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Example I
A very small child is asked to find the total number of building bricks

in two small piles on the .floor.

Y i, n
He pushes the piles together and counts. e

An older child asked to do the same thing counts each pile separately

e,

and adds. S
R R

The younger child uses the scheme
A,B —= AUB — n( AUB),
whereas the older child uses the scheme
A, B —=> n(A) , n(B)—=n(A) + n(B),

where A and B are the two piles and n(A) represents the number of bricks in A.

The two children get the same result (if they counted correctly) because
n(AUB) = n(A) + n(B)

We can describe the two methods by the following diagram.

older child

A, B bl ~ n(A) , n(B)
small
chitd U J l *
AUB - D n(AUB) = n(A) + n(B)

Note that n is a function which maps some set of sets to the non-negative
integers. Union is a binary operation on the domain of n and addition is
a binary operation on the codomain.

The smaller child first performs the binary operation on the domain and
then finds the image under the function, whereas the older child, first
performs the function and then the binary operation on the images in the

codomain.



Note also that n(AUB) = n(A) + n(B)

is not true in general.

Thus if the same two children were asked to count the number of children

in the class who had brown eyes (A) and/or brown hair (B), then, assuming
the children each followed his own procedure as before, only the younger
child would get the right answer. The older child would count the children

who had brown eyes and brown hair twice.

In terms of the diagram we would have

older child

AUB = > n(AUB) =

Apparently, there is no binary operation O , such that
n(AUB) = n(A) & n(B).
Note that although we know that
n(AUB) = n(A) + n(B) - n(ANB)
the right-hand side does not define a binary operation @ between n(A) and 7

n(B).



Modelling I

The above is an example of a very simple but precise modelling situation,
which occurs throughout mathematics, both pure and applied. We have a
situation in which we are given a set A, a (closed) binary operation o on A
and a function with domain A. The problem then is to find a binary

operation || on f(A) which models o on A, where we mean by modelling that

A i 5 {®
(?)

—_

performing |_| in f(A) corresponds to performing o in A. Precisely, this

means that if ays Ay € A
a; 0 a, in A corresponds to f(a1) || f(az) in f(A)
i.e. fla; 0a,) = f(a;) || f(a,).

or diagramatically _

_L""> f(a'l) L] f(az)

o N

a-l ,32

J
f -
ay 03, ——> f(aj 0 ay) = f(ay) I~ fla,) .

We have deliberately stated the modelling situation as a problem:

given A, o and f to find | | (if it exists)

such that A, o f, | | is a modelling situation.




Example II

Consider the modulus function
Fiox —> x| x € R
with image set R;,, the non-negative real numbers .
There are all sorts of binary operations on R, let's look for the correspond-
ing "modelling operations" on R; : |
a) What is the model for (R, x)? We start going round our diagram and see

how far we can get

X,y —— |x , |yl

X j (?)

7
XXy [x x y|
Since |xxy| = |x| x |y| , we can complete the diagram
x| syl
| x
xxyl = |x x |y

and (R, x) is modelled by (R: , X)

b) What is the model for (R, +)? As before

.F

X,y — ¥ . |yl

; J! &

X+ y -—-—f——) |x+y|

In order to complete the model we need to find some binary combination of

|x| and |y| which is equal to |% + y| .
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(The common student error |x + y| = |x| + |y| can be seen as a mistaken

"soTution" to our problem.). The problem is apparently solved by simply

defining || by
x| 121 Iyl = Ix + vl
But, consider
-F
-2, 3 > 25 8 |
+ J i hence, apparently 2 |_| 3 =1
LN ‘
1 — 1s2 |73

+ J | i hence, apparently 2 || 3 =5
5 —F—>5=2]|_|3
And we cannot have both. We are led to the conclusion that no |_| exists

for the modulus function, which models addition.

