
degeneracy, and Coulomb interactions. There, the EOS differs from
that for an ideal gas. We use the Saumon-Chabrier-Van Horn
(SCVH) EOS (Saumon et al., 1995) with the reference entropy mea-
sured by the Galileo probe, following Kaspi et al. (2009) who ap-
plied this EOS in Jupiter simulations.> This adiabatic reference
profile matches well with the modeled interior mean density-tem-
perature-pressure profile (Guillot and Morel, 1995), although differ-
ences exist (Kaspi et al., 2009). In using the SCVH EQS, we ignore the
effects of latent heat release in phase transitions (e.g., of water) on
the entropy. Fig. 1b shows the resulting entropic expansion coeffi-
cient o as a function of the normalized radius. It rapidly decreases
with depth, in part because the mean density in the denominator
of (3) increases rapidly with depth.

The rapid decrease of «; with depth means that, by thermal
wind balance (7) and using 9s'/0r, ~ const, most of the zonal wind
shear will be concentrated in the outer few percent of Jupiter’s ra-
dius, irrespective of where substantial dissipation occurs (see Fig. 2
for an illustration). Thus, the value of the entropy gradient perpen-

3 The Galileo probe measured an approximately dry adiabatic temperature-
pressure profile, passing through 260 K and 4.18 bar (Seiff et al., 1998). Based on
the SCVH EOS, the corresponding specific entropy is 6.27 x 10%] kg~! K~'. The are
uncertainties about this reference entropy: it may range from 6.24 to 6.31 x 10%-
Jkg 1K' (Seiff et al., 1998). But these uncertainties about the reference entropy will
only affect the mean entropy, not the meridional entropy gradients and associated
temperature gradients that are our focus.

dicular to the spin axis (9) is not very sensitive to the chosen cutoff
radius, provided it is sufficiently small so that it lies below the
layer of substantial os (cf. Fig. 1b). Whether r. = 0.9R; or r. = 0.84R,
is used changes the integral ZZER osg sin ¢’ dz by less than 15% when
cylinders intersecting midlatitudes in the upper troposphere are
considered. The corresponding change in the entropy gradient per-
pendicular to the spin axis (9) likewise is less than 15%.

These expectations are borne out more precisely by calculations
of the entropy gradient perpendicular to the spin axis (9) for differ-
ent cutoff radii r.. Instead of showing the entropy gradient directly
as a function of r,, we use latitude in the upper troposphere as an
equivalent but more intuitive abscissa (Fig. 3a). As expected, entro-
py gradients corresponding to shallowly confined zonal winds are
larger than those corresponding to deeply penetrating zonal winds.
Moreover, since o is positive, going downward in the direction of
the spin axis (i.e., going toward lower |z| at fixed r ), the entropy
gradient 9s'/0r, has the same sign as the upper-tropospheric zonal
wind: Going downward in the direction of the spin axis where the
observed zonal wind is prograde, the entropy gradient 9s'/dr is
positive, so the entropy increases with r,; the opposite holds
where the observed zonal wind is retrograde. The entropy gradient
vanishes going downward from where the observed zonal wind
vanishes (Fig. 2). Thus, the correlations between the signs of the
entropy gradient and of the zonal winds project downward along
the spin axis.

In the equatorial region where the cylindrical radius r, is greater
than the cutoff radius r, (outside the tangent cylinder), the zonal
wind shear in the direction of the spin axis and the entropy gradient
perpendicular to it are not well constrained by the arguments we
presented. Zonal winds within that region still connect with the
flow at depth along surfaces of constant angular momentum per
unit mass, which are approximately cylinders concentric with the
spin axis. But these cylinders no longer intersect a region of sub-
stantial MHD drag. The arguments we presented hence do not con-
strain the zonal wind shear and the entropy gradient in that region
(corresponding to latitudes |¢| < arccos(r.) in the upper tropo-
sphere); we have left their values open in Figs. 2 and 3. It is possible
that the zonal wind shear in the direction of the spin axis and the
entropy gradient perpendicular to it approximately vanish in this
region, so that a Taylor-Proudman state is attained (or nearly so).

