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ABSTRACT

The latitudinal width of atmospheric eddy-driven jets and scales of macroturbulence are examined latitude

by latitude over a wide range of rotation rates using a high-resolution idealized GCM. It is found that for each

latitude, through all rotation rates, the jet spacing scales with the Rhines scale. These simulations show the

presence of a ‘‘supercriticality latitude’’ within the baroclinic zone, where poleward (equatorward) of this

latitude, the Rhines scale is larger (smaller) than the Rossby deformation radius. Poleward of this latitude, a

classic geostrophic turbulence picture appears with a 25/3 spectral slope of inverse cascade from the de-

formation radius up to the Rhines scale. A shallower slope than the 23 slope of enstrophy cascade is found

from the deformation radius down to the viscosity scale as a result of the broad input of baroclinic eddy kinetic

energy. At these latitudes, eddy–eddy interactions transfer barotropic eddy kinetic energy from the input

scales of baroclinic eddy kinetic energy up to the jet scale and down to smaller scales. For the Earth case, this

latitude is outside the baroclinic zone and therefore an inverse cascade does not appear. Equatorward of the

supercriticality latitude, the 25/3 slope of inverse cascade vanishes, eddy–mean flow interactions play an

important role in the balance, and the spectrum follows a 23 slope from the Rhines scale down to smaller

scales, similar to what is observed on Earth. Moreover, the length scale of the energy-containing zonal

wavenumber is equal to (larger than) the jet scale poleward (equatorward) of the supercriticality latitude.

1. Introduction

One of the most robust phenomena in geophysical

fluid dynamics is the emergence of jets. These jets

have a large impact on the dynamics of the atmosphere

and ocean mostly through eddy–mean flow interactions

and appear in both terrestrial and gas planets (e.g.,

Williams 1978; Panetta 1993; Schneider 2006). Because

of their strong dependence on temperature gradients

and heat fluxes in the atmosphere, these jets shape and

feed off the zonal climatic bands on Earth. Further-

more, the wave patterns of these jets directly affect

storm-track variability (Blackmon 1976; Blackmon

et al. 1977). The main goal of this paper is to both

develop a better understanding of the physical pro-

cesses and properties controlling the jet spacing and

width and to better understand how these vary as a

function of latitude.

In 2D turbulence, in the absence of vortex stretching,

both energy and enstrophy are conserved resulting in an

inverse energy cascade (Fjortoft 1953). In addition, the

energy in the low-wavenumber regime is reduced by

friction (e.g., Rivera and Wu 2000; Scott 2001; Smith

et al. 2002; Danilov and Gurarie 2002; Grianik et al.

2004; Vallis 2006; Tsang and Young 2009). Kraichnan

(1967) showed that in 2D turbulence the energy spec-

trum follows a k25/3 slope at small wavenumbers, where

an inverse energy cascade occurs, while the enstrophy

cascades to smaller scales, with an energy spectrum

following a k23 slope down to scales where dissipation

by viscosity starts to play an important role (Lilly 1969;

Scott 2001; Vallis 2006). While viscosity does not affect

the absence of an inverse energy cascade in 2D turbu-

lence, it does affect its time scale (Scott 2001).

Charney (1971) suggested that geostrophic turbulence

in the atmosphere resembles 2D turbulence owing to

conservation of pseudopotential vorticity, even though

in the atmosphere vortex stretching plays a major role.

Many observations verified that in Earth’s atmosphere

the energy spectra indeed behaves as in 2D turbulence

with an energy spectrum following k23, but no inverse
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cascade behavior at large scales (energy spectrum with a

k25/3 power law) has been documented (e.g., Baer 1972;

Boer and Shepherd 1983; Nastrom and Gage 1985;

Koshyk and Hamilton 2001; Tung and Oralndo 2003).

Moreover, Boer and Shepherd (1983) showed based on

observations that while the higher-wavenumber regime

corresponds to a power-law behavior, the low-

wavenumber regime does not.

Rhines (1977) and Salmon (1978) showed that as the

baroclinic energy cascades, while subtracting potential

energy from the scale of the meridional temperature

gradient down to the deformation radius (proportional

to the most unstable wavelength according to linear

theory; Eady 1949), it is converted to barotropic energy

and inverse cascades to larger scales (e.g., Cai and Mak

1990). Several studies argued for barotropic (e.g.,

Berloff and Kamenkovich 2013b; Kobashi and

Kawamura 2002; Scott and Wang 2005) and baroclinic

(e.g., Scott and Wang 2005; Arbic et al. 2007) inverse

energy cascades in the ocean.

Rhines (1975) showed that on a b plane, as in 2D

turbulence, there is an inverse energy cascade from the

stirring scale up to the Rhines scale, Lb }
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Urms/b

p
. At

this scale, the regime of turbulent flow gradually changes

to a Rossby wave regime. Vallis and Maltrud (1993)

showed a similar scaling for the Rhines scale, but with a

dependence on the energy cascade rate, by equating the

anisotropic Rossby wave’s frequency and the inverse of

the eddy turnover time. Since Rossby waves transfer

energy through resonant triad interactions (both in wave

vectors and frequency), and because of the opposite

dependence of frequency on wavenumber in both re-

gimes, the upward energy cascade will be suppressed

at the Rhines scale (Rhines 1975; Holloway and

Hendershott 1977; Williams 1978; Rhines 1979; Danilov

and Gurarie 2000; Galperin et al. 2006; Kaspi and Flierl

2007). However, the inverse energy cascade continues

up to the largest scale in the system, kx 5 0, while in the

ky direction most of the energy remains close to the

Rhines scale (Rhines 1975; Vallis and Maltrud 1993;

Panetta 1993; Lee 2005; Scott and Polvani 2007;

Thompson 2010; Srinivasan and Young 2012) and

the formation of zonal jets occurs (e.g., Rhines 1977;

Salmon 1978; Williams 1978; Vallis and Maltrud 1993;

Rhines 1994).

Other studies found parameterizations other than the

Rhines scale for the jet scale. Smith et al. (2002) showed

that the arrest of the inverse energy cascade depends on

the relative significance of the beta effect and the ab-

sorption of energy by friction. Moreover, surface drag

was shown to affect the eddy scales and the energy ratio

in the barotropic and baroclinic modes (Arbic et al.

2007). Sukoriansky et al. (2007) showed that Rossby

waves and turbulence can coexist even in scales larger

than the Rhines scale. Thus, the Rhines scale does not

separate between the Rossby waves and turbulence re-

gimes but plays different roles in different flow regimes;

in unsteady flows, the Rhines scale is related to the

inverse-cascading-energy front, while in a steady state

the Rhines scale corresponds to scales of large-scale

friction (zonostrophic regime; Galperin et al. 2006).

Several studies used two-dimensional turbulence on

the b plane and found an alternative scaling for the

Rhines scale by taking friction into account and showing

its proportionality with the meridional scale of the

jets (e.g., Danilov and Gurarie 2002; Sukoriansky

et al. 2007).

Schneider and Walker (2006) found that in an ideal-

ized GCM the meridional jet scale is similar to the

Rossby radius, without inversely cascading to larger

scales. O’Gorman and Schneider (2008b) showed that

the meridional jet spacing approximately matches the

scale of the energy-containing eddies, which does not

vary much with latitude, and the Rhines scale as well.

Farrell and Ioannou (2007) showed that under strong

forcing the barotropic jet scale correlates with the

Rhines scale through the Rayleigh–Kuo stability crite-

rion and not through an inverse cascade argument. In

their simulations for weak forcing the jet scale does not

scale with the Rhines scale anymore but, rather, with the

most unstable meridional wavenumber.