Modelling II

Our general modelling problem was stated in the form

given A, o and f to find |_| (if it exists)

such that A, o, f, |_| s a modelling situation
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In view of the prev1ous examp]e we see that the problem of ex1stence of |
is a real one - and in the fo]Tow1ng we sha11 try to find under what
conditions || exists. If we know it exists, then its definition follows
from the modelling condition

f(ay) 2] f(a,) = f(ay o ay)
The only trouble with this definition is that when we want to perform |_|,
we are nhot given elements in the form f(a1) and f(az), but in the form by,
b2’ where b1, b, € f(A). How do we define

b 7] by = ?
If f is one-one, there is little problem. We simply find the ays and 2,
corresponding to'b1 and bz; that is

=1
i (bl) = ay and f'](b

-1

where T is the inverse function of f.

Theh, in place of f(a1) |~ f(az) = f(a1 0 a,), we have

b‘l ]:i b2 = f(f-](b]) 0 f-l(bz))
b= {0

hye




Part of the problem is thus theoretically solved: whenever f is one—one;
the modelling situation is satisfied, and we can define | | by using our

modelling diagram in reverse order.

Example TII

f X ——— _%
i) (R »+) > (R, > ?)
1) (R, » x) > (R, »7)

where R_ s the set of real numbers without zero.
The function is one-one (and also f"1 = f in this case), hence we know that

the modelling operation exists and is defined by

- y= ey sty o X
A R e e I
i1 — —-l_ ]_=_]._—'
i) % ||y =X y St W
In the second case | | = x and is well-known, whereas in the first case we

have a new operation

x [~y = §5¥—y ‘



Modelling III

We are left to discuss the case when f is many-one, and to determine a
condition under which the modelling operation exists. Let's look again at

Example II, where we failed to define a modelling operation corresponding to +.

T =
R f’f’:jkwfji_~g> fﬂ§3fﬂﬁﬂh“x\

. / (&

Given two elements x, y € Rg, we want to define x| | y such that it models +.

To do this we have to use f'] to return to RZ, there perform addition , and
W@ ans
then return by meme of f.

% y

. o

Hence we have four possibilities for f'l(x) + f-](y)

f"l(x) =

/ ’
~

Xt Y, =Xty , =Yy, =X=-Y¥

These four reduce to two when we return to R;; i.e.

| %+ y|
)+ () =
> -yl
In order to define | | satisfactorily we should have had a unique answer at

this stage.
In other words, in order to satisfactorily model the system (R, +) by the many-one
function f, we must have that the sum of elements having the same images also

has the same image.



In general if f(al) = f(az) and f(ag) = f(a4) then

f(a; o a3) = f(a, o a4) ays 8y, 8g; 84 € A
In our example, if we choose ap = "3 =X and ag = ay = Y, then we have
f(x) = f(-x) and f(y) = f(y)
but O+ y) # fl-x+y)

(Note that 3y do not have to be distinct: the result must be true for all

a; with the above property.)

Summary I

In order not to be too long-winded we introduce a little precise mathematical
terminology.

Let f be a function with domain A and image set f(A) = B.

Further, let o be a (closed) binary operation on A, then f and o are said to be

compatible if, for all 8y 89y Ags Ay € A such that

f(a-|) = 'F(az) 3 f(a3) = f(a4) 3
we have f(a; o as) = f(a, 0 ay)
Given compatibility we can define a binary operation |_| on B by
by |2 by = flay 0 ay)
where 3 and a, are any two elements of A which satisfy
f(a]) = by and f(a2) = by .
If we have compatibility and define | | in this way, then we have satisfied
our modelling condition and

A, 0, fy ||

is a modelling situationt ] is called the induced binary operation.

In other words (B , |_|) is a model of (A, o) for the function f ;&

f(a] 0 a2) = f(a]) | ] f(a,)
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The corresponding diagram

-F
(:1-I § a2 ———? f(a]) s f(az)

0 k

4y 0 By f(a1 0 a2) = f(a1) | 7] f(az)

is called a commutative diagram)because we can go either way from top-left
to bottom—right. The function f is called a morphism (or homomorphism) of

(A, o) onto (B, |_|).

Examples IV etc.

Mathematics from elementary school to advanced research is permeated with
morphisms. Their existence or non-existence is central to many theories.

In this section we shall give many examples with annotations as appropriate -
we shall leave most of the examples as investigations to the reader, to '
discover whether the compatibility condition is satisfied - and if so what is
the induced binary operation.