Where the zonal wind shear and entropy gradients are con-
strained, the zonal wind in the entire troposphere can be calcu-
lated by integrating the thermal wind balance (7) downward
from the observed upper-tropospheric winds. Substituting the
expression for the entropy gradient (9) into the thermal wind bal-
ance, using u(z.) ~ 0, and integrating gives

Z H /
) = () 2 E O & (10)
[fosgsing'dz

This shows explicitly that the zonal winds under our assump-
tions (principally, that entropy is homogenized in the direction of
the spin axis but not necessarily perpendicular to it) only depend
on the cutoff-radius r. and the EOS, which determines o. It pro-
vides a more physically plausible zonal wind structure than those
assumed in previous models (e.g., Busse, 1976; Jones and Kuza-
nyan, 2009), which are difficult to reconcile with observations,
for example, of angular momentum fluxes in the upper tropo-
sphere (Schneider and Liu, 2009; Liu and Schneider, 2010).

The zonal winds shown in Fig. 2 are calculated from (10) for
1= 0.84R;. The figure shows that, consistent with the preceding dis-
cussion, substantial zonal winds are primarily confined to the upper
atmosphere (because of the decrease of o with depth). Generally,
the strength both of prograde and retrograde jets decreases with
depth toward zero at the cutoff radius r.; zeros of the zonal winds
project downward along the spin axis (Schneider and Liu, 2009).
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Fig. 2. Mean zonal wind u (left), its shear du/dz in the direction of the spin axis (middle), and corresponding entropy gradient perpendicular to the spin axis ds'/or (right), all

for a cutoff radius r. = 0.84R,. The gray contours indicate the zero lines.
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Fig. 3. (a) Entropy gradient 9s'/0r, perpendicular to the spin axis as a function of latitude ¢ in the upper troposphere. (b) Entropy perturbation (relative to isentropic
reference state) s’ as a function of latitude ¢. The integration constant to obtain the entropy perturbation was arbitrarily fixed so that s’ = 0 at the tangent cylinder where
r, =T Green solid lines correspond to r. = 0.84R;, magenta dashed lines to r. = 0.90R, and orange dash-dot lines to r. = 0.94R,. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)

2.4. Implications for temperature gradients

To obtain the entropy perturbation s’ in the interior atmosphere
as a function of cylindrical radius (or latitude), we integrate Eq. (9)
for the entropy gradient from the pole to the tangent cylinder
where r, =r. (see Fig. 2), arbitrarily fixing the integration constant
so that s’ =0 at the tangent cylinder. As is already clear from the
entropy gradients, the equator-to-pole entropy contrast increases
with increasing cutoff radius (Fig. 3b). For r.=0.84R), the equa-
tor-to-pole entropy contrast is less than 25 ] kg~! K !; for r. = 0.94-
R;, the equator-to-pole entropy contrast is 50 ] kg='K~'; for the

even larger cutoff radius of r. = 0.9965R; (corresponding to a pres-
sure of 100 bar), which we consider unrealistic, the equator-to-
pole entropy contrasts would reach 475 ] kg~! K~'. However, these
entropy contrasts are still small compared with the entropy of the
reference state we assumed (5 = 6.27 x 10* ] kg ' K", see footnote
3), so the assumption in (1) of small entropy fluctuations about the
reference state is well justified.

The temperatures T corresponding to the entropies s can be ob-
tained from the EOS. Fig. 4 shows contours of pressure p as a func-
tion of log(s/S) and log(T/To) (reference temperature Typ) for the
SCVH EOS. The mean temperature increases with pressure in the
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Fig. 4. Contours of pressure p as a function of log(s/s) and log(T/T,) for the SCVH
EOS (blue). The mean isentropic reference state with the entropy
§=6.27 x 10*J kg”' K'! determined by Galileo probe measurement at the entry
point is shown as the red dashed horizontal line. The reference temperature for
normalization is chosen to be Tp = 1000 K. The first contour in the upper left corner
corresponds to p =0.01 bar, and pressure increases by a factor of 10 for each
additional contour to the right. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

isentropic reference state, and the magnitude of temperature devi-
ations for a given entropy deviation from the reference state also
increases with pressure. For example, a 0.1% deviation of the entro-
py from the reference state corresponds to a 1.5-K temperature
deviation at 1bar, to a 10-K temperature deviation at 103 bar,
and to a 20-K temperature deviation at 106 bar.

