
Singularity on Wexac
Introduction to Singularity, basic usage.
By Igor Chebotar

DOCKER

• Daemon-based
• Requires administrator

privileges
• Long-running services

(web services, databases)

Singularity

• No background daemon •
• No special privileges
• User-space applications

(scientific software)

Introduction to
Containers

• Compatible with most Docker images
• Containers can be built on local machine and

copy to cluster
• Recognize directories (mounts) and devices such

as networks, work directories, GPU’s, etc.
• Supports LSF, MPI, GPU’s

Introduction to
Singularity

• $ singularity pull - get container images from repo’s –
including docker repo

• $ singularity exec - run command inside the container
• $ singularity shell – “login to” the container
• $ singularity build - create container from recipe

Basic
Singularity
Commands

Pull and Run
example

(pull singularity image to Wexac)

$ singularity pull <hub>://<image>[:<tag>]

Run example –
BSUB

Run example –
BSUB: GPU

[igorc@access4 Singularity-test]$ bsub -q gpu-short -gpu num=3 -Is singularity run --nv tensorflow_latest-
gpu.sif
Memory reservation is (MB): 1024
Memory Limit is (MB): 1024
Job <612691> is submitted to queue <gpu-short>.
<<Waiting for dispatch ...>>
<<Starting on hgn12>>
Singularity> python
Python 3.6.9 (default, Jan 26 2021, 15:33:00)
[GCC 8.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from tensorflow.python.client import device_lib
2021-07-08 09:26:29.475560: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened
dynamic library libcudart.so.11.0
>>> print(device_lib.list_local_devices())
2021-07-08 09:26:37.013889: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with
properties:
pciBusID: 0000:15:00.0 name: Quadro RTX 6000 computeCapability: 7.5
coreClock: 1.77GHz coreCount: 72 deviceMemorySize: 23.65GiB deviceMemoryBandwidth: 625.94GiB/s
2021-07-08 09:26:37.015755: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 1 with
properties:
pciBusID: 0000:39:00.0 name: Quadro RTX 6000 computeCapability: 7.5
coreClock: 1.77GHz coreCount: 72 deviceMemorySize: 23.65GiB deviceMemoryBandwidth: 625.94GiB/s
2021-07-08 09:26:37.017551: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 2 with
properties:
pciBusID: 0000:3a:00.0 name: Quadro RTX 6000 computeCapability: 7.5
coreClock: 1.77GHz coreCount: 72 deviceMemorySize: 23.65GiB deviceMemoryBandwidth: 625.94GiB/s
2021-07-08 09:26:37.091610: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu
devices: 0, 1, 2

Pull and Run
docker image
(pull native docker image from docker

hub and convert to singularity)

$ singularity pull docker://<image>[:<tag>]

Singularity
exec

(good for running batch jobs)

• exec command is the recommended way to run
singularity containers as a batch jobs on HPC
(bsub)

• Usefull options
• --nv : Leverage GPUs – Required if you run gpu app
• --bind /mount:/mountName : Bind mount directories to

the containers
• --env var1=value : Set your environment variables
• --cleanenv : Clean the environment
• --no-home : Do not mount your homefolder
• --pwd: Initial working directory within the container

• Usage:
• $ singularity exec [options] image.sif command

[command-args]

Singularity
build

• Recommended way is to build container on a local
machine with ROOT. Another option is to use docker1
node where we allow building containers.

• It is possible to build the container without root, but the
functionality may be poor

• Usage example:
$ singularity build lolcow.simg
library://sylabs-jms/testing/lolcow

Singularity recipe
example -

TensorFlow

centosTflow.def

BootStrap: yum
OSVersion: 7
MirrorURL: http://mirror.centos.org/centos-%{OSVERSION}/%{OSVERSION}/os/$basearch/
Include: yum
best to build up container using kickstart mentality.
ie, to add more packages to image,
re-run bootstrap command again.
bootstrap on existing image will build on top of it, not overwriting it/restarting from scratch
Singularity .def file is like kickstart file
unix commands can be run, but if there is any error, the bootstrap process ends
%setup
 # commands to be executed on host outside container during bootstrap
%post
 # commands to be executed inside container during bootstrap
 # add python and install some packages
 yum -y install vim wget python3 epel-release
 # install tensorflow
 pip3 install --upgrade pip
 pip3 install tensorflow-gpu==2.0.0-rc1
 # create bind points for storage.
 mkdir /extra
 mkdir /xdisk
 exit 0
%runscript
 # commands to be executed when the container runs
%test
 # commands to be executed within container at close of bootstrap process
 python --version

http://mirror.centos.org/centos-

• To run container - simply load the Singularity
module:

$ module load Singularity
and Singularity environment will be

available.
• To build image – Use your local machine where

you have root. Another option is to use docker1
host for building singularity with fakeroot option.

