
1

HPC as a service on AWS – User Guide

More and more Weizmann Research Labs start using Amazon Web Services (AWS) cloud

platform. This user guide will walk you through the authentication and authorization

processes in the AWS, how you can easily create a new working environment on the cloud,

how to upload & download your data and most important how run your hpc workloads on

AWS?

 AWS Environment

 HPC Development Environment

 Upload\Download data from Weizmann to AWS

 HPC Tool

 Please note: Throughout this user guide the phrases “EC2 Instance”, “Server”, “Machine”

and “Linux Machine” are used interchangeably and aim for a virtual machine that is

deployed in the AWS cloud.

2

 Please note: All the existing AWS resources are located under the Ireland region

(eu-west-1). The region in the AWS console may be found on the top right section.

Access the AWS Console

1. Access the user portal: If you have already accepted the invitation from AWS Single Sign-

On, use your User portal URL and enter the username to login.

2. Locate the invitation email:

Email subject: welcome email

Sender address: IT Weizmann

Dear #USERNAME#,

You have joined the #GROUPNAME# lab on the AWS HPC cluster.

Belonging to a member lab provides you with the privilege of running different HPC cluster jobs on the dedicated

AWS Cloud account.

To login to your aws account please use the following link:

AWS Console

3. Click on the URL indicated in the email to navigate to the user portal.

4. Enter your institutional username and password and click on Login.

AWS Environment

Getting started

Onboard to AWS

Login to the AWS console

javascript:popupFieldHelp('176118007935858223','11267578213533')
https://d-93671155e3.awsapps.com/start

3

5. Click and choose your lab account.

6. Click and choose the required permission level to access with:

 AWSReadOnlyAccess – Allows viewing only (Role 1).

 HPC_ROLE – Allows building resources (Role 2).

7. As needed, click on Management console or Command line or programmatic access.

8. When clicking on Management console, the following screen will appear:

9. When clicking on Command line or programmatic access, the following screen will

appear, this are the temporary credentials that you can use on your terminal , see

programmatic access to AWS CLI:

4

The HPC development Environment is an EC2 Instance (a virtual machine) in your laboratory

dedicated AWS account. The instance is an amazon Linux 2 server, which you will connect

directly from your local terminal (e.g., Putty, Mobaxterm, iTerm, etc). Within the EC2 Instance,

you will use AWS CLI to interact with the different AWS services. In addition, the EC2 Instance

includes utilities and integrations required to easily interact with your S3 Bucket, EFS

Filesystem, and configuring and running HPC jobs on AWS Batch.

1. Open the AWS console to access your account (for further instructions, see Access the

AWS console).

2. Navigate to the AWS Service Catalog and open the Products page (for further

instructions, see Access AWS Service Catalog Console).

3. On the Products page, select the AWS HPC environment product.

4. Then, on the top right corner, click on Launch product.

5. Launch: AWS HPC Environment screen will appear.

6. Type a name for the provisioned product or click on Generate name.

HPC Development Environment

Getting started

Provision the AWS HPC Environment

product

https://signin.aws.amazon.com/signin?redirect_uri=https%3A%2F%2Feu-west-1.console.aws.amazon.com%2Fservicecatalog%2Fhome%3FisSceuc%3Dfalse%26region%3Deu-west-1%26state%3DhashArgs%2523products%26isauthcode%3Dtrue&client_id=arn%3Aaws%3Aiam%3A%3A015428540659%3Auser%2Fservicecatalog&forceMobileApp=0&code_challenge=_ech4XFhiUmOmliWvKuzvMVT2CaHGQsIk-FB_mMlZi4&code_challenge_method=SHA-256

5

7. Then, the product’s form will be loaded.

6

8. Fill out the form with the required information.

Parameter Name Description Constraint Example

BaseDockerImage This is an optional value to provide

the name of the public docker

image to integrate it to your AWS

HPC environment. The default value

is docker image of amazonlinux,

leave it this way if you don’t have

any other docker image.

In this field you can

use any Unicode

character up to 256

chars.

Development server

HPCProjectName This parameter suggest a project

name for your HPC use case, all the

provisioned resources are tagged

with the project name. It is

recommended to use a user

friendly project name like name of

the user, who uses the

environment.

In this field you can

use any Unicode

character up to 256

chars.

Development server

InstanceName This will be the value for the tag

“Name” which is associated with the

In this field you can

use any Unicode

Development server

7

EC2 Instance (please note that this

is not the server domain name).

This field will help you to identify

the instance in the AWS console or

AWS CLI.

character up to 256

chars.

InstanceSchedule If this parameter is set to other

value than “No-Schedule” the server

will be stopped (shutdown) at any

period outside of the specified one.

E.g., stop-on-7pm, will shut-

down/stop the server every day at

7pm.

Currently, there are

only two options

available:

“No-Schedule”

“stop-on-7pm”.