Fig. 5 shows the temperature perturbation as a function of lat-
itude at different pressures and for different cutoff radii. (The tem-
perature at the tangent cylinder is fixed by the integration constant
for the perturbation entropy.) As for the entropy perturbations, the
temperature perturbations are larger for shallower cutoff radii, as
was recognized decades ago (e.g., Smith et al., 1982). For a cutoff
radius of 0.84R;, the equator-to-pole temperature contrast is
~0.4 K at the 1-bar level and ~1 K at the 50-bar level. For a cutoff
radius of 0.94R;, the equator-to-pole temperature contrast is
~0.7 K at the 1-bar level and ~2 K at the 50-bar level. For calcula-
tions with unrealistic cutoff radii of 0.9965R; (corresponding to
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100 bar), 0.9954R; (200 bar), and 0.9917R; (1000 bar), the temper-
ature contrasts at different pressures are much larger, reaching
0(10K) at 50 bar (Fig. 6).

2.5. Implications for Juno’s microwave measurements

Juno’s microwave instrument is designed to measure the
brightness temperature in six channels that are sensitive to differ-
ent pressure intervals between 0.5 bar and O(100 bar). It is ex-
pected to detect relative brightness temperature variations of
0.1%, or variations of 0.1 K in a mean brightness temperature back-
ground of 100 K (Janssen et al., 2005).

According to our results, at ~10 bar with a mean brightness
temperature of 330 K, plausible equator-to-pole temperature con-
trasts associated with the zonal winds range from ~0.6 K (for
re=0.84R)) to ~1.2 K (for r. = 0.94R;). These dynamical temperature
variations are much larger than the expected detection limit. By
contrast, Janssen et al. (2005) shows that a variation in water vapor
relative humidity from 100% to 20% has less than 0.1% effect on
brightness temperature. Thus, the meridional temperature varia-
tions associated with the zonal winds are more easily detectable
than variations of water vapor relative humidity.

However, the thermal signals produced by variations of ammo-
nia abundances can be much larger than those produced by the zo-
nal winds. Janssen et al. (2005) shows that increasing the ammonia
abundance from 3 to 5 times solar abundance decreases the micro-
wave brightness temperature by 20-25 K. If the ammonia abun-
dances exhibit large meridional variations, it may be difficult to
detect the temperature variations associated with the zonal winds.
But if ammonia abundances are meridionally homogenized at
depth, Juno’s microwave measurements, if they indeed will be able
to detect relative brightness temperature variations of 0.1%, will
provide strong constraints on the cutoff radius of the zonal winds.

3. Gravitational signals of deep zonal winds

Written in terms of density rather than entropy, the thermal
wind balance also gives the density anomalies p’ associated with
a given zonal wind profile (Kaspi et al., 2010):

Vo' x g = (22 V)[pul (11)
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Fig. 5. Temperature perturbation as a function of latitude at different pressure levels. As in Fig. 3, green solid lines correspond to r.=0.84R;, magenta dashed lines to
.= 0.90R;, and orange dash-dot lines to r. = 0.94R;. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Temperature perturbation as a function of latitude at different pressure levels for shallower cutoff radii. Deep blue solid lines correspond to r.=0.9917R;
(corresponding to 1000 bar), brown dashed lines to r. = 0.9954R, (200 bar), and light blue dash-dot lines to r. = 0.9965R; (100 bar). (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)

The azimuthal component, now in spherical coordinates (r, ¢), is
op'  2Qcos$p du  2Qrsin¢ dpu
%~ g o6 g o’
where the gravitational acceleration g(r) continues to be a function
of r. Using the SCVH EOS and assuming a hydrostatic reference state
in which the reference density p is only a function of spherical ra-
dius r, we can integrate the thermal wind equation along the merid-
ional direction for any r and obtain the density perturbation for a
given zonal wind distribution (Kaspi et al., 2010).4