Stone (1978) developed an argument for baroclinic

adjustment based on the supercriticality parameter [Eq.

(3)] from the two-layer quasigeostrophic (QG) model

(Phillips 1954). This argument states that the atmo-

sphere is in a marginally critical state as a result of eddy

fluxes that act to adjust the temperature gradients so the

supercriticality parameter equals one. This was also

verified using idealized GCM simulations over a wide

range of parameters (Schneider and Walker 2006). One

implication is that no inverse cascade occurs in an at-

mosphere that is in a marginally critical state. Indeed,

as a result of the little separation between the scales of

eddy generation and maximum eddy energy, barotropic

inverse cascade was not observed on Earth (e.g., Boer

and Shepherd 1983; Nastrom and Gage 1985; Shepherd

1987b), which implies that upscale energy transfer by

nonlinear eddy–eddy interactions may play a minor role

in the atmosphere (Panetta 1993; Schneider 2004;

Schneider and Walker 2006; O’Gorman and Schneider

2007). As a result, the scale of the energy-containing

eddies is similar to the deformation radius (Schneider

and Walker 2006; O’Gorman and Schneider 2008b;

Merlis and Schneider 2009).

On the other hand, Zurita-Gotor (2008) and

Jansen and Ferrari (2012, 2013) showed that the
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supercriticality parameter can vary above one, de-

pending on the forcing that acts to change it. As the

supercriticality parameter is much larger than one,

nonlinear eddy–eddy interactions become important

such that inverse cascade increases the scale of the

energy-containing eddies (Zurita-Gotor and Vallis

2009; Jansen and Ferrari 2012; Chai and Vallis 2014).

In those cases the Rossby deformation radius is not

proportional to the scale of the energy-containing

eddies anymore. However, as predicted by Rhines

(1975), through all values of criticality the scale of the

energy-containing eddies is proportional to the Rhines

scale (Jansen and Ferrari 2012; Chai and Vallis 2014).

By increasing the supercriticality parameter above

one, Zurita-Gotor and Vallis (2009) showed the oc-

currence of the k25/3 spectrum. In addition, Jansen and

Ferrari (2012, 2015) showed that regardless of super-

criticality parameter the Rossby deformation radius

is proportional to the scale where eddy available

potential energy is converted to eddy kinetic energy

(EKE).

Furthermore, Held and Larichev (1996) showed

using a two-layer QG model that the supercriticality

parameter also defines the ratio between the Rossby

deformation radius and the Rhines scale. Hence, when

the scale of themost unstable wave, which was predicted

based on linear baroclinic theory (where potential en-

ergy is converted from the mean state to the eddies), is

smaller than the scale that halts the inverse cascade,

inverse cascade could occur and eddy–eddy interactions

play an important role (Scott and Wang 2005). More-

over, it was shown using models (Theiss 2004; Sayanagi

et al. 2008) and observations (Theiss 2006; Eden 2007)

that geostrophic turbulence is isotropic (anisotropic) at

latitudes where the Rhines scale is larger (smaller) than

the Rossby deformation. Eden (2007) showed that the

energy-containing scale was found to scale with the

Rhines scale (Rossby deformation radius) when the flow

was found to be anisotropic (isotropic). Okuno and

Masuda (2003) and Smith (2004) showed that as the

separation between the Rhines scale and Rossby de-

formation radius increases, the wave regimes and the

Rhines effect are suppressed, and the flow is dominated

by isotropic turbulence.

In this paper, because of these scales’ dependence on

both latitude and rotation rate, we do not integrate

them over some baroclinic zone, as done in previous

studies, but investigate the jet scales and energy cas-

cades as function of latitude and rotation rate. Using

simulations of latitudinally migrating eddy-driven jets

(Chemke and Kaspi 2015) enables us to perform this

analysis over a continuous range of latitudes at high

rotation rates. The high rotation rates allow a better

scale separation between the jet, Rhines and Rossby

scales, and the radius of the planet. The latitudinal

dependence of these scales is found to strongly imply

the turbulent behavior of the flow. Section 2 describes

the idealized GCM and analysis method. Scales for the

jet spacing are presented in section 3, and their effect

on the spectral slopes of the zonal barotropic EKE is

presented in section 4. The zonal spectral budget of the

barotropic EKE and the role of eddy–eddy interactions

in affecting the zonal spectrum of the barotropic EKE

are presented in sections 5 and 6, respectively. Sections

7 and 8 discuss the results and summarize them,

respectively.

2. Model

We use an idealized aquaplanet moist global circula-

tion model (GCM) based on the GFDL flexible mod-

eling system (FMS). This is a spherical coordinate

primitive equation model of an ideal gas atmosphere

similar to Frierson et al. (2006) and O’Gorman and

Schneider (2008a). The lower boundary of the model is

an ocean slab with no topography. The model does not

include any ocean dynamics (heat transport, etc.); thus,

the surface temperature only changes as a result of heat

transport between the ocean slab and the lower layer of

the atmosphere via radiative energy, sensible heat, and

latent heat fluxes. The parameterization of the surface

fluxes (sensible heat, latent heat, and water vapor) and

the boundary layer are based on the Monin–Obukhov

similarity theory. The model contains a constant lat-

itudinal distribution of solar radiation at the top of the

atmosphere and a standard two-stream gray radiation

scheme for longwave radiation with optical depths that

are only a function of latitude and pressure (Goody

1964; Held 1982).

On Earth the eddy-driven jet is usually merged with

the subtropical jet as the typical eddy scale is relatively

large compared to the planet size. Thus, for studying the

meridional scale of the eddy-driven jets we carry out a

set of experiments where we systematically decrease the

eddy length scale compared to the size of the planet by

increasing the planetary rotation rate up to 16 times

Earth’s rotation rate Ve. The high rotation rates allow

for separating the subtropical and eddy-driven jets and

examining multijet planets with jets at all latitudes. All

simulations have 30 vertical sigma layers at T170 hori-

zontal resolution (0.78 3 0.78). Because of the poleward

migration of the eddy-driven jets that was found in

Chemke andKaspi (2015), the results represent the time

average of the last 500 days of 2500-day simulations.

Choosing a shorter time average does not alter our

results.
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3. Jet spacing

In this work we use the simulations of Chemke and

Kaspi (2015), where we have shown that at high rotation

rates, the eddy-driven jets are clearly separated from the

subtropical jets and, because of the sphericity of the

planet, migrate poleward with time (Fig. 1). The con-

stantly migrating eddy-driven jets at midlatitudes and

high rotation rates allows for analyzing these jets with

latitude across the entire baroclinic zone and mapping

their spacing as a function of latitude and rotation rate

(Fig. 2). The jet space is calculated as the meridional

distance between two consecutive peaks of the zonal-

mean zonal wind.1 Because of the periodic migration of

the eddy-driven jets (Fig. 1), we were able to accumulate

statistics about the jets spacing at each latitude. The

average of the jet spacing through all times at each lat-

itude and rotation rate is plotted in Fig. 2. As simulations

at higher rotation rates have more jets (Chemke and

Kaspi 2015; Kaspi and Showman 2015), the space be-

tween the jets decreases with rotation rate. Thus, as in

Schneider and Walker (2006), the total energy-

containing wavenumber at k5 0 increases with rota-

tion rate (Fig. 3). In addition, the jet spacing increases

with latitude, as was pointed out by Huang and

Robinson (1998) and Kidston and Vallis (2010).