How to use
Singularity on

Wexac?

singularity --version -> verify installation
which singularity -> verify installation

Doing changes or running root commands from Singularity image is prohibited on WEXAC cluster.
To build and change your Singularity image – use your local machine or docker1 server.

Use writeable image – sandbox (This is for changing your container contents/adding more programs/updating the containers)
singularity build --sandbox /tmp/debian.sandbox docker://debian:latest -> Build a base sandbox from DockerHub
singularity exec --writable /tmp/debian.sandbox apt-get install git-> Make changes to it from executing command
singularity shell --writable /tmp/debian.sandbox -> Make changes to it using a shell connection to the image

After you finish editing/changing your sandbox image – Create a singularity application container:
singularity build --fakeroot /tmp/debianV1.simg /tmp/debian.sandbox -> Build your custom image from sandbox
sudo singularity exec /tmp/mondebian.simg ls -> Browse your custom image

Work with non writeable image:
singularity build /tmp/ubuntusingular.simg ubuntu.def -> Create a ready-to-go container using Singularity recipe file
singularity exec /tmp/ubuntusingular.simg ls -> Execute ls command from your container
Work with writable image:
singularity build --fakeroot --sandbox /tmp/centossingular.simg centos.def -> Create edit-able sandbox container
singularity exec --writable /tmp/centossingular.simg touch test1.txt -> Create file inside the edit-able container

Just run a container from repository
singularity run shub://ajreling/Singularity-CentOS

Singularity CHEATSHEET

Make a Singularity image from Wexac local docker repo – ops:5000
$ singularity pull docker://ops:5000/tensorflow:v1

This will download and build a singularity image of tensorflow from ops:5000 repository directly to your
homefolder.

Execute interactive job with Singularity image:
bsub -q gpu-interactive -J JOBNAME -gpu num=1:j_exclusive=yes ’module load Singularity ; singularity
shell pytorch.sif ‘
(Where pytorch.sif should be replaced with your singularity image name)

Run BATCH job with Singularity – pytorch example:
bsub -q gpu-short -J JOBNAME -o log_%J -e err_%J -gpu num=2:j_exclusive=yes ’ module load Singularity ;
singularity exec pytorch:v3.sif test_model_wexac.py “200” “new_model.py”
“validation_lib_pos_binned_b200.pkl” “trained_models_b200_no_x_val” ‘

Singularity CHEATSHEET #2

1. Pull/build image from repo or build using singularity recipe file (From local machine or docker1 node):
From docker hub: singularity pull docker://Imagename:TAG
From Nvidia: singularity pull docker://nvcr.io/nvidia/tensorflow:19.11-tf1-py3
From Singularity hub: singularity pull library://Imagename
From recipe file: singularity build myimage.sif recipe.def

2. Confirm your container is running properly
3. Upload your container file to your homefolder on Wexac
4. Execute your container as a bsub job(Do not forget to add relevant flags - bind , env , nv , etc…):

Interactive: bsub -q gpu-interactive -J JOBNAME -gpu num=1:j_exclusive=yes ’module load Singularity ;
singularity shell pytorch.sif ‘
Batch: bsub -q gpu-short -J JOBNAME -o log_%J -e err_%J -gpu num=2:j_exclusive=yes ’ module load
Singularity ; singularity exec pytorch:v3.sif test_model_wexac.py “200” “new_model.py”
“validation_lib_pos_binned_b200.pkl” “trained_models_b200_no_x_val” ‘

Steps to prepare and run Sing container

1. no space left on device when pulling an image:
Singularity is trying to use the default /tmp folder that may run out of space.
To fix it – define temp dir under your homefolder instead:

module load Singularity
mkdir =~/tmp/singularity_cache
export SINGULARITY_TMPDIR=~/tmp/singularity_cache
singularity pull docker://IMAGE:VERSION

2. Container build/run fail because of different memory/resource errors:

You are probably trying to build container under one of the access nodes
which now has a resource usage limitation to prevent overloading those nodes.

The solution is to BUILD singularity images on your local machine or docker1
 node and RUN the containers as bsub jobs under compute nodes.

Troubleshooting

THANKS!

	Singularity on Wexac
	Introduction to Containers
	Introduction to Singularity
	Basic Singularity Commands
	Pull and Run example (pull singularity image to Wexac)
	Run example – BSUB
	Run example – BSUB: GPU
	Pull and Run docker image (pull native docker image from dock
	Singularity exec (good for running batch jobs)
	Singularity build
	Singularity recipe example - TensorFlow
	How to use Singularity on Wexac?
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