The density anomaly p’ perturbs Jupiter’s gravity field through
the perturbation of the gravitational potential

v =Y {1 ) 0+ AJn)Pn(/l)} :

r n=2

(12)

(13)

Here, G is the gravitational constant, M is the planetary mass, a =R,
is the planetary radius (taken at 1 bar), J,, is the zonal harmonic
associated with the hydrostatic reference density distribution p in
solid body rotation, and AJ, is the gravitational zonal harmonic
associated with the density perturbation,

L e T (s
Ma”,/o r dr/O dA[]Pn(u)pdu,

where g’ = sin ¢ and Py, is the Legendre polynomial of degree n. We
consider the gravitational signals produced by equatorially sym-
metric zonal winds, which we take to be the winds obtained from
the observed upper-tropospheric winds averaged between the
northern and southern hemisphere. These are perturbations of the
gravitational signals arising from the solid body rotation and also

o, = (14)

4 In the calculation of the density perturbation from the thermal wind Eq. (12), an
integration constant p;(r) at each spherical radius r needs to be determined. Although
this constant cannot be uniquely determined, we determine pj(r) by the requirement
that integrated over the sphere with radius r, the density perturbation vanishes, so
that the perturbed state continues to satisfy in the mean the hydrostatic balance of
the reference state with density p. Because in spherical geometry (which we assume),
only the latitudinally varying part of the density affects the gravitational zonal
harmonics (14), this choice of integration constant does not affect the zonal
harmonics of interest to us here.

from the oblateness of Jupiter, which we continue to neglect in the
calculation of the perturbation zonal harmonics.?

Equatorially symmetric winds give rise to equatorially symmet-
ric density perturbations and hence to even gravitational zonal
harmonics AJ,; odd zonal harmonics vanish. In the off-equatorial
region, we calculate the winds based on (10), using the observed
cloud-level zonal winds averaged between the northern and south-
ern hemisphere as upper boundary condition ug(¢). In the equato-
rial region outside the tangent cylinder (outside r, =r.), the zonal
wind shear in the direction of the spin axis can vanish because cyl-
inders concentric with the spin axis do not intersect the region of
MHD drag at depth. We assume the equatorial winds penetrate
unabatedly to the interior along the spin axis. As an example,
Fig. 7 shows the density anomaly produced by such winds for
the cutoff radius r. = 0.84R;. The density anomaly in the equatorial
region is greater than that in the off-equatorial regions because
equatorial wind speeds are greater. In the off-equatorial regions,
the density anomaly is concentrated in the upper atmosphere
due to the concentration of the wind shear there.

The corresponding even gravitational zonal harmonics AJ, are
shown in Fig. 8 for cutoff radii r.= 0.84R;, 0.94R;, 0.9917R, (corre-
sponding to 1000 bar), and 0.9965R; (100 bar). For comparison,
Fig. 8 also shows the zonal harmonics J, of the reference state in
solid body rotation (Hubbard, 1999), and the zonal harmonics
AJ, for zonal winds decaying very slowly with depth with scale
height of 108 m (Kaspi et al., 2010). The magnitude of the zonal
harmonics J, of the reference state decreases rapidly with degree
n; the magnitude of the perturbation zonal harmonics AJ,, associ-
ated with zonal winds is smaller for small n but does not decrease
as rapidly for large n. Thus, to detect the even zonal harmonics

5 Kong et al. (2012) calculated the gravity perturbations induced by deep zonal
flows on a rapidly rotating oblate spheroid with constant density. According to their
calculations, the gravitational zonal harmonics associated with the oblateness of the
planet are much larger than those associated with the zonal flows for lower zonal
harmonic degrees (n <6). However, they are negligible for higher zonal harmonic
degrees (n z 6). Since the flattening of Jupiter is relatively small (1/16) and the
gravitational zonal harmonics produced by zonal winds dominate over solid body
rotation only for higher zonal harmonic degrees in any case [40], we neglect the
gravity perturbation produced by the oblateness of Jupiter in this calculation.
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Fig. 7. Density perturbation p’ (kg m~) for cutoff radius r. = 0.84R;, calculated with
the zonal winds averaged between the northern and southern hemisphere.

associated with zonal winds, Juno’s gravity instrument has to de-
tect signals of high degree n.