As mentioned in the introduction, both the Rhines

scale and the Rossby deformation radius have been

related to the jet width. The fact that the jet spac-

ing increases with latitude implies that the Rossby

deformation radius likely does not solely set the jet

spacing latitude by latitude. Based on Fig. 2, Fig. 4 shows

the ratios between both the Rhines scale and the jet

spacing, and the Rossby deformation radius and the jet

spacing as a function of latitude for all simulated jets at

all rotation rates presented in Fig. 2. The Rhines scale,

following Rhines (1975), is calculated as

Lb 5 2p

"
(EKE)1/2

b

#1/2
, (1)

where EKE5 u02 1 y02 is the vertically averaged eddy

kinetic energy per unit mass, with the prime denoting

deviations from the zonal mean, and b is the meridional

derivative of the Coriolis parameter.2

The Rossby deformation radius is calculated as

LD 5 2p
NH

f
, (2)

where f is the Coriolis parameter, H is the tropopause

height calculated as the height where the static sta-

bility reaches a threshold value of 0.015 s21, and N2 5
(g/u)(›u/›z) is the vertically averaged static stability

below the tropopause height [similar to Frierson et al.

(2006)], where g is gravity and u is the potential tem-

perature. The Rossby deformation radius is found to be

proportional to the deformation radius which is calculated

as f21
Ð
Npdp when applying the Liouville–Green or

WKBJ approximation on the Sturm–Liouville eigenvalue

problem for the vertical structure of the quasigeostrophic

streamfunction (Gill 1982; Chelton et al. 1998), where

Np 5 (g2r/u)(›u/›p), p is pressure, and r is the density.

Three interesting properties can be seen in Fig. 4.

First, the jet space seems to be well correlated with the

Rhines scale, as suggested also by previous studies (e.g.,

Williams 1978; Panetta 1993; Vallis and Maltrud 1993;

Thompson 2010), through all latitudes and rotation

rates. Second, for each rotation rate there is a latitude

where the Rhines scale is equal to the Rossby de-

formation radius (green line). Thus, poleward of these

FIG. 1. Hovmöller diagrams of vertical and zonal mean zonal wind

(m s21) for simulations with 1, 2, 4, and 8Ve.

1 Calculating the jet width as the meridional distance between

two consecutive minimum points of the zonal-mean zonal wind

produces the same picture as in Fig. 2.

2We also explore other ways of calculating the Rhines scale,

such as the barotropic Rhines scale using the barotropic EKE

(deviation from zonal mean of the vertically averaged EKE; see

appendix A) as done in previous studies (e.g., Haidvogel and Held

1980; Schneider and Walker 2006; Jansen and Ferrari 2012; Chai

and Vallis 2014) and the Rhines scale based on the Rayleigh–Kuo

stability criterion as suggested by Farrell and Ioannou (2007). Even

though that the Rhines scale and the barotropic Rhines scale were

found to be similar, none of these scales were found to have better

scaling with the jet space and the scale of the energy-containing

eddies than the scale in Eq. (1), as discussed further below.
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latitudes the Rhines scale (blue dots) is larger than the

Rossby deformation radius (red dots), and equatorward

of these latitudes the Rossby deformation radius is larger

than the Rhines scale (Theiss 2004). As mentioned in the

introduction, Held and Larichev (1996) showed that the

QG supercriticality follows the ratio of the Rhines

scale and the Rossby deformation radius. The inset

in Fig. 4 shows how this latitude separates the QG su-

percriticality (Phillips 1954; Held and Larichev 1996):

Sc 5
f 2uz
bHN2

, (3)

where uz is the vertical shear of the zonal wind, be-

tween values larger (black contours) and smaller (gray

contours) than one for each rotation rate. Thus, in or-

der to avoid confusion with the critical latitude related

to Rossby waves, we assign this latitude as the

‘‘supercriticality latitude,’’ since poleward of this latitude

the QG supercriticality is larger than one (inset in Fig. 4)

where inverse cascade could occur, and vice versa.

The increase of the supercriticality with latitude is

consistent with Jansen and Ferrari (2013) where an

increase of fb21, while keeping the planet size con-

stant, increases the supercriticality. The supercriticality

latitude decreases with rotation rate, and this decrease

becomes more moderate with rotation rate. This can be

due to the opposite effects of the Coriolis parameter

and the vertical shear of the zonal wind to increase and

decrease, respectively, with rotation rate. If indeed the

baroclinic energy is converted to barotropic energy at

the Rossby deformation radius, as suggested by Salmon

(1978), and the halting scale of the inverse cascade is

the Rhines scale, as suggested by Rhines (1975), then

this scale separation enables inverse energy cascade to

occur only poleward of the supercriticality latitude.

These points are discussed in sections 4 and 5 in

more detail.

Third, poleward of this latitude where inverse cascade

could occur, the Rhines scale is indeed more correlated

with the jet space. This coincides with O’Gorman and

Schneider (2008b), who showed that the eddy length

scale was approximately the Rhines scale and the jet

spacing as well. However, here the spacing between the

jets increases with latitude, getting more moderate with

rotation rate (Fig. 2). Equatorward of this latitude,

where the Rossby deformation radius is larger than the

Rhines scale, the Rhines scale still correlates, although

not as well, with the jet space but better than the Rossby

deformation radius.

The fact that the latitude where the Rossby de-

formation radius equals the Rhines scale increases as the

rotation rate decreases (inset in Fig. 4) causes the width

of the region where an inverse energy cascade can occur

(where the Rhines scale is larger than the Rossby de-

formation radius) to decrease with decreasing rotation

rate. On Earth, the Rhines scale and the Rossby de-

formation radius are nearly equal only at very high lat-

itudes. This may explain why previous studies observed

only the enstrophy cascade in the atmosphere with no

inverse cascade (Baer 1972; Boer and Shepherd 1983;

Lindborg 1999; Nastrom and Gage 1985; Koshyk and

Hamilton 2001).

4. Zonal spectrum of the barotropic EKE

To understand the energy transport and jet scaling

equatorward and poleward of the supercriticality lati-

tude, we first examine the zonal spectrum of the baro-

tropic EKE and then analyze its zonal spectral budget

(section 5).

The meridional jet spacing (the Rhines scale; Fig. 4)

does not necessarily play an important role in the energy

transfers in the zonal direction. For example, Vallis and

Maltrud (1993) andHuang andRobinson (1998) showed

the anisotropic nature of the Rhines scale. Nonetheless,

as we show below, the Rhines and the jet scales have a

crucial role in affecting the processes which transport

energy to the jet scale at each latitude in the zonal di-

rection. Moreover, Huang and Robinson (1998) show

this anisotropic nature of the Rhines scale by observing

the energy-containing wavenumber of the kinetic en-

ergy in a zonal and total wavenumber space. In our

simulations, on the other hand, the energy-containing

wavenumber has a relative isotropic behavior, as it is

FIG. 2. Jet space (m) as function of latitude and rotation rate. The jet

space is defined as the meridional length between two following max-

ima of the zonal wind. Only simulations with a continuous migration

(V. 5Ve) were taken into account for the analysis of this figure.
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almost parallel to the zonal wavenumber axis (Fig. 3).

As in Boer and Shepherd (1983) and Shepherd (1987b),

at large total wavenumbers and small zonal wave-

numbers the turbulent regime of the barotropic flow

becomes less isotropic. The fact that the contours of the

barotropic EKE are spread along lines of constant total

wavenumbers (Fig. 3) implies that if an inverse energy

cascade occurs in the zonal direction (toward smaller

zonal wavenumbers with higher energy), it is accompa-

nied with an inverse energy cascade toward smaller total

wavenumbers as well.