If another schedule is

required, please

contact IT.

Development server

EC2 Instance

Type

Instance types comprise varying

combinations of CPU, memory,

storage, and networking capacity

and give you the flexibility to choose

the appropriate mix of resources

for your needs. If you are not sure

which to choose, use the default

t3.small. Checkout the list of the

different instance types and their

details.

Must be a value from

the allowed values

listed in the “drop

down list”.

t3.small

JDCommand This parameter will store the

command that you are planning to

execute on the cluster, relevant if

you specified the preferred Docker

image. You may leave this field as

default and modify the command

later.

Name of an AWS

System Manager

Parameter Store,

which holds the

AMI-Id string.

KeyPairName Choose the method to connect to

the EC2 Instance. It's recommended

to use SSM Session Manager unless

you have specific need for SSH

connection.

If you choose SSH you will have to

specify a valid EC2 Key Pair name

under “SSH Key Pair Name”

parameter.

If you choose SSMSessionManager,

see Working with the EC2 Instance

for guidance how to connect to the

instance using SSM Session

Manager.

Can be either

“SSMSessionManager”

Or “SSH”.

Empty

Owner email Please enter your email in this field,

once the ec2 server will be ready –

Must be a valid

Weismann Institute of

name@weismann.ac.il

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
mailto:name@weismann.ac.il

8

you will get an email notification to

start your work.

Science email

address.

ServerImageType Please choose what is your hpc use

case type CPU or GPU.

Must be a value from

the allowed values

listed in the “drop

down list”.

sg-

079abf62f6e86cd06

9. With the Manage Tags option, you can add additional tags to the server. Use this option

only when it is relevant to your operation.

10. The Enable event notifications option is not enabled and should be ignored. You can

follow the progress of the launch on the AWS Service Catalog product.

11. After completing the form, click on Launch product on the bottom right corner.

12. Upon successful provisioning of the product, you will receive an email with further

instructions on connecting to your new EC2 server.

9

13. For advanced users: Next, the Provisioned product details screen will appear. On the

upper panel, you can see the status of the provisioned product. Once the status is set to

Available the provisioning succeeded.

On the lower panel, you can see the Events panel, which lists the current and historical

actions applied to this provisioned product. When the product provisioning (event type

PROVISION_PRODUCT) is successful, the event status will be updated to SUCCEEDED.

ⓘ Please note: The provisioning should take up to 15 minutes. At the end, you will see

the result under Status.

14. Once the product launch completed successfully, see Working with the EC2 instance.

15. To see the server details, in the AWS Service Catalog, navigate to provisioned products.

16. Select the server you own.

17. On the provisioned product page, scroll down to the events panel and select the last

event (event type PROVISION_PRODUCT).

10

18. On the event page lower panel, Outputs, you will find a list of details that will be required

for you to connect to the server.

There are 2 configurations to work with the cloud, using AWS CLI: WEXAC access servers or

Command line or programmatic access.

WEXAC access servers

1. Connect to either one of these two WEXAC access servers,

access3.wexac.weizmann.ac.il or access4.wexac.weizmann.ac.il, with your WIS

username\password.

2. After connecting, a message will show that AWS authentication is established.

3. In case of authentication issues, a message will show that there is an error.

In this case, send an email to hpc@weizmann.ac.il or contact Eldar Aronovich or

Vadim Malkin.

Programmatic access to AWS APIs

mailto:hpc@weizmann.ac.il

11

Command line or programmatic access

1. After clicking on Command line or programmatic access, this window will appear:

2. Click on Option 1 and then a Copy button will appear.

3. To copy your temporary credentials, click on Copy and a message will appear: “Copied!”

4. Paste your credentials in your Linux terminal.

5. To validate that your credentials are properly working with AWS, run on your terminal the

following AWS CLI command: aws s3 ls

6. Make sure that you get an output: pi-youraccountid-shared-bucket

Install AWS CLI

Please select the instructions according to your local machine operating system:

 AWS CLI - Linux

 AWS CLI - macOS

 AWS CLI - Windows

 AWS CLI - Docker image

Install SSM Session Manager Plugin

Please select the instructions according to your local machine operating system:

 Session Manager plugin on Windows

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2-linux.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2-mac.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2-windows.html
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2-docker.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager-working-with-install-plugin.html#install-plugin-windows

12

 Session Manager plugin on macOS

 Session Manager plugin on Linux

 Session Manager plugin on Ubuntu Server

Your EC2 Instance is provisioned and ready to run AWS CLI commands on the following

services: AWS Batch, AWS S3, AWS System Manager > Session Manager, AWS ECS, AWS EC2,

and more. To enable access to additional services, please contact WIS IT support.

To connect the EC2 Instance you have two main alternatives, using AWS System Manager >

Session Manager or connect via SSH using an EC2 Key Pair (the latter option is available

only if the “EC2 Key Pair” parameter was provided when launching the HPC Development).

