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Abstract—The global increase in rates of obesity has been

accompanied by a similar surge in the number of autism

diagnoses. Accumulating epidemiological evidence suggest

a possible link between overweight and the risk for autism

spectrum disorders (ASD), as well as autism severity. In lab-

oratory animals, several studies have shown a connection

between various environmental factors, including diet-

induced obesity, and the development of autism-related

behaviors. However, the effect of high-fat or imbalanced diet

on a pre-existing autism-like phenotype is unclear. In this

study, we employed the BTBR inbred mouse strain, a well-

established mouse model for autism, to assess the impact

of inadequate fattening nutrition on the autism-related

behavioral phenotype. Male mice were fed by high-fat diet

(HFD) or control balanced diet (control) from weaning

onward, and tested in a series of behavioral assays as

adults. In addition, we measured the hypothalamic expres-

sion levels of several genes involved in oxytocin and dopa-

mine signaling, in search of a possible neurobiological

underlying mechanism. As an internal control, we also

employed similar metabolic and behavioral measures on

neurotypical C57 mice. Compared to control-fed mice,

BTBR mice fed by HFD showed marked aggravation in

autism-related behaviors, manifested in increased cognitive

rigidity and diminished preference for social novelty. More-

over, the total autism composite (severity) score was higher

in the HFD group, and positively correlated with higher body

weight. Finally, we revealed negative correlations associat-

ing dopamine signaling factors in the hypothalamus, to

autism-related severity and body weight. In contrast, we

found no significant effects of HFD on autism-related behav-

iors of C57 mice, though the metabolic effects of the diet

were similar for both strains. Our results indicate a direct

causative link between diet-induced obesity and worsening

of a pre-existing autism-related behavior and emphasize the

need for adequate nutrition in ASD patients. These findings

might also implicate the involvement of hypothalamic dopa-

mine in mediating this effect.
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INTRODUCTION

In the last few decades, the prevalence of obesity has

increased dramatically worldwide and has now reached

epidemic proportions (Bastien et al., 2014). Extensive

research has shown the dramatic effects of obesity and

inadequate nutrition on cardiovascular diseases (Ritchie

and Connell, 2007), diabetes (Guilherme et al., 2008)

and feeding related behaviors (la Fleur et al., 2007). Sev-

eral animal studies have also investigated behaviors that

are not directly related to food, demonstrating that diet-

induced obesity (Teodoro et al., 2014), may lead to anxi-

ety (Andre et al., 2014) and depressive-like behaviors

(Abildgaard et al., 2011). Exposure of rodents to high-fat

diet (HFD) has also led to alterations in the function of

reward-related circuitry in the brain (Sharma and Fulton,

2013) and to impairments of hippocampal plasticity

(Grillo et al., 2011). Investigations into the effects of peri-

natal exposure to HFD and maternal obesity revealed that

the offspring are more susceptible to developing mental

health and behavioral disorders such as anxiety, depres-

sion, attention deficit hyperactivity disorder, and autism

spectrum disorders (ASD) (reviewed by Sullivan et al.

(2014)).

ASD are characterized primarily by marked

impairment in social interactions and communication,

increased repetitive behavior, and striking cognitive

difficulties, chiefly in the form of cognitive rigidity

(Hobson, 2012; Hall et al., 2015). Most of the primary

symptoms of autism have been represented rather faith-

fully in rodents using several behavioral paradigms

(Karvat and Kimchi, 2012; Kazdoba et al., 2016;

Pasciuto et al., 2015). Moreover, various mouse models,

including transgenic mice lines, have been developed to

study the neurobiological basis of autism (reviewed in

Crawley (2012), Banerjee et al. (2014) and Pasciuto

et al. (2015)). One of the earliest and most studied mouse

models of autism is the BTBR T+tf/J (BTBR) inbred

mouse strain (McFarlane et al., 2008). BTBR mice display

autism-related behavioral phenotype, including impaired

social behavior (Pobbe et al., 2010; Weissbrod et al.,

2013; Karvat and Kimchi, 2014), increased repetitive

behavior (Pearson et al., 2011; Amodeo et al., 2012;

