Jupiter's Great Red Spot (GRS) is the largest atmospheric vortex in the Solar System and has been observed for at least two centuries. It has been unclear how deep the vortex extends beneath its visible cloud tops. We examined the gravity signature of the GRS using data from 12 encounters of the Juno spacecraft with the planet, including two direct overflights of the GRS vortex. Localized density anomalies due to the presence of the GRS caused a shift in the spacecraft line-of-sight velocity. Using two different approaches to infer the GRS depth, we found consistent results, concluding that the GRS is contained within the upper 500 kilometers of Jupiter's atmosphere.
these fluctuations to be related to the GRS, as the spacecraft was then ~100,000 km away. Figure 2A also shows the expected gravity signal from the GRS, assuming that the cloud-level winds decay at a depth H. The correlation between the predicted GRS signature and the smoothed residuals is shown in Fig. 2D.

PJ21 data (Fig. 2C) also show correlation with the GRS signal, with a constant shift in the line-of-sight velocity of $-5 \mu \text{m s}^{-1}$, lasting until at least 1.5 hours after perijove. This behavior is typical of passing one or more mass concentrations, such as those associated to the GRS. The long duration of the constant shift favors decoupling of the constant accelerations applied around perijove from the GRS signal. We interpret the temporal offset between the negative peaks around the GRS crossing (measured versus predicted) as due to unrelated nonzonal effects. We investigated the role of the accelerations in removing the excess longitudinal and/or temporal signatures and aliasing with the GRS parameters (17). After compensating for the estimated accelerations (fig. S7, C and D), we found that (i) most of the remaining range-rate signal can be explained by concentrated masses at the GRS location, and (ii) unexplained nonzonal
effects (15) can cause the offset between the PJ21 range-rate residuals and the predicted GRS signal (Fig. 2C).

The average velocity shift (Δv) in the residuals before and after the crossing of latitude 20°S, for all perijoves, is shown in Fig. 2B. These averages were calculated over time periods of 0.5 to 1.5 hours. Passes over the GRS show shifts of a few μm s⁻¹, above the typical noise RMS for integration times exceeding 1000 s (17). Conversely, the velocity profiles for perijoves away from the GRS do not show deviations from the mean. The magnitude of the offset on the range-rate data contains direct information on the GRS depth (17), which is reflected in the output parameters of the least-squares solution used to infer the vertical extent of the winds.

Figure 2D shows the correlation coefficients between the predicted GRS gravity signal for \(H = 300 \) km and the moving average of the range-rate residuals, for all 12 perijoves (17). The non-GRS passes are characterized by very low correlations of less than 10%, whereas the correlations for PJ18 and PJ21 are 50 to 60%. Although the signal-to-noise ratio is low, perijoves 18 and 21 differ from the other passes, indicating that the GRS depth can be constrained using the Juno gravity data.

The shape of the GRS has evolved over the past several decades, with its longitudinal dimension shrinking and giving the vortex a more circular shape (18, 19). We measured horizontal wind speeds in the GRS using optical data acquired about 25 days before PJ21 (17, 20), taken as part of an annual Hubble Space Telescope observing program (21). Mean velocities measured in the high-speed ring are 106 m s⁻¹, with a standard deviation of 11 m s⁻¹. Remote observations provide information about the surface dynamics of the zonal winds and the vortex, but little is known about the dynamics below the cloud level. The surrounding jets extend very deep (6), which confines the latitudinal extent and direction of the GRS circulation. We therefore assume that the vortex preserves its shape until it decays below the depth \(H \). For simplicity we consider a hyperbolic tangent decay function, assumed to decay sharply within 100 km around \(H \) (22, 23), but our results are robust to other choices of the decay shape (17). Because the planet is rapidly rotating and the dynamics are geostrophic (to leading order), thermal wind balance can be used to calculate the density anomalies balancing the vortex velocity (24). The applicability of this approach to modeling Jupiter’s atmosphere has been discussed elsewhere (25, 26). Unlike Earth’s atmospheric vortices (27), the local centripetal force can be neglected.

The predicted density anomalies associated with the GRS for a sample depth \(H = 300 \) km are shown in Fig. 3A. The density profile resembles a dipole, with a positive mascon in the upper levels [with gravitational parameter \(GMA \) (where \(G \) is the gravitational constant and \(M_A \) is the positive mass anomaly)] and a negative mascon at depth (with parameter \(GMB \), where \(M_B \) is the negative mass anomaly). The sum of the two masses is zero, to first order (17). The relationship between the mass and the separation between the positive and negative anomaly is injective (fig. S3); therefore, the depth (\(H \)) can be inferred by using MONTE to estimate the mass (12). In the orbit determination software, we model the vortex as a pair of flat disk mascons, whose masses are constrained to be equal and opposite in sign. Deeper winds entail a larger mass involved in the circulation of the GRS and an increasing vertical distance between the mascons. A sign inversion between the upper and deeper layers was also observed in MWR measurements during PJ7 (3).

An alternative approach to searching for the GRS gravity signature is to use Slepian functions to characterize the wind-induced, concentrated surface gravity anomalies (8). Figure 3B shows that the GRS predicted gravity disturbances form a north-south dipole. The Slepian functions are defined within the bounded domain delimited by an ellipsoid centered at the GRS location spanning 20° in latitude and 30° in longitude. Our analysis of the Slepian functions (17) shows that a single function, labeled \(g_{25} \), can describe the gravity perturbations generated by the GRS, to leading order (8). The magnitude of the corresponding Slepian coefficient \(\alpha_2 \) increases with the depth of the GRS (Fig. 4B); therefore, the depth (\(H \)) can be inferred from a measurement of \(\alpha_2 \).