Before connecting, make sure you have the server details.

Connect using Session Manager via AWS Console

1. Open the AWS Console of your account and navigate to AWS EC2 Service.

2. Use the Name column to identify your instance and select it by click on the instance id.

3. On the instance page (right upper corner), click on connect.

Connect to your EC2 instance

https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager-working-with-install-plugin.html#install-plugin-macos
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager-working-with-install-plugin.html#install-plugin-linux
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager-working-with-install-plugin.html#install-plugin-debian

13

4. Select Session Manager Tab and click Connect on the right lower corner.

5. A new tab will be opened in your browser with a new session to your instance.

6. Use this session to run commands on the server.

Connect using Session Manager via AWS CLI

1. Install AWS CLI.

2. Install AWS SSM Session Manager Plugin.

3. On your terminal, run the following AWS Command. You can find the full command with

the instance-id in the provisioned product outputs section in the console.

Linux/MasOs:

aws --region eu-west-1 ssm start-session --target [instance-id] --document-name AWS-

StartInteractiveCommand --parameters '{"command":["sudo su - ec2-user"]}'

14

Windows:

Start-SSMSession -Region eu-west-1 -Target [instance-id]

Connect using SSH over Session Manager

With this option you will have the exact same experience as regular SSH connection, but your

instance must be associated with the public key and you have to own the private key. See

Create an EC2 SSH Key Pair to prepare the required SSH key pair. As prerequisite, the AWS CLI

and the SSM Manager plugin should both be installed, as explained in the previous section

Connect using Session Manager via AWS CLI.

1. On your machine, open the SSH configuration file:

Linux/MasOs:

The SSH configuration file is typically located at ~/.ssh/config.

SSH over Session Manager

host i-* mi-*

ProxyCommand sh -c "aws –region eu-west-1 ssm start-session --target %h --document-name

AWS-StartSSHSession --parameters 'portNumber=%p'"

Windows:

The SSH configuration file is typically located at C:\Users\username\.ssh\config.

SSH over Session Manager

host i-* mi-*

ProxyCommand C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe "aws –region

eu-west-1 ssm start-session --target %h --document-name AWS-StartSSHSession --parameters

portNumber=%p"

2. Now SSH to your instance.

ssh -i /path/my-key-pair.pem ec2-user@instance-id

3. Now you can also copy files using SCP.

scp -i /path/my-key-pair.pem /path/SampleFile.txt ec2-user@instance-id:~

15

AWS uses public-key cryptography to secure the login information for your instance. A Linux

instance, has no password to use for SSH access; you use a key pair to log in to your instance

securely. You specify the name of the key pair when you create your compute environment,

then provide the private key when you log in using SSH.

If you haven't created a key pair already, you can create one using the Amazon EC2 console.

To create a key pair:

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/

2. From the navigation bar, select a Region for the key pair. You can select any Region that's

available to you, regardless of your location: however, key pairs are specific to a Region.

For example, if you plan to launch an instance in the US West (Oregon) Region, you must

create a key pair for the instance in the same Region.

3. In the navigation pane, choose Key Pairs, Create Key Pair.

4. In the Create Key Pair dialog box, for Key pair name, enter a name for the new key pair ,

and choose Create. Choose a name that you can remember, such as your IAM user

name, followed by -key-pair, plus the Region name. For example, me-key-pair-uswest2.

5. The private key file is automatically downloaded by your browser. The base file name is

the name you specified as the name of your key pair, and the file name extension is .pem.

Save the private key file in a safe place.

 Please note: This is the only chance for you to save the private key file. You'll need to

provide the name of your key pair when you launch an instance and the corresponding

private key each time you connect to the instance.

6. If you will use an SSH client on a Mac or Linux computer to connect to your Linux

instance, use the following command to set the permissions of your private key file so

that only you can read it.

$ chmod 400 your_user_name-key-pair-region_name.pem

For more information, see Amazon EC2 Key Pairs in the Amazon EC2 User Guide for Linux

Instances.

Create an EC2 SSH Key Pair

https://console.aws.amazon.com/ec2/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

16

To connect to your instance using your key pair:

To connect to your Linux instance from a computer running Mac or Linux, specify

the .pem file to your SSH client with the -i option and the path to your private key. To connect

to your Linux instance from a computer running Windows, you can use either MindTerm or

PuTTY. If you plan to use PuTTY, you'll need to install it and use the following procedure to

convert the .pem file to a .ppk file.

To prepare to connect to a Linux instance from Windows using PuTTY (Optional):

1. Download and install PuTTY from http://www.chiark.greenend.org.uk/~sgtatham/putty/.

Be sure to install the entire suite.

2. Start PuTTYgen (for example, from the Start menu, choose All Programs, PuTTY, and

PuTTYgen).

3. Under Type of key to generate, choose RSA. If you're using an earlier version of

PuTTYgen, choose SSH-2 RSA.