The zonal harmonics for deeper cutoff radii (0.84R; and 0.94R))
are about two orders of magnitude larger than those for a cutoff ra-
dius corresponding to 1000 bar, and about three orders of magni-
tude larger than those for a cutoff radius corresponding to
100 bar. For zonal winds with cutoff radii of 0.84R; and 0.94R,,
and for zonal winds that are constant on cylinders (Hubbard,
1999), the zonal harmonics AJ, start to be comparable in magni-
tude with the zonal harmonics J,, of the reference state at n=12,
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and they are significantly larger than J, for n > 14. For zonal
winds with a cutoff radius corresponding to 1000 bar, the zonal
harmonics AJ, start to be comparable in magnitude with J, at
n = 14; for even shallower zonal winds, the zonal harmonics AJ,
start to be comparable with J, only at even higher n > 16. These
results are consistent with those of Kaspi et al. (2010), who found
similar relations between the depths of the zonal winds and grav-
itational zonal harmonics by varying a specified exponential decay
depth of the winds.

Juno’s gravity instrument is expected to be able to detect grav-
itational zonal harmonics up to degree 12. Considering the possible
noise in the data and the uncertainties in our model, it may be dif-
ficult for the gravity instrument to distinguish the effects of cutoff
radii of 0.84 and 0.94R; on the even zonal harmonics produced by
equatorially symmetric zonal winds. It may also be difficult to dis-
tinguish our flow model from zonal winds that are decaying only
slowly with depth (Kaspi et al., 2010). Measurement of the odd zo-
nal harmonics produced by equatorially asymmetric zonal winds
might help to distinguish different flow scenarios (Kaspi, 2013).
Nonetheless, Juno’s gravity instrument can be expected to be able
to distinguish deep-flow scenarios (with cutoff radii as shallow as
0.94R)) from shallow-flow scenarios (with cutoff radii correspond-
ing to 1000 bar or less), which we consider implausible. If the
gravity instrument were not to detect signals from deep zonal
winds, the large meridional temperature variations associated with
shallow zonal winds and their shear should be detectable by the
microwave instrument.

Since the relation (12) between density perturbations and zonal
wind perturbations and the decomposition (14) of the gravitational
potential into zonal harmonics are linear, the perturbation zonal
harmonic AJ, can be further decomposed into a part associated
with equatorial winds and a part associated with off-equatorial
winds (inside the tangent cylinder with r, =r.). For deep cutoff ra-
dii (such as 0.84R)), the gravitational signals produced by equato-
rial winds dominate (Fig. 9a). For shallower cutoff radii (such as
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Fig. 8. Gravitational zonal harmonics associated with equatorially symmetric zonal winds. (a) Green circles/solid line: AJ, for r. = 0.84R;. Orange circles/solid line: AJ, for
.= 0.94R,. Deep blue circles/solid line: AJ, for r.=0.9917R; (corresponding to 1000 bar). Light blue circles/solid line: AJ, for r.=0.9965R; (corresponding to 100 bar). For
comparison, the red triangles with dash-doted line show AJ, for a model with zonal winds slowly decaying with depth with scale height of 10% m (Kaspi et al., 2010). Black
stars shows the gravitational zonal harmonics of the reference state in solid body rotation (Hubbard, 1999), and magenta diamonds show observations from Voyager
(Campbell and Synnott, 1985). Juno’s gravity instrument is expected to be sensitive to zonal harmonics up to about degree 12. Filled (open) symbols indicate positive
(negative) zonal harmonics. (b) Detailed comparison with enlarged y-axis. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)
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Fig. 9. Gravitational zonal harmonics associated with equatorially symmetric equatorial and off-equatorial zonal winds. Circles/solid line: zonal harmonics associated with
equatorial and off-equatorial winds. Triangles/dashed line: zonal harmonics associated with equatorial winds. Squares/dash-dotted line: zonal harmonics associated with off-
equatorial winds. (a) Cutoff radius r. = 0.84R;. (b) Cutoff radius r. = 0.94R,. Filled (open) symbols indicate positive (negative) zonal harmonics.