To demonstrate the latitudinal behavior of the baro-

tropic EKE, we show its zonal spectrum for the 8Ve

simulation at a latitude equatorward (Fig. 5a) and

poleward (Fig. 5b) of the supercriticality latitude. We

show only a sample of two latitudes, as these latitudes

provide a representative picture of the barotropic EKE

spectrum equatorward and poleward of the super-

criticality latitude. We later show that these latitudes

properly represent these two distinct regimes. At lat-

itudes where the Rhines scale is smaller than the

deformation radius (Fig. 5a), the barotropic EKE

spectrum follows a k23 slope of forward enstrophy cas-

cade, as found on Earth, from the Rhines zonal wave-

number (blue asterisk; see appendix B) down to the

viscosity scale.3 This slope implies that nonlinear

eddy–eddy interactions do not transport energy to larger

scales. At latitudes where the Rhines scale is larger than

the deformation radius (Fig. 5b), the spectral slope be-

tween the Rhines and Rossby zonal wavenumbers (red

asterisk; see appendix B) indeed follows a 25/3 slope, as

expected from the inverse cascade in 2D turbulence.

Thus, eddy–eddy interactions transfer energy upscale

from the deformation scale up to the jet scale. In addi-

tion, the spectral slope due to enstrophy cascade, from

the Rossby zonal wavenumber to the viscosity scale, at

latitudes poleward of the supercriticality latitude, is

shallower than the expected 23 slope of enstrophy

cascade. These two points are further explained in sec-

tion 5. The energy plateau at large scales in Fig. 5b im-

plies that the energy reaches the zero zonal wavenumber

(the jet) as in Vallis andMaltrud (1993) by following the

same contour of energy at the Rhines scale in their

dumbbell figures. This can also be seen in Fig. 3 by fol-

lowing the energy-containing wavenumber contours,

which separate two regimes at lower and higher wave-

numbers with lower barotropic EKE. Alternatively, the

maintenance of the jets can be by eddy–mean flow in-

teractions (e.g., Shepherd 1987b; Panetta 1993; Huang

andRobinson 1998; Robinson 2006; Farrell and Ioannou

2007), which we discuss in the next sections.

To see how robust this picture is, we calculate the

above three slopes and plot the power of each slope as a

function of rotation rate and latitude (Fig. 6). Each slope

is calculated by fitting a linear trend to the log of the

barotropic EKE over its specific wavenumber range.

The red line shows the supercriticality latitude for each

rotation rate. This line clearly separates between lati-

tudes where the spectral slope is close to23 between the

Rhines zonal wavenumber and the viscosity scale

(equatorward of the supercriticality latitude) and lati-

tudes where the spectral slope is close to 25/3 between

the Rhines and the Rossby zonal wavenumbers (pole-

ward of the supercriticality latitude) for each rotation

rate. The black contours show the spectral slopes be-

tween the Rossby zonal wavenumber down to the vis-

cosity scale only for latitudes poleward of the

supercriticality latitude. Through all latitudes and rota-

tion rates, this slope is shallower than the 23 slope of

enstrophy cascade. As we show later, this is because the

conversion of baroclinic to barotropic EKE is spread

through a wide range of scales (Larichev and Held

1995). For Earth parameters, this supercriticality lati-

tude is poleward of the baroclinic region, which causes

the atmosphere to show at each latitude inside the

baroclinic region a spectral slope of23, with no hint for

inverse cascade (Fig. 6), which is consistent with Earth

observations (e.g., Baer 1972; Boer and Shepherd 1983;

Lindborg 1999; Nastrom and Gage 1985; Koshyk and

FIG. 3. The 2D spectrum, computed using spherical harmonics as

basis functions (Boer and Shepherd 1983), of the barotropic EKE

(1022 m2 s22) in the 4, 8, 12, and 16Ve simulations as a function of

zonal and total wavenumbers.

3We assign the viscosity scale at k5 100, where the zonal spec-

trum of the barotropic kinetic energy becomes extremely sharp.

Despite the apparent arbitrariness of this choice, through all of the

simulations this scale is always found to occur at the upper edge of

the regime were viscosity starts to play a major role.
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Hamilton 2001). This coincides with Frierson et al.

(2006), who showed that on Earth through most of the

baroclinic zone the deformation radius is larger than the

Rhines scale.

At latitudes equatorward of the supercriticality lati-

tude, the jet, Rhines, and Rossby zonal wavenumbers

do not coincide with the energy-containing zonal

wavenumber ke calculated as in O’Gorman and

Schneider (2008b) from the zonal spectrum of the

barotropic meridional velocity (see appendix B).

However, at latitudes poleward to the supercriticality

latitude, the jet, Rhines, and the energy-containing

zonal wavenumbers are almost indistinguishable, as in

Jansen and Ferrari (2012), Chai and Vallis (2014), and

in Schneider and Walker (2006) at simulations where

their supercriticality was one. This could be robustly

seen in Fig. 7; the jet scale is well correlated with the

length scale of the energy-containing zonal wave-

number Le (see appendix B) at latitudes poleward of

the supercriticality latitude (blue dots) for all rotation

rates. This coincides with Rhines’s claim that the

Rhines scale is the scale where the inverse energy

cascade is being arrested (Rhines 1975). On the other

hand, for latitudes equatorward of the supercriticality

latitude (red dots), the jet scale is smaller than the

length scale of the energy-containing zonal wave-

number. Schneider and Liu (2009) showed that in Ju-

piter simulations the Rhines scale and the length scale

of the energy-containing zonal wavenumber coincide

poleward to a certain latitude. However, different from

our simulations, they found an opposite dependence of

the spectral slope on latitude (Liu and Schneider 2015);

in their simulations at equatorial latitudes, the zonal

kinetic energy spectrum shows a k25/3 power law, but at

midlatitudes the spectrum follows a k23 slope.

Although the above picture strongly agrees with

Rhines (1975) and Salmon (1978) at latitudes poleward

of the supercriticality latitude where an inverse cascade

occurs up to the jet scale, there are some features that

require further explanation. First, it seems that even

though the Rossby deformation radius coincides with

the scale where inverse cascade begins (as can be seen by

the 25/3 regime poleward of the supercriticality lati-

tude), it fails to show the expected 23 slope of the

enstrophy cascade (contours) but, rather, a shallower

spectrum. Second, at high rotation rates (. 9Ve) the

spectrum of the barotropic EKE below the super-

criticality latitude is shallower than the k23 that was

observed at lower rotation rates (Fig. 6). And third,

through most of the latitudes equatorward of the su-

percriticality latitude, the slopes get steeper than 23 as

the latitude decreases (Fig. 6). These points are further

discussed below.

5. Zonal spectral barotropic EKE budget

For interpretation of these results (Figs. 4 and 6), we

proceed to analyze the different components in the

barotropic EKE equation (see appendix A) similar to

Larichev andHeld (1995), only that here as a function of

latitude. This allows us, first, to determine whether the

Rossby deformation radius is indeed the scale where

baroclinic energy is converted to barotropic energy.

Second, it enables us to observe the behavior of eddy–

eddy and eddy–mean flow interactions poleward and

equatorward of the supercriticality latitude, and thus to

better understand the processes of energy transport at

latitudes where inverse cascade does and does not occur.