Karvat and Kimchi, 2012) and increased cognitive rigidity

(Moy et al., 2007; Rutz and Rothblat, 2012; Segal-Gavish

et al., 2016). In addition, recent studies identified specific

http://dx.doi.org/10.1016/j.neuroscience.2016.01.070
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biochemical alterations in BTBR mice that are consistent

with findings from autistic patients, such as aberrant

immune state (Heo et al., 2011), and reductions in both

hippocampal neurogenesis (Stephenson et al., 2011)

and in brain-derived neurotrophic factor signaling

(Scattoni et al., 2013). Notably, due to its metabolic pre-

disposition, the BTBR strain has also often been used to

study obesity and metabolic-related disorders

(Shedlovsky et al., 1993; Ranheim et al., 1997; Nadler

et al., 2000; Clee et al., 2005). Thus, the BTBR mouse

model appears to be an ideal tool to study the relationship

between diet-induced obesity and ASD-related

phenotype.

In the current research, we examined the ASD-related

behavioral phenotype in BTBR and C57 male mice

maintained from the age of weaning on either high-fat or

control balanced diet. Mice were evaluated for their

metabolic state and then tested in a series of behavioral

assays representing the core symptoms of autism:

cognitive rigidity, impaired social behavior and

stereotypic behavior. Following behavioral testing, we

measured hypothalamic mRNA expression levels of

several genes involved in dopamine and oxytocin

signaling, as these factors have been implicated both in

obesity and feeding behavior (Meguid et al., 2000;

Kelley et al., 2005; Baskerville and Douglas, 2010;

Mason et al., 2013) as well as in social behavior, cognitive

function and ASD-related phenotype (Alabdali et al.,

2014; Beny and Kimchi, 2014; Nguyen et al., 2014;

Gunaydin and Deisseroth, 2015; Scott et al., 2015;

Yamasue, 2016).
EXPERIMENTAL PROCEDURES

Animals

BTBR T+tf/J mice were bred from adult pairs originally

purchased from The Jackson Laboratory (Bar Harbor,

ME, USA). C57BL/6JOlaHsd (C57) mice were

purchased from Harlan Laboratories (Rehovot, Israel).

At the age of weaning (22–26 days old), male mice

were randomly assigned to either control diet (Control,

nBTBR = 11, nC57 = 8) or high-fat diet (HFD, nBTBR = 8,

nC57 = 8) groups. Mice were housed in groups of 2-4

littermates per cage and were given ad libitum access to

food and water throughout the experiment.

Unfamiliar mice in the three-chamber sociability assay

and in the running/jammed wheel assay were 5-week-old

Hsd:ICR[CD-1] males (Harlan Laboratories).

All experimental procedures were approved by and

conducted in strict compliance with the Institutional

Animal Care and Use Committee of the Weizmann

Institute of Science.
Diets and metabolism

Mice were fed from weaning and throughout the

experiment with either control low-fat diet (10% of kcal

as fat, 20% kcal as protein) or HFD (60% kcal as fat,

20% kcal as protein), products D12450B and D12492,

respectively; Research Diets, New Brunswick, NJ, USA)

and weighed weekly. At 9 weeks of age, mice were
tested individually in metabolic cages (LabMaster; TSE-

Systems, Bad Homburg, Germany). Volume of oxygen

uptake (VO2), carbon dioxide production (VCO2), food

and water intake and locomotor activity (ESM Methods)

were measured continuously and simultaneously over

3 days. The cages resemble the mice’s home cage in

their size, shape and bedding content, and the mice are

allowed 2 days of adaptation prior to the metabolic

measurements, in order to avoid any stressful

influences. At 13–14 weeks of age, following behavioral

assays, body composition was assessed using Echo-

MRI (Echo Medical Systems, Houston, TX, USA).
Behavioral assays
Open field test. The assay was conducted as

previously described (Karvat and Kimchi, 2012, 2014).

Mice were placed in a 30 � 30 � 25-cm cage for 10 min.

Locomotion parameters were measured using the Ethovi-

sion software (Noldus), while stereotypic (i.e. digging,

self-grooming) behaviors and olfactory investigation were

scored manually using the Observer software (Noldus,

Wageningen, the Netherlands).

Three-chamber social assay. The three-chamber

social approach and social novelty preference tests

were designed as previously detailed (Moy et al., 2007;

Karvat and Kimchi, 2012; Segal-Gavish et al., 2016).