0.94R)), the gravitational signals produced by the off-equatorial
winds dominate. Therefore, if the cutoff radius is near the deeper
end of what we consider plausible, it may be difficult for Juno to
detect the gravity signal of deep off-equatorial zonal winds.

4. Conclusions

One of the main goals of the Juno mission is to measure the
water and ammonia abundances in Jupiter’s atmosphere below
the visible clouds. To achieve this goal, Juno’s microwave instru-
ment is designed to measure the brightness temperature in six dif-
ferent channels sensitive to levels up to O(100 bar) (Janssen et al.,
2005). However, the thermal signals measured by the microwave
instrument come from two different sources: (i) opacity variations
produced by variations in the water and ammonia abundances and
(ii) temperature variations associated with zonal winds and their
shear. Understanding the thermal signals of the zonal winds is cru-
cial for accurately inferring the abundances of water and ammonia.
We have shown that there exist strong physical constraints on the
structure of the zonal winds, which constrain their thermal as well
as their gravitational signals.

While it has long been assumed that entropy is completely
homogenized in Jupiter’s interior (Guillot et al., 2004), we have ar-
gued that—less restrictively—convection can only be expected to
homogenize entropy along surfaces of constant angular momen-
tum per unit mass, which are approximately cylinders concentric
with the spin axis. Entropy gradients perpendicular to these sur-
faces then are constant going downward along the spin axis but
cannot generally be zero for the flow to satisfy constraints derived
from the angular momentum and energy balances. We have used
this dynamical constraint on the interior entropy structure to-
gether with thermal wind balance to calculate zonal winds along
with the temperature and density perturbations they imply. To
do so, we had to assume a cutoff radius below which zonal winds
are negligibly weak. Energetic arguments (that Ohmic dissipation
associated with MHD drag at depth can at most be a fraction of
the total energy available to drive the flow) and arguments based
on the angular momentum balance (that the Maxwell stress must

be substantial below the cutoff radius) constrained plausible cutoff
radii between 0.84R; and 0.94R;. But because of uncertainties about
the strength of the magnetic field at depth, uncertainties remain in
these bounds for the cutoff radius (Appendices A and B).

Given our assumptions about the entropy structure, zonal
winds and associated temperature and density perturbations can
be calculated explicitly given a cutoff radius and an upper bound-
ary condition. For the plausible cutoff radii between 0.84 and
0.94R; and using the observed cloud-level winds as upper bound-
ary condition, we calculated the zonal winds and the entropy, tem-
perature, and density perturbations they imply. Because of the
increase of density with depth and the equation of state of hydro-
gen, strong zonal winds and their shear are concentrated in the
outer few percent of Jupiter’s radius, irrespective of the precise va-
lue of the cutoff radius. Density variations associated with the zo-
nal winds are also concentrated in Jupiter’s outer layers. As a
consequence, gravitational signals associated with zonal winds
for different plausible cutoff radii may be difficult to distinguish.
However, they are clearly different from gravitational signals asso-
ciated with zonal winds confined above the 1000-bar level. Tem-
perature variations associated with the zonal winds increase
with depth. Equator-to-pole temperature contrasts reach ~1-2 K
at 50 bar for plausible cutoff radii. This is well above the detection
limit of Juno’s microwave instrument. It is much larger than bright-
ness temperature variations associated with plausible variations in
water vapor abundance, but possibly smaller than brightness tem-
perature variations associated with variations in ammonia abun-
dance. Thus, Juno’s gravity instrument can be expected to
distinguish deep zonal winds from extremely shallowly confined
zonal winds (which we consider implausible); its microwave
instrument can be expected to provide constraints on the cutoff ra-
dius of deeper zonal winds provided variations in ammonia abun-
dance can be further constrained by theory and modeling.