The results below are shown for the 8Ve simulation

as it captures the characteristics both above and below

the supercriticality latitude. Hence, it is a represen-

tative picture of the behavior that occurs both at low

and high rotation rates. Figure 8 shows four of the

components of the barotropic EKE budget as function

of latitude and zonal wavenumber. In each panel the

Rhines zonal wavenumber (gray line), Rossby zonal

wavenumber (black line), and the conversion zonal

FIG. 4. The ratio between the Rhines scale and the jet spacing

(blue) and between the Rossby deformation radius and the jet

spacing (red) as a function of latitude for all simulations presented

in Fig. 2. Each dot represents a single jet at a single latitude and

rotation rate. The green line shows the supercriticality latitude

where the Rhines scale equals the Rossby deformation radius. The

inset shows the dependency of this latitude as a function of rotation

rate. The black and gray contours show where the QG super-

criticality csSc is larger and smaller than one, respectively. For

demonstration purposes in this panel, cs 5 1:5 is an empirical

constant chosen to best separate values larger and smaller than one

around the supercriticality latitude. This choice does not affect the

shape of the supercriticality with rotation rate (which follows the

supercriticality latitude).
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wavenumber (white line), which is calculated as the

centroid [Eq. (B3)] of the conversion term [Eq. (A6)],

are shown. In addition, the supercriticality latitude

(blue line) and the conversion latitude, where the

Rhines scale is equal to the conversion scale of baro-

clinic to barotropic EKE (red line), are plotted

as well.

Most of the energy influx is from the baroclinic EKE

(Fig. 8a). This influx is being transferred to larger (in-

verse cascade) and smaller scales (enstrophy cascade)

by the eddy–eddy interactions (Fig. 8d). This transfer

occurs mostly poleward of the supercriticality latitude

and continues beyond the Rhines scale up to k5 0 (the

energy plateau in Fig. 5 and following the energy-

containing wavenumber contours in Fig. 3). At all

latitudes above the supercriticality latitude, the

Rhines scale captures well the upscale cascade by the

eddy–eddy interactions (Fig. 8d). Thus, the arrest of

the inverse cascade reaches larger scales at higher

latitudes. This is opposite than the behavior docu-

mented by Scott and Wang (2005), who showed that

the scale of the arrest of the inverse energy cascade in

the ocean surface decreases with latitude. The eddy–

mean flow interactions also remove energy around the

supercriticality latitude; however, they add energy

mostly equatorward of the supercriticality latitude

at large scales (Fig. 8c). The conversion of barotropic

EKE to eddy potential energy occurs at large

scales while at intermediate scales barotropic eddy

potential energy is converted to barotropic EKE.

Note that the different terms presented in Fig. 8

contain not only the transport of barotropic EKE

among different scales but also the lateral transport

between different latitudes. This point is further dis-

cussed in section 7.

The Rossby deformation radius manages to separate

accurately latitudes where the 25/3 slope of inverse

cascade does and does not occur (Fig. 6); however, the

corresponding Rossby zonal wavenumber does not co-

incide with the conversion zonal wavenumber (Fig. 8a).

Alternatively, the supercriticality latitude could have

been defined as the ratio between the Rhines scale and

the conversion scale from baroclinic to barotropic EKE

(Salmon 1978). However, this does not give three dis-

tinct regimes of the spectral slopes as shown by using the

Rossby deformation radius (Fig. 6).4 Thus, further in-

vestigation is needed for a better understanding of

the role of the Rossby deformation radius in the

energy cycle.

One reason that can explain the inability of the con-

version zonal wavenumber or the Rossby zonal wave-

number to separate between the inverse energy cascade

and the enstrophy cascade at each latitude, poleward of

the supercriticality latitude (black contours in Fig. 6), is

the wide range where baroclinic EKE is being converted

to barotropic EKE (Figs. 8a and 9a). This was pointed

out by Larichev and Held (1995), who showed that as a

result of the broad conversion to the barotropic mode,

the 25/3 slopes in the barotropic mode are steeper. One

possibility is that this nonlocalization of energy conver-

sion causes the slope, owing to the enstrophy cascade, to

become shallower at latitudes poleward of the super-

criticality latitude (Fig. 6). However, the 25/3 slope

caused by the inverse energy cascade is less affected by

this broadness (Fig. 6) since this broadness occurs

mostly at wavenumbers larger than the Rossby and

conversion zonal wavenumbers, as can be seen in Fig. 8a

and from the long tail of the orange line in Fig. 9a.

As a result of the mismatch between the Rossby de-

formation radius and the conversion scale, there is a

region between the supercriticality latitude and the

conversion latitude (thus, between the red and blue

lines) where the influx from the baroclinic EKE still

occurs at scales smaller than the Rhines scale (Fig. 8a).

Thus, at these latitudes the energy still needs to be

transferred upscale to the jet scale. Indeed, eddy–eddy

interactions are transferring energy upscale as well

as downscale at these latitudes (Fig. 8d). However,

FIG. 5. The zonal spectrum of the barotropic EKE (m2 s22) in the

8Ve simulation as a function of zonal wavenumber with (solid black

line) and without (dashed black line) eddy–eddy interactions for

(a) a latitude where the Rhines scale is smaller than the Rossby

deformation radius (258) and (b) a latitude where the Rhines scale

is larger than theRossby deformation radius (458). The spectrum of

the barotropic EKEwithout eddy–eddy interactions is divided by 5

for a simpler comparison. The blue and red asterisks are theRhines

and Rossby zonal wavenumbers (see appendix B), respectively. In

(a), the green line follows a k23 slope. In (b), the orange and green

lines follow a k25/3 and a k22:4 slope, respectively.

4 The inability of the conversion latitude to produce such a sharp

transition as occurs around the supercriticality latitude (Fig. 6) is

also found for other conversion scales computed by different

weighted-mean methods [e.g., Chai and Vallis (2014) used the in-

verse centroid of the conversion from eddy available potential

energy to EKE, as in Schneider and Walker (2006)].
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equatorward of the supercriticality latitude, the slopes

follow more the spectral slope of an enstrophy cascade

k23 (Figs. 5 and 6), rather than an inverse energy cas-

cade. This could imply that an inverse cascade by eddy–

eddy interactions equatorward of the supercriticality

latitudes is weak and, thus, negligible in affecting the

spectrum of the barotropic EKE to follow a k25/3 slope.

Eddy–eddy interactions do seem to be weaker equa-

torward of the supercriticality latitude; however, their

magnitude at large scales is similar to the magnitude of

both the eddy–mean flow interactions and the conver-

sion to barotropic eddy potential energy (Figs. 8b–d and

9b). In addition, unlike poleward latitudes where inverse

cascade is observed, at these latitudes the jet scale is

smaller than the length scale of the energy-containing

zonal wavenumber (Fig. 7). We further discuss the role

of eddy–eddy interactions poleward and equatorward of

the supercriticality latitude in the next section.

We next focus on how the energy budget behaves

equatorward of the conversion latitude (thus, equator-

ward of the red line), where the input to the barotropic

EKE occurs at scales larger than the Rhines scale

(Fig. 8). In terms of Vallis and Maltrud (1993)’s dumb-

bell figures, at these latitudes the influx of barotropic

EKE occurs inside the dumbbell in the wave regime.

The anisotropic nature of this regime disables us to infer

any conclusions on the meridional jet spacing by

studying the energy spectrum in the zonal direction.

However, it is a unique regime and it is important to

understand it in the zonal direction as well.