4. Choose Load. By default, PuTTYgen displays only files with the extension .ppk. To locate

your .pem file, choose the option to display files of all types.

5. Select the private key file that you created in the previous procedure and choose Open.

Choose OK to dismiss the confirmation dialog box.

6. Choose Save private key. PuTTYgen displays a warning about saving the key without a

passphrase. Choose Yes.

7. Specify the same name for the key that you used for the key pair. PuTTY automatically

adds the .ppk file extension.

http://www.chiark.greenend.org.uk/~sgtatham/putty/

17

The created EC2 Instance is configured to be ready for immediate work against the AWS and

specifically HPC environments. Following are some of the main configurations included with

the Linux machine.

 AWS CLI: Once you are connected to the instance (either via SSM Session Manager or

directly via SSH), you can now interact with AWS services using AWS CLI or Any AWS SDKs

(for the latter, you might be required to install the SDK package first). Using AWS CLI is

already set for you. You are not required to install it or to set any credentials for

authentication.

 Mounted datastores: the ec2 Instance includes two mount points. The first one is “/efs”

which mounts the EFS File System, and the second is “/s3” which mounts a dedicated S3

bucket.

 Docker CLI: the docker cli enables you to manage and run containers on the EC2 Instance.

 hpctool: the tool is installed on the machine and is available to use immediately.

 Proxy settings: the EC2 Instance has network connectivity to selected AWS Services (EC2,

SSM, S3, EFS, ECS, ECR, CloudFormation) and the Weizmann Institute of Science (WIS)

private network. In order for the EC2 Instance to communicate with the public internet

(E.g., downloading packages, pulling source code from GitHub, pulling docker images from

DockerHub, etc.) it is required to connect via the WIS private network. Thus, the

HTTP_PROXY and HTTPS_PROXY environment variables are set to point the WIS network

http proxy.

Know your Linux environment

https://aws.amazon.com/cli/
https://docs.docker.com/engine/reference/commandline/cli/

18

The synchronization of the data from WIS to the cloud and back, can be done using these

storage services:

 S3 – Amazon Simple Storage Service (Amazon S3) is an object storage service offering

industry-leading scalability, data availability, security, and performance. Customers of all

sizes and industries can store and protect any amount of data for virtually any use case,

such as data lakes, cloud-native applications, and mobile apps. With cost-effective storage

classes and easy-to-use management features, you can optimize costs, organize data, and

configure fine-tuned access controls to meet specific business, organizational, and

compliance requirements.

 EFS – Amazon EFS is a simple, server-less, set-and-forget, elastic file system that makes it

easy to set up, scale, and cost-optimize file storage in the AWS Cloud.

To upload or download files using S3 service, you may use the AWS Console or the AWS CLI

commands.

7. Choose the S3 service in your AWS Console.

8. Click on the bucket you would like to upload file or directory.

9. Click the Upload button.

10. Choose the folder of the files you would like to upload and click Upload.

Upload\Download data from Weizmann to AWS

AWS Console

19

11. To download the file using the console navigate to S3, choose the bucket and the

required file.

12. Then, press on it and click on Download.

1. Upload to S3 –

 Get your programmatical credentials – please refer the user to the relevant section.

 Verify the credentials by running AWS S3 ls (command to list you s3 buckets).

 Run the following command on the source machine (i.e. local machine or the EC2

Instance) to copy files or folder to an S3 bucket:

aws --region eu-west-1 s3 sync [local-path] s3://[bucket-name]/directory/ (sync local to S3)

aws s3 cp –recursive [local-path] s3://[bucket-name]/directory/ (copy local to S3)

2. Download from S3 -

 Get your programmatical credentials – please refer the user to the relevant section.

 Verify the credentials by running AWS S3 ls (command to list you s3 buckets).

AWS CLI commands

20

 Run the following command on the source machine (i.e. local machine or the EC2

Instance) to copy files or folder to an S3 bucket:

aws --region eu-west-1 s3 sync s3://[bucket-name]/directory/ [local-path] (sync S3 folder to

local drive)

aws s3 cp –recursive s3://[bucket-name]/directory/ [local-path] (Copy s3 folder to local

drive)

To upload or download files to EFS using the AWS CLI commands:

 Upload –

scp -i /path/my-key-pair.pem /path/SampleFile.txt ec2-user@instance-id:~

 Download –

scp -i /path/my-key-pair.pem / ec2-user@instance-id:/efs/directory local-path/

HPC Job defines business logic or processing procedure on a designated set of data and

results in output, the processed data. Jobs are executed on compute resources, e.g., bare-

metal servers, virtual machines, containers, or even server-less compute. The job execution

duration and the compute resources consumed vary according to the processing complexity

and the amount of data. Jobs are usually run within a batch of jobs, and those batches are

managed by a job scheduler. The scheduler manages which jobs run where and when.