As an alternative to our physically based flow model, we have
also considered consequences of a scenario in which zonal winds
are confined above the 1000-bar level (outside 0.9917R)). In this
case, gravitational signals of the zonal winds would likely not be
detectable by Juno, but the equator-to-pole temperature contrasts
would reach O(10K) at 50 bar—a dynamical temperature signal
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that would easily be detectable and would likely dominate merid-
ional brightness temperature variations measured by the micro-
wave instrument. Such extreme shallow-flow scenarios should be
easily distinguishable from our more plausible deeper-flow
scenario.

More generally, our dynamical constraints imply a structure of
the zonal winds at depth that derives from a few straightforward
and well justifiable assumptions. Calculation of the zonal winds
at depth and of the entropy, temperature, and density perturba-
tions they imply does not require a general circulation model, only
evaluation of integrals, observations of zonal winds in the upper
troposphere, and knowledge of the zeroth-order dynamical bal-
ances in the angular momentum equation (geostrophic) and in
the radial momentum equation (hydrostatic). This wind structure
and the associated temperature and density variations should pro-
vide strong constraints for inferring Jupiter’s composition from
measurements by the Juno mission.
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Appendix A. Energetic constraints on depth of zonal winds

In the highly electrically conducting planetary interior, interac-
tions of the flows with the magnetic field produce Ohmic dissipa-
tion. Detailed calculations of Ohmic dissipation produced by zonal
winds have been provided by Liu et al. (2008). Here we give order
of magnitude estimates relevant to the flows discussed in this
paper.

The Ohmic dissipation per unit volume produced by the interac-
tion of the magnetic field B with the flow u is given by

=L Al
q=" (A.T)
where ¢ is the electrical conductivity and j is the magnitude of the
electric current j = ¢(E + u x B). If we neglect the effect of the elec-
tric field E, the current scales like j ~ UB (zonal velocity U and poloi-
dal magnetic field strength B), and the Ohmic dissipation per unit
volume can be estimated as
q~ oU?B%. (A2)

Because the electrical conductivity is an exponential function of
radius (Fig. 1a), the volume-integrated Ohmic dissipation Q mainly
comes from the deepest layers with substantial zonal winds: a
spherical shell extending about a scale height of the electrical con-
ductivity H, outward from the cutoff radius r, so that

Q ~ 4nr’H,cU*B2. (A.3)

Normalizing by the area of the sphere with radius R; (to make
the Ohmic dissipation directly comparable with the standard
intrinsic and solar energy fluxes per unit area in the upper atmo-
sphere), the Ohmic dissipation per unit area is

A 2n2 rcz
Q ~H,oU*B* | = | .

K (A4)

The magnetic field strength B entering this dissipation estimate
is uncertain. For example, the winds may nonlinearly modify the
magnetic field. To evaluate the strength of the magnetic field, we
use the dimensionless magnetic Reynolds number R, = UH,;/A,
where 2= (po0)"! is the magnetic diffusivity with magnetic per-
meability po. The magnetic Reynolds number is the ratio of mag-
netic field generation to magnetic field dissipation. In Jupiter’s

outer layers where the electric conductivity of hydrogen is small
enough, at depths with R, < 10, the strength of the magnetic field
can be estimated by downward continuation of the observed
poloidal field in the upper atmosphere. In the deeper interior, at
depths with R;; = 10, magnetic field generation through dynamo
action is strong and the field can be much stronger than
observed in the upper atmosphere. If we take U~ 10 ms~'and
H; ~ 1000 km, we obtain that R;;, ~ 10 when the magnetic diffusiv-
ity is ~1 x 10°m? s™!, which occurs around 0.95R;. Thus, below
0.95R;, the magnitude of the magnetic field can be significantly
greater than the observed outer field.

In the upper atmosphere, the observed poloidal magnetic field
is Bo = 4.2 Gauss (Connerney, 1993). If we continue this observed
field downward, we have B ~ By(R)/r.)* at the cutoff radius r.. For
the Ohmic dissipation per unit area, this gives

4
Q ~ H,0U’B} (?) : (A5)
C

However, the dissipation per unit area is expected to be larger
than this estimate at depth where R, = 10 because the downward
continuation of the upper-atmospheric field underestimates the
magnetic field strength at those depth.