To account for unmodeled accelerations (Fig. 2, A and C), we introduced small constant accelerations, each of 10-min duration, for ±1 hour around perijove (15, 28). In addition to standard estimated parameters, such as Jupiter’s zonal gravity field and pole position (17), we also added one coefficient specific to the determination of the depth of the GRS: the gravitational parameter of the positive disk mascon \(GM_A \) for the mascon approach, or the Slepian coefficient \(\alpha_2 \) for the Slepian approach. Both parameters were allowed to vary without constraint.

The results of the mascon analysis are shown in Fig. 4A. The dipole structure is implemented in MONTE, and the vertical separation affects both the estimated central value of \(GM_A \) and its formal uncertainty (12). We measure \(GM_A = 1.47 (±0.10) \times 10^{-5} \) km² s⁻² (all uncertainties are 1σ). The derived GRS depth is then obtained from the predicted relationship between \(H \) and \(GM_A \) from thermal wind balance, finding \(H = 290^{+80}_{−100} \) km. For the Slepian approach (Fig. 4B), the estimated \(\alpha_2 \) coefficient is \(3.7 (±2.4) \times 10^{-5} \), which implies that the winds extend down to \(H = 310^{+100}_{−90} \) km. The two different methods give consistent solutions for the depth of the GRS and are compatible with the depth inferred from the MWR observations (3). We tested the stability of both solutions against different models of the unknown nonzonal, nonstatic effects, which indicated that the estimated depth is robust (17).

Both methods assume that the GRS is in thermal wind balance, and each has strengths and limitations, which are complementary to one another (12, 17). They differ in the way the predicted density profile is used: either to model mass concentrations or to model the gravitational potential at the spacecraft altitude. They provide consistent results and indicate (Fig. 4) a 3σ upper limit on the GRS depth of 500 km (750 bar). This upper limit is compatible with laboratory analog experiments and

Fig. 3. The predicted signal for a 300-km-deep GRS, assuming thermal wind balance. (A) Density anomalies as a function of depth and latitude, for a transversal section taken at the longitude passing through the GRS center at the time of the velocity measurements (17, 20, 32). (B) Surface gravity anomalies as a function of latitude and longitude.
numerical simulations (29, 30). With 1σ uncertainty, we find that the GRS is ~300 ± 100 km deep. However, the minimum depth of the GRS is not well constrained by our analysis. This was expected, because the GRS gravity signal is only 5% as strong as the background zonal wind signal (4, 15). Our use of random accumulations de-weights the Doppler data and increases the formal uncertainties. However, Juno MWR observations provide a minimum value for the vortex’s vertical extension of ~240 km (3), which complements our gravity measurements. Although it is possible that the GRS winds still increase below the cloud level (3f), before they begin decaying deeper down, any increase must be less than 50% of the cloud-level velocity, otherwise the inferred depth would be shallower than indicated by MWR. We therefore conclude that the depth of the GRS is between 200 and 500 km.

Our results suggest that the GRS is much shallower than the surrounding zonal jets, which have depths of ~3000 km (6). The GRS is nonetheless deeply rooted, extending far below the cloud level at 0.7 bar and well beyond the water condensation level (~80 km beneath the cloud level) (3f). Although Jupiter does not have a solid surface, the GRS is still shallow in terms of the aspect ratio between the vertical and horizontal scales (~1/200 or 0.5%). This is even shallower than Earth’s cyclones and anticyclones, which have typical ratios of 1 to 4%, limited by the depth of Earth’s troposphere.

The driving mechanisms for Earth’s vortices are very different, with roles played by atmospheric instability processes and the solid surface, the latter not being present on Jupiter. It remains unclear why the GRS has a depth of only a few hundred kilometers while the surrounding jets, which power the GRS, extend much deeper. However, a shallow GRS is consistent with its change in size over the past several decades (19).
The depth of Jupiter’s Great Red Spot constrained by Juno gravity overflights

Marzia Parisi, Yohai Kaspi, Eli Galanti, Daniele Durante, Scott J. Bolton, Steven M. Levin, Dustin R. Buccino, Leigh N. Fletcher, William M. Folkner, Tristan Guillot, Ravit Helled, Luciano Iess, Cheng Li, Kamal Oudrhiri, Michael H. Wong

Science, 374 (6570), • DOI: 10.1126/science.abf1396

Measuring the depth of Jupiter’s storms

The atmosphere of Jupiter consists of bands of winds rotating at different rates, punctuated by giant storms. The largest storm is the Great Red Spot (GRS), which has persisted for more than a century. It has been unclear whether the storms are confined to a thin layer near the top of the atmosphere or if they extend deep into the planet. Bolton et al. used microwave observations from the Juno spacecraft to observe several storms and vortices. They found that the storms extended below the depths at which water and ammonia are expected to condense, implying a connection with the deep atmosphere. Parisi et al. analyzed gravity measurements taken while Juno flew over the GRS. They detected a perturbation in the planet’s gravitational field caused by the storm, finding that it was no more than 500 kilometers deep. In combination, these results constrain how Jupiter’s meteorology links to its deep interior. —KTS

View the article online
https://www.science.org/doi/10.1126/science.abf1396
Permissions
https://www.science.org/help/reprints-and-permissions