AWS offers AWS Batch as a fully managed service that schedules jobs, and as such, helps you

to run batch computing workloads of any scale. AWS Batch automatically provisions compute

resources and optimizes the workload distribution based on the quantity and scale of the

workloads. With AWS Batch, there's no need to install or manage batch computing software,

so you can focus your time on analyzing results and solving problems.

hpctool is a command-line tool that enables the user to run HPC workloads/jobs on AWS

Batch. Running jobs on AWS Batch involves different infrastructure settings, for example

creating an AWS Batch compute environment. To create compute environment, one is

required to identify appropriate subnet, security group, amazon machine image, and launch

template that mounts different storage types. To ease the experience of creating the different

resources required to run jobs, we have created the hpctool. With hpctool the user provides

HPC Tool

https://aws.amazon.com/batch/
https://aws.amazon.com/batch/

21

values in a scientist-friendly configuration file and prepares a project into which he then

submits jobs. In addition, hpctool include capabilities to create amazon machine images, and

docker images, in the context of your project.

hpctool project

The hpctool project is a set of configurations and resources that defines the environment in

which jobs are executed. The project state is kept in the AWS Environment, thus the hpctool

CLI is essentially stateless, while the project is stateful. Most of the hpctool operations are in

the context of a project. When submitting a job, a project name is required for the hpctool, so

it can execute the job in the correct environment. Once created, a project includes different

AWS Batch resources, an Amazon Machine Image to be used for the compute nodes, a

configuration (Launch template) for the compute nodes, and a dedicated Elastic Container

Repository to host the project docker images.

The project name must be unique across the same AWS Account (LAB). However, many

projects may exist in parallel.

If you already launched an HPC Development Environment and you are able to connect to

your EC2 Instance, then you are mostly ready to use hpctool, continue with Getting started.

Alternately, you can use your local station to run hpctool to manage your projects, submit

jobs, build docker images, and build Amazon machine images. If you use your local station

and would like to access the shared elastic filesystem (EFS) you will have to follow the

procedure to mount EFS to an on-premises server, see Upload\Download data from

Weizmann to AWS for more details.

Setting up

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://docs.docker.com/get-started/overview/#docker-objects

22

Before submitting jobs, there are few preparation steps:

1. Upload raw data to either S3 or EFS. See Data Transfer for more details.

2. Create a configuration file. See Cluster Configuration file or use the example file located

under /home/ec2-user/examples/ directory

3. Run the command to create the project:

hpctool job prepare --project myProject --config-file /path/to/myConfig.ini

4. Use hpctool to build a docker image that will execute your script/program.

hpctool build docker-image --project myProject --script /path/to/myProgram.py

5. Run the command to submit job:

hpctool job submit --project myProject

6. Run the command to list the job/s:

hpctool job list --project myProject --command python myProgram.py

When authoring the job script/program consider the following:

1. When submitting jobs with AWS Batch the runtime environment is a docker container.

2. There are two available permanent storage volumes for your container:

Host Container*

/usr/ec2-user/s3 /s3

/usr/ec2-

user/efs

/efs

(*) The container mount point is configurable using the configuration ini file.

3. If multiple instances of the job will be run in parallel, using the --array modifier, the script

can use the AWS_BATCH_JOB_ARRAY_INDEX to distinguish the job instances.

4. The job will have access to different AWS Services, as following: Amazon S3, AWS System

Manager, Amazon EC2, and Amazon CloudWatch.

5.

Transfer files to/from Amazon S3

In order to use AWS CLI command for S3 you need to have programmatic credentials set in

your terminal/PowerShell. To get your credentials navigate to the WIS AWS User Portal and

copy the programmatic credentials. Paste the credentials to your terminal/PowerShell and run

Getting started

Author the job business logic

Data Transfer

https://wis.awsapps.com/start

23

AWS CLI or S3Fuse. If you are using the HPC development environment you already have the

credentials set up.

1. Use AWS CLI:

 To upload files from a machine (on-premises machine or the EC2 Instance) to S3

bucket, use the following command:

aws --region eu-west-1 s3 sync [local-path] s3://[bucket-name]/[project-name]/

 To download files from S3 bucket to a machine (on-premises machine or the EC2

Instance), use the following command:

aws --region eu-west-1 s3 sync s3://[bucket-name]/[project-name]/ [local-path]

2. Use AWS CLI:

s3fs allows Linux, macOS, and FreeBSD to mount an S3 bucket via FUSE. s3fs preserves

the native object format for files, allowing use of other tools like AWS CLI.

 A Using the HPC development environment you have the s3 bucket already mounted

to the EC2 Instance which you are connecting to and you can write/read to the

/home/ec2-user/s3/ directory.

 To use on-premises (or another server) follow the instruction https://github.com/s3fs-

fuse/s3fs-fuse#installation

Transfer files to/from Amazon Elastic File-System (EFS)

1. Using the HPC development environment you have the EFS file-system already mounted

to the EC2 Instance which you are connecting to and you can write/read to the /efs

directory.