Figure 10 is similar to Fig. 8 but is only for latitudes

equatorward of the conversion latitude. First, we can see

that the magnitude of the different components in the

barotropic EKE equation [Eq. (A1)] is an order of

magnitude smaller than poleward of the conversion

latitude. Second, at these latitudes the influx is mostly

from barotropic eddy potential energy (Fig. 10b) rather

than baroclinic EKE (Fig. 10a) as in the poleward lat-

itudes (Fig. 8a). Moreover, only at these latitudes, the

barotropic EKE is converted to baroclinic EKE at low

latitudes and small wavenumbers (Fig. 8a). Different

than the higher latitudes, here the eddy–mean flow

interactions (Fig. 10c), which are stronger than the

eddy–eddy interactions (Fig. 10d), transfer this influx

from potential energy to higher latitudes. On the other

hand, as the separation between the conversion wave-

number and the Rhines wavenumber grows (moving to

lower latitudes) the eddy–eddy interactions remove the

influx of barotropic eddy potential energy at large

scales and transfer it down to the Rhines zonal wave-

number (Fig. 10d). At latitudes close to the conversion

latitude, we can see the remnants of the influx from the

baroclinic EKE and the outflux by both the eddy–eddy

and eddy–mean flow interactions, in addition to the

energy transfer to small scales by the eddy–eddy

interactions.

FIG. 7. The ratio of the length scale of the energy-containing

zonal wavenumber, calculated from the zonal spectrum of the

barotropic meridional velocity (see appendix B), and the jet

space as a function of latitude for all rotation rates. The blue

(red) dots represent latitudes poleward (equatorward) of the

latitude where the Rhines scale is equal to the Rossby

deformation radius.

FIG. 6. The spectral slope as function of latitude and rotation

rate. This is calculated as the power of the zonal wavenumber of

a straight line fitted to the barotropic EKE spectrum for each lat-

itude and rotation rate. The red line shows the latitude at each

rotation rate where the Rhines scale equals the Rossby de-

formation radius. Below this line, the slope is fitted from theRhines

wavenumber down to k5 100.Above the red line, the slope is fitted

between the Rhines wavenumber and the Rossby wavenumber.

The contours show the spectral slope between the Rossby wave-

number and k5 100. The white area contains latitudes equator-

ward of the subtropical jet in each rotation rate.
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6. The role of eddy–eddy interactions

To further analyze whether the eddy–eddy in-

teractions are important poleward and equatorward of

the supercriticality latitude, we remove the eddy–eddy

interactions from the momentum and temperature

equations as in O’Gorman and Schneider (2007). As a

result, in these simulations only, the eddy–mean flow

interactions can control the shape of the energy spec-

trum. The dashed black lines in Fig. 5 show the spectrum

of the barotropic EKE in the simulation where we re-

moved the eddy–eddy interactions. Although Fig. 5

shows only the spectrum of the barotropic EKE from

two different latitudes (poleward and equatorward of

the supercriticality latitude), their properties are found

to be robust through all latitudes in this simulation.

Similar to O’Gorman and Schneider (2007) and Chai

and Vallis (2014), the barotropic EKE at intermediate

scales, in the simulation with eddy–eddy interactions, is

smaller than in the simulation where these interactions

are absent (Fig. 5a). O’Gorman and Schneider (2007)

suggested that the presence of eddy–eddy interactions

reduces the competence to convert energy to barotropic

energy and thus reduces the total barotropic kinetic

energy. In addition, the removal of eddy–eddy in-

teractions causes the spectrum to be less smooth (Fig. 5),

likely as a result of the lack of energy transfer between

different scales by these interactions (O’Gorman and

Schneider 2007).

The spectrum of the barotropic EKE at latitudes

poleward of the supercriticality latitude (Fig. 5b) does

not follow a k25/3 slope anymore but, rather, a much

shallower slope. As discussed in Shepherd (1987a), the

tendency of the eddy–eddy interactions to spread the

barotropic EKE along lines of constant total wave-

number (Fig. 3) vanishes in this simulation when they

are absent (Fig. 11). Hence, similar to Berloff and

Kamenkovich (2013a,b), the energy-containing wave-

number is more isolated in the spectral space (Figs. 5a

and 11). This can also be observed in the simulation with

eddy–eddy interactions, as the energy-containing zonal

wavenumber (peaks of solid black lines in Fig. 5) is more

(less) isolated at latitudes equatorward (poleward) of

the supercriticality latitude, where eddy–eddy inter-

actions are less (more) pronounced (note the logarith-

mic scale). These points strengthen the findings of

sections 4 and 5 on the importance of eddy–eddy inter-

actions, especially poleward of the supercriticality lati-

tude, in transferring energy to larger scales.

On the other hand, equatorward of the supercriticality

latitude the spectral slope at large scales qualitatively

remains as in the simulation with the eddy–eddy in-

teractions (Fig. 5a). Because of the lack of energy input

by the eddy–mean flow interactions at small scales (as

also occurs in the simulation with eddy–eddy in-

teractions; Fig. 8c), the spectral slope becomes steeper at

small scales. This could imply that as the eddy–eddy

interactions weaken moving equatorward from the su-

percriticality latitude (Fig. 8d), the spectral slope should

also become steeper (as can be seen in Fig. 6). Fur-

thermore, equatorward of the conversion latitude,

where eddy–eddy interactions are negligible (Fig. 10d),

the tendency of the eddy–mean flow interactions to

transfer energy to poleward latitudes along lines of

constant zonal wavenumber (Fig. 10c) can also be seen

in the simulation without eddy–eddy interactions where

the barotropic EKE is more elongated along lines of

constant zonal wavenumber (Fig. 11).

The importance of eddy–mean flow interactions, as

seems to be the case equatorward of the supercriticality

latitude (Figs. 8c and 9b), had been discussed in previous

studies through shear-induced spectral transfer from

the point of view of transient–stationary interactions

(e.g., Shepherd 1987b; Huang andRobinson 1998). As in

Huang and Robinson (1998), also here these inter-

actions mostly involve eddies smaller than the Rhines

scale (Fig. 8c), even though it correlates with the jet

space (Fig. 4). Large-scale eddies also contribute to the

spectral budget of the barotropic EKE (Fig. 8c). The

lack of inverse cascade emphasizes the major role of

eddy–mean flow interactions in maintaining the jets

(Shepherd 1987b; Huang and Robinson 1998; Farrell

FIG. 8. Components of the barotropic EKE equation (m2 s23; see

appendix A) in the 8Ve run as a function of latitude and zonal

wavenumber: (a) conversion of baroclinic EKE, (b) conversion of

barotropic eddy potential energy multiplied by 5, (c) eddy–mean

flow interactions, and (d) eddy–eddy interactions. The gray, black,

and white lines are the Rhines, Rossby, and the conversion zonal

wavenumbers, respectively. The blue and red lines are the super-

criticality and conversion latitudes, respectively. Each component

is multiplied by the wavenumber and smoothed with a 20-point

running mean.
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and Ioannou 2007) and adding energy at large scales.

Therefore, other mechanisms other than an inverse en-

ergy cascade should explain the fact that the Rhines

scale still coincides with the jet space equatorward of the

supercriticality latitude. This point is beyond the scope

of this paper and further discussed in the next section.

On Earth, the fact that the region between the

supercriticality latitude and the subtropical jet covers

the entire baroclinic zone (Fig. 6) may explain the fact

that an inverse cascade is not observed in atmospheric

observations (Baer 1972; Boer and Shepherd 1983;

Lindborg 1999; Nastrom and Gage 1985; Koshyk and

Hamilton 2001). Different than the higher-rotation-rate

simulations, on Earth the relative large ratio between

the eddy scale and the size of the planet causes only a

small separation between the Rhines scale, the Rossby

deformation radius, and the conversion scale at all lati-

tudes. As a result, the minor role of eddy–eddy in-

teractions in this regime at higher rotation rates (Fig. 8d)

is not found in our Ve simulation.