1. (a) Our first example at the beginning of this article was

A = set of subsets of a.(finite) set UL

f = n, where n maps a %2:§hset onto the number of
its elements

o=U

(In general, the compatibility condition is not satisfied, except in
the event that the sets are disjoint, as in the counting problem,

where we do use the morphism property.)

(b) ditto with o = (.
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(c) ditto with X oY defined as X UY - XO Y . That is

Xoy

This binary operation is called the symmetric differencefi‘x anJ\Y-

(d) ditto with X o Y defined as Z = -{(x. y)l xXeXs ¥ e Y} .
(Note that in this case the compatibility condition is satisfied
and | | corresponds to multiplication.)
(The examples in (a) and (d) are basic to the definitions of addition
and multiplication in the set of natural numbers, as given in texts

on the foundation of mathematics. )

2. (a) A = set of subsets of a set U

Lo b et

f(X) = X', where X' is the i At of X in U, i.e.

7
(NS /s ~
77 R

o=U

(b) ditto with o = M.
(These two sections both give use to morphisms - f is a one-one function
known as the complement - the corresponding modelling equations are

known in set theory as de Morgan's laws.)




35

4.
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(a) A = set of subsets of a set U .
f(X) = K{\ X , where K is a fixed subset of W .
o=U.

(b) ditto with o =N .

(c) ditto with f(X) = KU X, where K is a fixed subset of W
and o= 0.

(In sections (a) and (c) the modelling equation can be interpreted as the
appropriate distributive Taw. In fact, whergever the distributive law
occurs, we can find a mopphism. For example, in the set of real numbers

ax(x + y) = a*x+ asy

can be reinterpreted as

fix > ax
0=+

and the corresponding diagram

X LY “——f___> ax, ay
fe l J/ij
Xty T 5 alx+y) = ax | | ay = ax + ay .)

(a) A =R, set of real numbers
f(x) = a + x, for fixed a € R
0 =+
(Note that since f is one-one, the compatibility condition is trivially
satisfied. In such cases, the interest lies in "recognising" the
induced binary operation. It is "defined" by
(@a+%) | (a+y) =a+(x+y)
but this definition is implicit, in the sense that the elements of
the image set f(R) = R are not given in the form a + x, but as elements

of R. In other words, given w, Z e R



(b)

(d)
(e)

. (a)
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w |z = 2
The solution to this problem can always be found by using the

commutative diagram "backwards", i.e. from top-right to bottom-right.)

1t

ditto, but with o = x

A=R

f(x) = ax, for fixed ae R
0=+

(See note after example 3(c).)

ditto, but with o = x.

A=R
fl) = -x
0=+

(This is a special case of (c) but corresponds to an important property

in elementary arithmetic and algebra.)

A = set of all real numbers, which have a terminating decimal

representation.

f(x) = number of digits after (to the right of) the decimal point

0=+,

(b) ditto, but with o = x .

o
(Note that the morphism in section (b) is(very important calculating aid.)

. (@) A=R

f(x) = a*, for some fixed a € RT, (a #1).

0=+

(b) ditto but with o = x .
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(Note that the first morphism is fundamental to much mathematics from
high school onwards. In facF, thelequation f(x +y) = f(x)f(y) is
often used as part of aﬁ ;;§5§g£;£é‘definition of the exponential
function. Becéuse the function is one-one, section (b) also gives
rise to a morphism, but it is not mathematically significant. The

inverse function of a one-one morphism is always a morphism; in the

case of section (a) it is, of course the logarithmic function.)

(a) A= R;
f(x) = X
0=+

(b) ditto but with o = x

(Note that the fact that o and f are not compatible in (a), "corresponds"

to the common student error (x + y)2 =x% + yz. )
(c) As in (a) and (b) but with f(») = Vx

(d) ditto, but with f(x) = %", for some fixed n.
(The morphisms in sections b and d are fundamental to factoring in

a‘r1' thmetic cowndl c.LeQ fsyv e )

(a) A is a set of data, or numbers representing approximations.
f(x) = ey, the absolute error in x; f.e. %=X+ e , where X

is the true value of x.

(b) ditto, but with o = x

(c) A as in (a)
C ex_,
fn) = Yy s the relative error in x, i.e. Vg =

o=+
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(d) ditto, but with o= x .
(In section (a), f and o are compatible, and resulting morphism is basic

to "error arithmetic": the absolute error in the sum is equal to the

sum of the absolute errors.