2. To use on-premises (or another server) follow the Walkthrough: Create and mount a file

system on-premises with AWS Direct Connect and VPN

Transfer files to/from on-premises machine to EC2 Instance

To move files directly between your on-premises machine to your dedicated EC2 Instance you

can use SCP over SSH.

To create the SSH session to the EC2 Instance, you have 2 options:

1. SSH connection over SSM Session

2. SSH connection using KeyPair

https://github.com/aws/aws-cli
https://github.com/s3fs-fuse/s3fs-fuse#installation
https://github.com/s3fs-fuse/s3fs-fuse#installation
https://docs.aws.amazon.com/efs/latest/ug/efs-onpremises.html
https://docs.aws.amazon.com/efs/latest/ug/efs-onpremises.html

24

1. AWS credentials – the hpctool artefact is stored on an S3 Bucket in the AWS Cloud. In

order to access the S3 bucket and download the artefact to your Linux environment you

need to have permissions.

 Download to your provisioned EC2 Instance:

The EC2 instance is provisioned with built in AWS credentials. Thus, you can run the

following AWS CLI commands directly on the instance.

 Download to your local machine (laptop/PC):

In this case you need to setup credentials in the current terminal you are running the

commands at. To set the credentials, navigate to the AWS user portal.

2. Download the latest release of hpctool.

Using AWS CLI: aws s3 cp s3://__________bucket_____/hpctool/latest/filename /tmp/ . Using AWS

Console: login to the AWS S3 console and identify the ______ bucket. Browse the objects to

locate the hpctool package under hpctool/latest/

3. Installation:

Run pip3 install /tmp/filename

4. Verify the installation:

Run hpctool

Download the HPC Tool

https://wis.awsapps.com/start#/

25

[queue]

The name of the jobs queue. This name will appear as an AWS Tag on the actual

resource.

name = <string>

The priority of the job queue. Job queues with a higher priority (or a higher

integer value for the priority parameter) are evaluated first when associated

with the same compute environment. Priority is determined in descending order.

For example, a job queue with a priority value of 10 is given scheduling

preference over a job queue with a priority value of 1.

priority = <int>

[clusterX]

The name of the cluster queue. This name will appear as an AWS Tag on the AWS

Batch Compute Environment.

name = <string>

You can choose either to use EC2 On-Demand Instances and EC2 Spot

Instances.You can optionally set a maximum price so that Spot Instances only

launch when the Spot Instance price is under a specified percentage of the On-

Demand price.

type = <EC2 | SPOT>

The allocation strategy to use for the compute resource if not enough

instances of the best fitting instance type can be allocated. This might be

because of availability of the instance type in the Region or Amazon EC2 service

limits. For more information, see Allocation Strategies in the AWS Batch User

Guide.

allocation_strategy = <BEST_FIT | BEST_FIT_PROGRESSIVE |

SPOT_CAPACITY_OPTIMIZED>

Choose yes if you want your cluster to run jobs on GPUs

gpu = <no | yes>

min_vcpus = <int>

desired_vcpus = <int>

max_vcpus = <int>

server_size = optimal | m5.xlarge, r4.large, t3.2xlarge, p3.xlarge

server_image = ami-1234567890

ssh_keypair = <string>

The order of cluster. Compute environments are tried in ascending order. For

example, if two compute environments are associated with a job queue, the

compute environment with a lower order integer value is tried for job placement

first.

order = <int>

[job_definition]

The name of the jobs queue. This name will appear as an AWS Tag on the actual

resource.

Cluster Configuration File

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-resource-limits.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-resource-limits.html
https://docs.aws.amazon.com/batch/latest/userguide/allocation-strategies.html

26

name = <string>

runtime_parameters = <key,value;key,value;...>

attempts,(onStatusReason,onReason,onExitCode,action)

retry_strategy =

<int>,<string>;<string>;<string>;RETRY|EXIT,<string>;<string>;<string>;RETRY|EXI

T,...

retry_strategy_spot = <no | yes>

job_timeout = <seconds>

[container]

docker_image_uri = <string>

vcpus = <int>

gpus = <int>

memory = <int>

entrypoint = ["/bin/sh", "-c"]

command = ["/efs/bin/time", "job_script.sh"]

environment = key,value;key,value;...

(host source path, name)

volumes = <src_path>,<name>;<src_path>,<name>;,...

(src_volume_name,container_path)

mounts =

<src_volume_name>,<container_path>;<src_volume_name>,<container_path>;,...

[data]

efs = <efs-filesystem-id>

s3 = <bucketname>

[notification]

enabled = <no | yes>

email_address = foo@bar.com

27

The command line structure:

Hpctool

usage: hpctool [-h] [-d] [-q] [-v] {build,job} ...