Given the scale height of the electrical conductivity and a zonal
velocity U near the cutoff radius, we can calculate an electrical con-
ductivity o(r.) (Fig. 1a) and the associated cutoff radius r. at which
the Ohmic dissipation per unit area Q begins to exceed a given
threshold dissipation rate. For a threshold Ohmic dissipation of
Q ~1Wm?and U~ 10"2m s, this gives the threshold electrical
conductivity of 1.25 x 10°Sm ™' and r.~ 0.84R,. If the magnetic
field is an order of magnitude stronger than implied by the down-
ward continuation of the upper-atmospheric field, zonal winds
U~102m s*lwould already experience a substantial dissipation
of more than Q ~ 1 W m? at r. ~ 0.89R,.

Additional uncertainties about the cutoff radius come from the
fact that magnetic field lines at depth may align with the planetary
spin axis, as seen in some dynamo simulations (Glatzmaier, 2008).
Such alignment may reduce the Ohmic dissipation produced by the
interaction of magnetic fields and zonal winds. However, this
alignment can only occur where the magnetic Reynolds number
Ry is much larger than unity, that is, within about 0.95R,
(R = 10). If the magnetic field is perfectly aligned with the rota-
tional axis inside a sphere with radius r,, and is taken to be a po-
tential field outside of r,, the surface current at r, still generates
significant Ohmic dissipation, even when the Ohmic dissipation in-
side the spherical radius r, is reduced (Liu et al., 2008). Thus, to
avoid generating excessive Ohmic dissipation, the magnitude of
the flow at r, must be weak. Given that r, must be in a region of
large magnetic Reynolds number and thus within about 0.95R),
these additional complications arising from nonlinear interactions
with the magnetic field do not substantially affect the uncertainty
bracket for the cutoff radius we have given.

Appendix B. Maxwell stress

In the region with significant electrical conductivity, the ther-
mal wind equation breaks down and zonal wind shear along the
spin axis is primarily determined by the Maxwell stress produced
by the planetary magnetic field:

x (WX?) XB)] ‘e, (B.1)
K}

Here, e, is the unit vector in the zonal direction. The magnitude of
the (dimensionless) zonal wind shear along the spin axis resulting
from the Maxwell stress can estimated as (Eq. (33) in Liu et al.
(2008))
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9z~ 20,
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where H,, is the typical scale for the zonal velocity variation along
the spin axis, F is the planetary internal heat flux, and o is the elec-
trical conductivity. The Maxwell stress becomes significant when
the estimated dimensionless zonal wind shear reaches unity.

Liu et al. (2008) estimated the zonal wind shear produced by
the Maxwell stress at the maximum penetration depth (0.96R))
for zonal winds that are constant along the spin axis. The calcu-
lated dimensionless zonal wind shear is about 107>, which implies
that the Maxwell stress is not large enough to influence the zonal
wind shear along the spin axis if the observed zonal winds pene-
trate to the planetary interior unabatedly.

However, as we discussed in Section 2.2, the zonal winds gener-
ally must be sheared along the spin axis even in the upper atmo-
sphere, where Maxwell stresses are insignificant. Their
magnitudes, away from the equatorial regions, generally can be ex-
pected to decrease toward the interior (Fig. 2). As a consequence,
sheared zonal winds with diminishing magnitude can penetrate
deeper into the planetary interior without violating Ohmic dissipa-
tion constraints, and Maxwell stresses may substantially affect the
zonal wind shear. If we take @ ~ 1.76 x 10~* s~ p as the density
in the interior of Jupiter calculated from SCVH EOS (for example,
0 ~ 200 kg m~ at 0.94R)), the dimensionless zonal wind shear
reaches unity for a zonal wind magnitude of 1072 ms~! at the re-
gion with ¢ ~50Sm™!, corresponding to 0.94R;. At or below
0.94R), the thermal wind equation breaks down and the zonal wind
shear along the spin axis is determined by the Maxwell stress.
Thus, the depth of 0.94R, provides an estimate for the upper bound
of the cutoff radius.
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