7. Discussion

In this study, we show the importance of the Rossby

deformation radius in affecting the spectrum of baro-

tropic kinetic energy by distinguishing between latitudes

where an inverse cascade does and does not occur

(Fig. 6). However, different than the classic picture (e.g.,

Salmon 1978), this scale does not coincide with our

measures of the conversion scale from baroclinic to

barotropic EKE. Because of the mismatch between the

Rossby deformation radius and the conversion scale, the

influx from baroclinic to barotropic EKE at latitudes

equatorward of the supercriticality latitude occurs at

scales smaller than the Rhines scale. However, the

spectrum of the barotropic EKE follows a k23 slope.

The lack of inverse cascade implies the minor role of

eddy–eddy interactions in transferring energy upscale

and the importance of eddy–mean flow interactions at

these latitudes. In addition, since the length scale of the

energy-containing zonal wavenumber at these latitudes

is larger than the jet scale, other mechanisms besides an

inverse energy cascade should explain the latitudinal

coincident of the Rhines and jet scales. For example,

Farrell and Ioannou (2007) showed that the barotropic

jet scale could be determined by the Rayleigh–Kuo

stability criterion (Kuo 1949); thus, with no inverse

cascade, the jet scale should coincide with the Rhines

scale, defined as Lb 5 (Umax/b)
1/2, and could differ from

the length scale of the energy-containing zonal

wavenumber.

Several studies have shown that even by removing the

nonlinear eddy–eddy interactions (quasi-linear models),

the meridional structure of the jets remains similar to

that in the full nonlinear simulations (e.g., O’Gorman

and Schneider 2007; Constantinou et al. 2014; Srinivasan

and Young 2012; Tobias and Marston 2013), thus im-

plying that eddy–eddy interaction and inverse energy

cascade might not be a prerequisite for jet formation.

However, the different latitudinal spread of the ratio

between the Rhines and jet scales poleward and equa-

torward of the supercriticality latitude (Fig. 4) implies

that eddy–eddy interactions and inverse energy cascade

do affect the meridional structure of the flow especially

when it is highly nonlinear (e.g., poleward of the su-

percriticality latitude).

The spectrum of the barotropic EKE at latitudes

equatorward of the supercriticality latitude at rotation

rates higher than 9Ve follows a shallower slope than the

predicted 23 of enstrophy cascade as in 2D turbulence

(Fig. 6). This is not due to not properly resolving the

small-scale eddies, as simulations at T213 (0.568) show
the same behavior. One possibility is that as the rotation

rate increases, the input of barotropic energy from both

the barotropic eddy potential and baroclinic energies

becomes broader at latitudes equatorward of the su-

percriticality latitude. As a result, the spectral slope can

become shallower as occurs to the enstrophy cascade

poleward of the supercriticality latitude. Alternatively,

the decrease in accumulation of barotropic EKE by

eddy–mean flow interactions at scales around the

Rhines scale can also lead to a shallower slope.

FIG. 9. Components of the barotropic EKE equation

(1025 m2 s23; see appendix A) as a function of zonal wavenumber

at latitudes (a) poleward of the supercriticality latitude (458) and
(b) equatorward of the supercriticality latitude (258) in the 8Ve run

as in Fig. 8: conversion from baroclinic EKE to barotropic EKE

(orange line), conversion from barotropic eddy potential energy to

barotropic EKE (black line), transfer of barotropic EKE by eddy–

eddy interactions (red line), and transfer from barotropic mean

kinetic energy to barotropic EKE (blue line).
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Our results show that the jet scale is proportional to the

Rhines scale (Fig. 4). Assuming the jet and Rhines scales

are equal, Lee (2005) suggested that the number of eddy-

driven jets should be proportional to V0:5. However, in

Chemke and Kaspi (2015), the number of eddy-driven

jets follows njet }V0:81. These results may be different

since in our simulations the baroclinic zone increases as

the rotation rate increases (Fig. 6), while in Lee (2005) a

constant width of baroclinic zone was taken into account.

The different terms in Fig. 8 [Eqs. (A3)–(A6)] contain

not only the transport of barotropic EKE between dif-

ferent scales but also the lateral transport between dif-

ferent latitudes. However, by looking at Fig. 8d, it seems

that most of the energy transfer is between different

zonal scales and not between different latitudes. Theiss

(2004) showed that the nonlinear interactions are re-

sponsible for the equatorward cascade of EKE, which

we do not observe in our simulations. By summing the

eddy–eddy and eddy–mean flow interactions over all

zonal wavenumbers at each latitude, we observe the

absence of the net lateral transport of barotropic EKE.

The eddy–eddy interactions decrease by an order of

magnitude once they are summed over all zonal wave-

numbers with no coherent behavior of an equatorward

cascade. Hence, these interactions transfer most of the

barotropic EKE between different scales and do not

seem to cascade energy toward the equator. The eddy–

mean flow interactions, on the other hand, tend to re-

move the barotropic EKE through most latitudes.

Choi and Showman (2011) showed using the spectrum

of cloud patterns imaged from the Cassini spacecraft

that 2D turbulence inverse and enstrophy cascades

could occur on Jupiter. Their transition scale between

the 25/3 slope and 23 slope was found to be between

approximately 1000 and 3000km at a latitude of 458. The
planetary Rossby number of Jupiter, U/VR, should be

about 7 times smaller than that of Earth, as its radius is

about 11 times larger than Earth’s radius, its rotation

rate is about 2.5 times faster, and its mean tropospheric

winds are, on average, 4 times faster than those on

Earth (Vasavada and Showman 2005). The Rossby de-

formation radius (which is found to be a potential

transition scale in our simulations) at 458 in the 7Ve

simulation is indeed approximately 1000km. On the

other hand, other studies have shown that an inverse

cascade does not necessarily occur on Jupiter (e.g.,

Schneider and Liu 2009). Theiss (2006) showed that by

including the latitudinal dependency of the deformation

radius in the dispersion relation of Rossby waves, the

Rhines effect on Jupiter separates latitudes where co-

herent jets appear and where the flow is governed by

vortices. This is consistent with findings by Theiss

(2004), Sayanagi et al. (2008), and Scott and Polvani

(2007); however, the fact that jets appear in our simu-

lations even poleward of the supercriticality latitude

(Figs. 1, 4, and 7) could imply that the shallow-

atmosphere approximations in our PE model are not

necessarily applicable to Jupiter’s flow.

8. Conclusions

In this study we have used an idealized GCM at high

rotation rates to allow a clear separation between the

eddy-driven jet and the subtropical jet in the atmosphere.