A Cli tool to submit and manage HPC jobs with AWS Batch as backend

optional arguments:

-h, --help show this help message and exit

-d, --debug full application debug mode

-q, --quiet suppress all console output

-v, --version show program's version number and exit

sub-commands:

 {build,job}

build build controller

Commands

28

job job controller

Usage: hpctool [sub-command] [args] [options]

Build server-image

hpctool build server-image usage: hpctool build server-image [-h] [--project

PROJECT] [--name NAME] [--type {cpu,gpu}] [--base-image BASE_IMAGE] [--use-

latest]

[--script SCRIPT] [--docker-image

DOCKER_IMAGE] [--no-proxy] [--no-efs] [--no-s3] [--disk-size DISK_SIZE]

optional arguments:

-h, --help show this help message and exit

 --project PROJECT The name of the project

 --name NAME Name for the created server image

 --type {cpu,gpu} Whether the image is CPU or GPU optimized

 --base-image BASE_IMAGE

the AMI id of an image to build on

 --use-latest if indicated, using the latest image labels with the

project name as base

 --script SCRIPT The full path of a shell script to configure the image

 --docker-image DOCKER_IMAGE

The uri of a container image to be cached on the server

image

 --no-proxy if indicated, no proxy settings will be embeded to the

script

 --no-efs if indicated, no efs mount prerequisites installation

will be embeded to the script

 --no-s3 if indicated, no s3 mount prerequisites installation

will be embeded to the script

 --disk-size DISK_SIZE

The disk size in GB for the built ami

Build docker-image

usage: hpctool build docker-image [-h] --project PROJECT [--base-image

BASE_IMAGE] [--target-repository TARGET_REPOSITORY] [--script SCRIPT]

[--entrypoint ENTRYPOINT] [--tag TAG] [--

docker-file DOCKER_FILE]

optional arguments:

-h, --help show this help message and exit

 --project PROJECT The name of the project

 --base-image BASE_IMAGE

The source docker image. defaults to latest in local ecr

repository

 --target-repository TARGET_REPOSITORY

The ECR repository to store the docker image; defaults

to the dedicated ECR previously created

 --script SCRIPT File path to shell script to use as part of docker image

build

 --entrypoint ENTRYPOINT

The entrypoint for the job container

 --tag TAG the container image tag.

 --docker-file DOCKER_FILE

File name and path to a Dockerfile to use for container

image

build.

29

List Server images

usage: hpctool build list-server-images [-h] [--name-prefix NAME_PREFIX]

optional arguments:

-h, --help show this help message and exit

 --name-prefix NAME_PREFIX

Amazon Machine Image Name prefix to filter by.

List docker images

usage: hpctool build list-docker-images [-h] --project PROJECT [--repo REPO] [--

count COUNT]

optional arguments:

-h, --help show this help message and exit

 --project PROJECT The name of the project

 --repo REPO Amazon ECR repository name.

 --count COUNT Number of the docker images to list

Job prepare

usage: hpctool build docker-image [-h] --project PROJECT [--base-image

BASE_IMAGE] [--target-repository TARGET_REPOSITORY] [--script SCRIPT]

[--entrypoint ENTRYPOINT] [--tag TAG] [--

docker-file DOCKER_FILE]

optional arguments:

-h, --help show this help message and exit

 --project PROJECT The name of the project

 --base-image BASE_IMAGE

The source docker image. defaults to latest in local ecr

repository

 --target-repository TARGET_REPOSITORY

The ECR repository to store the docker image; defaults

to the dedicated ECR previously created

-h, --help show this help message and exit

 --project PROJECT The name of the project

 --job-name JOB_NAME The name of the job

 --job-timeout JOB_TIMEOUT

timeout duration after which AWS Batch terminates your

jobs if they have not finished. If a job is terminated due to

a timeout, it is not retried. The minimum value for the

timeout is 60 seconds

 --job-retries-spot When indicated and compute is SPOT, retries set with

spot error

 --job-queue JOB_QUEUE

The job queue where the job is submitted

 --job-definition JOB_DEFINITION

The job definition used by this job

 --ami AMI The Amazon Machine Image (AMI) ID used for instances

launched in the compute environment.

 --ec2-types EC2_TYPES

The instances types that can be launched.

 --max-vcpus MAX_VCPUS

The maximum number of Amazon EC2 vCPUs that a compute

environment can reach.

30

 --ssh-key-pair SSH_KEY_PAIR

The Amazon EC2 key pair that is used for instances

launched in the compute environment. You can use this key pair to

log in to your instances with SSH.

 --cost-model {ON-DEMAND,SPOT}

The Amazon EC2 key pair that is used for instances

launched in the compute environment. You can use this key pair to

log in to your instances with SSH.

 --image-uri IMAGE_URI

The image used to start a container. This string is

passed directly to the Docker daemon. Images in the Docker Hub

registry are available by default. Other repositories

are specified with repository-url/image:tag.