Section (d) is also of some interest.

o Y > Y'x,r"y
X
X ooy ¥ Py
Now we can find "y from the calculations in (b). There we have
xey=(X+e)l+e)
= XY + eXY + eyX + exey |
Hence e _
Ry = exY + eyX + exey ;
e e.e
e e M Y
and "y T % Y 3y re ¥, + Pyry

Thus, we have compatibility, and the induced binary operation on the image

set as defined by
W RZ= W rZ*WVWz .

W= =
In practice, that is in "error arithmetic", this "exact" result is rarely
used. If the (relative) errors are small, then their product is usually
very much smaller, and can safely be ignored. So the usually used induced
operation is simply addition: the relative error in the product is the

sum of the relative errors.)



o

10.

11.

124

(a)

(b)

(b)
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A =N, the set of natural numbers

J///;71, if x 1s even
\\\%h

-1, if x is odd

fx)

I

0=+
ditto, but with o = x .

(Suggest a more "natural" definition for f in section (b).)

A= N

f(x) = x{mod n), for some fixed n e N.

0=+

ditto, but with o = x .

A=N

f(x) = the set of prime factors of x, recorded according to theijr
multiplicity; e.g. £(12) ={2, 2, 31.

0 = highest common factor

ditto, but o = Teast common multiple.

- A = open sentences with substitution set R

f(x) = truth set of %
o = "and"

ditto, but with o = "or"

(In both cases we have compatibility. The induced binary operations are

Y and U, respectively. These morphisms are, of course, extremely important

in solving equations and inequations and graphing-)
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13. (a) A =R

f(x) = sin x

0=+
(b) ditto, but with f(x) = cos x
(c) ditto, but with f(Xx) = tan x .

(The tangent function is compatible with addition, but care is needed
with domain R, because of problems at i_?f/z, etc. The induced binary

operation is not trivial

\ il :u-
x |1 v 1T = xy
14. (a) A= :3‘, set of differentiable functions
f =D , the differentiation function
o =+ , function additibn .

(b) ditto , but 0 = x .

(In the first case D can be replaced by any polynowma&.in D; e.qg.

D% + 3D + 1
The fact that these functions are all morphisms, with induced binary
operation olso +, is fundamental to the theory of linear differential
equations.
As in sections 13(a) and (b), so here in section 14(b), the absence of
compatibility indicates that if a formula for the image of the combination
exists, then it must be more complex thanizégghcombination of the images.

This, in itself, can be used to motivate the search for such a formula.)
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Summary II

The concept of modelling is fundamental to much human intellectual activity.
The reasons for modelling a%e various - the model is usually chosen to be
simpler, or more familiar, than the original. The general concept of model
takes many forms, in these notes we have given it a very specific meaning.

A set with a binary operation is a structure and the function copies this
structure onto the image set - In order that the copy should be a model,

we have required that the result of the binary operation in the domain should
be reflected by the result of performing some (induced) binary operation

in the image set. Although this model is extremely simple, it has many uses -
from the simple one of being a calculating aid or providing a formula useful
in the solution of problems, to the extensive theory which we have not yet
discussed here.

The number of examples of morphisms is endless - we have only touched on ~owwe ﬂ
o o be %O\J._v\o\ S

Lg]ementary mathematics - the further we go, the more important the idea of
morphism becomes. We have also not touched upon applied mathematics. The
multiplicity of examples alone should convince one of the importance of the
idea, Given that function and binary operation are now explicitly treated

in the school curriculum, there is no reason why morphism and associated

ideas should not be used implicitly to give the curriculum further unity

and cohesion, as well as providing a basis for further work in mathematics

for those who continue. The concept of modelling and the commutative

diagram ;; introduced in the section Modelling I, can easily be developed

by their use in numerous examples. The precise definitions, especially

of compatibility, as given in Summary I, belong to a second more sophisticated

" stage.
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Although, rightly, the emphasis has been on morphisms, where they exist, the
non-existence of morphisms (i.e. when the function and binary operation are
not compatible), can be used didactically to motivate the search for a more

complicated formula.
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