As themeridional jet spacing (latitudinal location) has an

important effect on climate and weather systems, this

separation enables us to scale the meridional spacing of

the eddy-driven jets and study the macroturbulence be-

havior. Different from previous studies, the multiple-jet

regime and their constant poleward migration at high

rotation rates allow us to study the jet properties, mac-

roturbulence, and energy cascades latitude by latitude

and not just averaged over some baroclinic zone. Our

main conclusions are as follows:

d The Rhines scale is able to predict the jet spacing

latitude by latitude over a wide range of simulations

with different rotation rates (Fig. 4).
d We show the presence of the supercriticality latitude:

a latitude where the Rhines scale is equal to the

Rossby deformation radius. We find that at latitudes

poleward of the supercriticality latitude, where the

Rhines scale is larger than the Rossby deformation

radius, inverse energy cascade occurs from the Rossby

FIG. 10. Components of the barotropic EKE equation (m2 s23;

see appendix A) in the 8Ve run as a function of latitude and zonal

wavenumber, as in Fig. 8, only for latitudes where the Rhines

scale is smaller than the conversion scale of baroclinic EKE:

(a) conversion of baroclinic EKE, (b) conversion of barotropic

eddy potential energy, (c) eddy–mean flow interaction, and (d)

eddy–eddy interaction.
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deformation radius up to the Rhines scale with a

spectral slope that follows a k25/3 slope as in two-

dimensional turbulence (Fig. 6). In addition, at these

latitudes, eddy–eddy interactions play a major role in

cascading the barotropic EKE to larger and smaller

scales (Fig. 8d). At these latitudes, the length scale of

the energy-containing zonal wavenumber coincides

with the jet scale (Fig. 7).
d At latitudes equatorward of the supercriticality lati-

tude, where the Rhines scale is smaller than the

Rossby deformation radius, there is a sharp transition

to a regime where the spectral slope between the

Rhines scale down to the viscosity scale follows a k23

slope, similar to the enstrophy cascade in two-

dimensional turbulence (Fig. 6).
d In our Earthlike simulations the supercriticality lati-

tude is placed poleward of the baroclinic zone, causing

it to produce only the k23 slope of enstrophy cascade

with no hint of inverse cascade (Fig. 6), as observed in

Earth’s atmosphere.
d Because of the nonlocal input of energy, mostly at

small scales, from baroclinic to the barotropic EKE

(Figs. 8a and 9a), the spectral slope of enstrophy

cascade at latitudes poleward of the supercriticality

latitude, from the Rossby deformation radius down

to the viscosity scale, is shallower than the predicted

k23 slope (Fig. 6).
d Even though the Rossby deformation radius does not

coincide with the scale where energy is being trans-

ferred from baroclinic to barotropic EKE (Fig. 8a), it

still produces a sharp transition between latitudes

where inverse cascade does and does not occur

(Fig. 6).
d As a result of the previous point, at latitudes equator-

ward of the supercriticality latitude, the influx of

baroclinic to barotropic EKE still occurs at scales

smaller than the Rhines scale, even though the de-

formation radius is larger than the Rhines scale

(Fig. 8a). Eddy–eddy interactions transfer energy up-

scale at these latitudes (Fig. 8d), although the spectral

slope is similar to a k23 of enstrophy cascade (Fig. 6).

This implies that eddy–eddy interactions at these lat-

itudes are too weak to affect the spectral slope. This,

combined with the fact that the length scale of the

energy-containing zonal wavenumber is larger than

the jet scale at these latitudes (Fig. 7), emphasizes the

minor role of the halting scale of the inverse energy

cascade and the importance of eddy–mean flow in-

teractions equatorward of the supercriticality latitude.
d By removing the eddy–eddy interactions from our

model, we demonstrate the point above, and show that

the spectral slope at these latitudes remains qualita-

tively the same at large scales because of eddy–mean

flow interactions (Fig. 5). The importance of eddy–

eddy interactions at latitudes poleward of the super-

criticality latitude is also shown. In addition, at lati-

tudes equatorward of the supercriticality latitude the

eddy–eddy interactions transfer energy to larger and

smaller scales (Fig. 8d), while the eddy–mean flow

interactions add energy only at large wavenumbers

(Fig. 8c). As a result, when eddy–eddy interactions are

removed, the eddy–mean flow interactions alone

produce at small scales a steeper spectral slope than

the23 of enstrophy cascade (Fig. 5). Thus, as wemove

to lower latitudes where the eddy–eddy interactions

weaken (Fig. 8d), the spectral slope steepens as well

(Fig. 6).
d At latitudes lower than the conversion latitude, where

the Rhines scale is smaller than the conversion scale of

baroclinic EKE and barotropic eddy potential energy

to barotropic EKE, the eddy–mean flow interactions

transfer the influx of energy from barotropic eddy

potential energy to higher latitudes, while the eddy–

eddy interactions spread it down to the Rhines scale.

However, these transfers are much weaker than those

at latitudes poleward of the conversion scale (Fig. 10).
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teractions, as a function of zonal and total wavenumbers.
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APPENDIX A

The Zonal Spectral Barotropic EKE Budget

We compute the zonal spectral barotropic EKE

budget for each latitude. A similar latitudinal analysis

was done by Saltsman (1957) only for the EKE. Unlike

previous studies that investigated the spectral EKE

equation using two-dimensional spectra (e.g., Lambert

1984; Koshyk and Hamilton 2001; Jansen and Ferrari

2012; Chai and Vallis 2014), here we compute the one-

dimensional Fourier spectra of the barotropic EKE for

each latitude. The zonal spectral barotropic EKE bud-

get is computed as follows:

1

2

›bEKE

›t
5EE1EM1P1CT1F , (A1)

where

bEKEk5 hj[u]0kj21 j[y]0kj2i (A2)

is the zonal spectral barotropic EKE, angle brackets

denote a time mean, square brackets denote a vertical

average, and prime denotes the deviation from zonal

mean (after taking the vertical average). The subscript k

denotes the zonal spectral components with a zonal

wavenumber k. The terms on the right-hand side of Eq.

(A1) are as follows:
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contains the nonlinear eddy–eddy interactions,
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contains the eddy–mean flow interactions,
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contains the conversion of barotropic eddy potential

energy to barotropic EKE,
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(A6)

contains the conversion of baroclinic EKE to barotropic

EKE, and F contains the friction and diffusion terms,

where u denotes the three-dimensional velocity vector,

u is latitude, the asterisk denotes a complex conjugate,

the overbar denotes a zonal mean, the subscript H

denotes a horizontal vector, ps is the surface pressure, R

is the specific gas constant, a is Earth’s radius, and the

plus-sign superscript denotes deviation from vertical

average. The term of conversion of barotropic eddy

potential energy [Eq. (A5)] is different than the usual

term presented by Lorenz (1955), as here we do not in-

tegrate over the entire domain but, rather, keep our

analysis as a function of latitude. Thus, as we do not add

the continuity equation, we manage to keep the conver-

sion term of barotropic eddy potential energy as simple as

possible. In addition, as the model is in s coordinates, the

gradient of the surface pressure is added to the conversion

of barotropic eddy potential energy term.

APPENDIX B

Eddy Scales

The energy-containing zonal wavenumber is calcu-

lated from the zonal spectrum of the barotropic eddy

meridional velocity, similar toO’Gorman and Schneider

(2008b):

k2e 5

�
k

j[y]0kj2

�
k

k22j[y]0kj2
. (B1)

As in O’Gorman and Schneider (2008b), we find that

using the squared zonal wavenumber in the denominator
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provides the energy-containing zonal wavenumber to be

closest to the peak of the zonal spectrumof the barotropic

eddy meridional velocity. The length scale of ke is cal-

culated for each latitude as follows:

Le 5
2pa cos(u)

ke
. (B2)

The coincidence of the length scale of the energy-

containing zonal wavenumber [Eq. (B2)] and the jet

scale (Fig. 7) supports our choice of the power of k in

Eq. (B1). The Rhines scale and Rossby deformation

radius are converted to zonal wavenumbers using Eq.

(B2). The conversion wavenumber of baroclinic to

barotropic EKE is calculated as the centroid of Eq.

(A6):

kCT 5

�
k

kCT

�
k

CT
. (B3)

This method produces wavenumber closest to the peak

of the conversion of baroclinic to barotropic EKE

(Fig. 8a).
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