 --vcpus VCPUS The number of vCPUs reserved for the container

 --memory MEMORY The memory hard limit (in MiB) present to the container

 --gpus GPUS The number of physical GPUs to reserve for the container

 --command COMMAND [COMMAND ...]

The command to send to the container that overrides the

default command from the Docker image or the job definition

 --environment ENVIRONMENT

The environment variables to send to the container. You

can add new environment variables, which are added to the

container at launch, or you can override the existing

environment variables from the Docker image or the job

definition.

 --params-config-file PARAMS_CONFIG_FILE

File with submit parameters

 --generate-skeleton-config-file

If indicated, a skeleton configuration file will be

rendered; Note: the actual command will not be executed if this

option indicated

 --yes If indicated, will automatically execute the

cloudformation stack.

Job submit

usage: hpctool job submit [-h] --project PROJECT [--job-name JOB_NAME] [--job-

timeout JOB_TIMEOUT] [--array ARRAY] [--vcpus VCPUS]

[--memory MEMORY] [--gpus GPUS] [--command ...]

optional arguments:

-h, --help show this help message and exit

 --project PROJECT The name of the project

 --job-name JOB_NAME The name of the job

 --job-timeout JOB_TIMEOUT

timeout duration after which AWS Batch terminates your

jobs if they have not finished. If a job is terminated due to

a timeout, it is not retried. The minimum value for the

timeout is 60 seconds

 --array ARRAY submit multiple jobs with the same configuration

 --vcpus VCPUS The number of vCPUs reserved for the container

 --memory MEMORY The memory hard limit (in MiB) present to the container

 --gpus GPUS The number of physical GPUs to reserve for the container

 --command ... The command to send to the container that overrides the

default command from the Docker image or the job definition

31

Job kill

usage: hpctool job kill [-h] [--project PROJECT] [--job-name-prefix

JOB_NAME_PREFIX] [--job-queue JOB_QUEUE] [--job-id JOB_ID]

optional arguments:

-h, --help show this help message and exit

 --project PROJECT The name of the project

 --job-name-prefix JOB_NAME_PREFIX

Substring of the job name

 --job-queue JOB_QUEUE

The job queue in scope

 --job-id JOB_ID The job to delete

Job list

usage: hpctool job list [-h] [--project PROJECT] [--job-name-prefix

JOB_NAME_PREFIX] [--job-queue JOB_QUEUE]

optional arguments:

-h, --help show this help message and exit

 --project PROJECT The name of the project

 --job-name-prefix JOB_NAME_PREFIX

Substring of the job name

 --job-queue JOB_QUEUE

The job queue in scope

Job list-projects

usage: hpctool job list-projects [-h]

optional arguments:

-h, --help show this help message and exit

Job remove-project

usage: hpctool job remove-project [-h] --project PROJECT

optional arguments:

-h, --help show this help message and exit

 --project PROJECT The name of the project

 Multiple jobs: (showcase both methods on the same usecase)

o loop over “hpctool job submit” to submit multiple jobs

o use “hpctool —array” to submit multiple jobs Tutorial: Using the array job index to control

job differentiation - A...

 EFS FileSystem Management.

Examples

https://docs.aws.amazon.com/batch/latest/userguide/array_index_example.html
https://docs.aws.amazon.com/batch/latest/userguide/array_index_example.html

32

The purpose of this optional service is to start/stop your instance on specific hour based on

the scheduler service. To install the service, follow these instructions:

1. Open the AWS console to access your account (for further instructions, see Access the

AWS console).

2. Navigate to the AWS Service Catalog and open the Products page (for further

instructions, see Access AWS Service Catalog Console).

3. On the Products page, select the EC2 Scheduler product.

4. Then, on the top right corner, click on Launch product.

5. Mark the checkbox under Generate name or add your name for this product.

6. Click on Launch product and don’t change any additional parameters.

7. Under Manage tags, you have an option to add additional tags to the server. Use this

option only when it is relevant to your operation.

Schedule your instance (EC2 scheduler)

EC2 Scheduler

https://signin.aws.amazon.com/signin?redirect_uri=https%3A%2F%2Feu-west-1.console.aws.amazon.com%2Fservicecatalog%2Fhome%3FisSceuc%3Dfalse%26region%3Deu-west-1%26state%3DhashArgs%2523products%26isauthcode%3Dtrue&client_id=arn%3Aaws%3Aiam%3A%3A015428540659%3Auser%2Fservicecatalog&forceMobileApp=0&code_challenge=_ech4XFhiUmOmliWvKuzvMVT2CaHGQsIk-FB_mMlZi4&code_challenge_method=SHA-256

33

8. Upon successful provisioning of the product, you may tag your instances with the

following tags shown below. For example wis:schedule – your EC2 server will be

automatically turned off on 7pm every day.