Briefly, the test consisted of 10 min habituation in an

empty apparatus, followed by two consecutive phases

of 10 min each: (i) social approach, with a wire-cage con-

taining an unfamiliar mouse (mouse) situated in one side-

chamber and an empty cage (object) on the opposite side,

and; (ii) preference for social novelty, when an additional

unfamiliar mouse was placed in the wire cage that had

been empty during the previous session. Time spent in

each chamber was scored using the Ethovision software

(Noldus). Locations of different stimuli were counterbal-

anced between animals.

Running/jammed wheel assay. This test was

previously developed and applied in our lab (Karvat and

Kimchi, 2012, 2014; Segal-Gavish et al., 2016). Briefly,

mice were placed in a transparent Plexiglas cage sized

30 � 30 � 25 cm, containing a 14-cm diameter plastic

running wheel connected to one of the walls, which could

either turn freely or be jammed by a metal pin. The wheel

was free during the first 4 days (run1-4) and then jammed

for two consecutive days (Jam1 and Jam2). For each day,

an observer blind to the experimental groups quantified

the time mice spent interacting with the wheel in an

attempt to turn it. The impaired ability to adjust to change

(i.e. cognitive rigidity) was calculated as the ratio between

times spent on the wheel on day jam1 to day run4. In the

last day of the test, an unfamiliar mouse was introduced to

the apparatus, and the behavior of the resident mouse

was recorded for 10 min. Social contacts initiated by

the test mouse, as well as interaction with the wheel,

were quantified by an observer blinded to the treatment

groups.
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Wet T-maze assay. The wet T-maze assay was

conducted as previously detailed (Guariglia and

Chadman, 2013; Karvat and Kimchi, 2014) using a

T-shaped Plexiglas chamber filled with water with an

escape platform submerged 0.5 cm below water level.

Animals had 5 trials during each of the four experimental

days, placed each trial in the starting arm facing the wall,

and were allowed to swim until locating the hidden plat-

form, or until 90 s have passed. Inter-trial interval was

>5 min. On the first and second days, the platform was

located in one arm, while on the third and fourth days it

was located in the opposite arm. Latency to climb on

the platform and the number of correct turns were mea-

sured manually. Animals with no correct turns on day 2

were not tested further.
Computation of autism composite score

Based on the scoring method developed by El-Kordi et al.

(2013) and previously used in several autism-related ani-

mal studies (Dere et al., 2014; Segal-Gavish et al.,

2016), the scores of each mouse in six parameters (a pair

of parameters per core behavioral symptom of autism

(American Psychiatric et al., 2013)) were Z-standardized
such that higher values represent more severe autism-

related behaviors. Relevant measures were selected

based on reported abnormal phenotypes of the BTBR

strain (McFarlane et al., 2008), and included: (A) Social

deficiency in the 3-chamber test: social preference index

calculated as (time with unfamiliar mouse)/(time with unfa-

miliar mouse + time with object) and social novelty index

calculated as (time with unfamiliar mouse)/(time with famil-

iar mouse + time with unfamiliar mouse). (B) Cognitive

rigidity: ratio between day Jam1 and day Run 4 (adjust-

ment to change) in the running/ jammed wheel test and

no. of correct turns on day 4 of the water T-maze. (C)

Stereotypical behavior: digging duration and self-

grooming duration. The average Z score of all six param-

eters was designated as the autism composite score.
Tissue dissection and real-time PCR

At the end of the behavioral assays mice were sacrificed

and the hypothalamus was removed. Total RNA

extraction, reverse transcription into cDNA and real-time

PCR were conducted as previously described (Chalfin

et al., 2014). Specific primer sequences are: Actin-beta,

F: CTAAGGCCAACCGTGAAAAG, R: ACCAGAGGCA-

TACAGGGACA; Tyrosine Hydroxylase (TH), F: TTGGA-

TAAGTGTCACCACCTG, R: TGGCTCACCCTGCTT

GTA; DA receptor D1, F: CGTGGTCTCCCAGATCGG,

R: GCATTTCTCCTTCAAGCCCC; DA receptor D2, F:

GACACCACTCAAGGGCAACT, R: TCCATTCTCCGCC

TGTTCAC; Oxytocin, F: CTTGGCTTACTGGCTCTG, R:

GAGACACTTGCGCATATCC; Oxytocin receptor, F: CA

TTGTTCTGGCCTTCATCG, R: GAAGGCAGAAGCTTCT

TTGG.
Statistical analysis

All statistical analyses were performed using

STATISTICA software (StatSoft, Tulsa, OK, USA). For
all comparisons, we used either one-way ANOVA or

repeated-measures ANOVA, followed by post hoc
Fisher test. Correlation coefficients were calculated

using pairwise Pearson’s correlation. All results are

displayed as mean ± SEM. *P< 0.05, **P< 0.01,
***P< 0.005.
RESULTS

HFD in BTBR mice induces severe metabolic
impairments

Mice were fed with either HFD or control diet, from

weaning age and throughout the experiment (Fig. 1A).

During the first 5 weeks of diet, we monitored their

weights on a weekly basis. As expected, HFD in BTBR

mice induced a massive weight gain compared to the

control diet, noticeable already after 1 week of diet

(F= 25.6, p< 0.001, Fig. 1B, C). At the end of the

experiment, BTBR mice on HFD were significantly

heavier with significantly higher fat mass and lower lean

mass compared to control mice (F= 48.0, p< 0.001,

Fig. 1D). The HFD consuming BTBR mice exhibited a

significantly lower heat production, indicating lower

energy expenditure, during both the dark (p< 0.001)

and light (p< 0.05) phases of the day cycle (Fig. 1E).

The reduced energy expenditure sustains the obese

phenotype since the caloric intake at this stage as well

as the locomotor activity were similar in both diet groups

(F= 0.063, p= 0.8 and F= 1.44, p= 0.25,

respectively, Fig. 1F, G). As expected by their main

energy source, HFD consuming mice had also a

significantly lower rate of respiratory exchange ratio

(F= 140.7, p< 0.001), with no circadian cyclicality

(light-dark main effect, pcontrol < 0.001, pHFD = 0.25,

Fig. 1H), indicative for fatty acid oxidation (Mitchell

et al., 2014).

Similar metabolic effects were observed in C57 mice

exposed to HFD compared to control diet (Fig. 6A, B).
BTBR mice fed with HFD display enhanced cognitive
rigidity

To investigate the cognitive capabilities of the mice fed by

different diets, we employed the T maze assay (Fig. 2A–

E), and the running/jammed wheel assay developed in

our lab (Fig. 2F–H). On days 1 and 2 of the T maze

assay, mice learned to search and mount a hidden

platform submerged under the water surface in one of

the maze’s arms. As shown in Fig. 2B, while control

mice displayed a marginally significant increase in the

percentage of correct turns from day 1 to day 2 of the

assay (p= 0.06), HFD mice exhibited impaired

learning, reflected in lack of improvement in the

percentage of correct turns (p= 0.7). On days 3 and 4

of the assay, the location of the platform was replaced

to the opposite arm, to evaluate the cognitive rigidity of

the mice. Both control-fed and HFD BTBR mice

presented a typical impairment in reversal learning

manifested in a low percentage of correct turns on day

3 (control, 48.6 ± 10.6; HFD, 34.3 ± 15.6). HFD mice

also showed an abnormal cognitive persistence,
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reflected by a significantly lower percentage of correct

turns on day 4 (p< 0.05, Fig. 2C). In addition, we

analyzed the basic reversal learning performance of

both groups, by comparing the learning curves (i.e.

latencies to reach the platform) of the animals on the

first and third day. We found that HFD mice presented

an impairment in reversal learning, as their learning

pattern was similar on days 3 and 1 (p= 0.57), while

control mice displayed shorter latencies to reach the

platform on day 3 vs. day 1 (p< 0.05, Fig. 2D, E).

In the running/jammed wheel assay, both groups

spent similar durations on the wheel during the first
4 days of running (F= 0.95, p= 0.34, Fig. 2G).

However, similarly to the T-maze assay, HFD mice

displayed enhanced cognitive rigidity compared to

control, as the ratio of time spent on the wheel between

day 1 of the jammed wheel and day 4 of the running

wheel was significantly higher in the HFD group

(p< 0.05, Fig. 2H). No difference was observed

between the groups in the ratio between jam day 1 and

jam day 2 (p= 0.58).

In contrast, C57 mice exposed to HFD did not differ

significantly from control mice in both cognitive

behavioral assays, though there was a slight trend
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toward significant reduction in the percentage of correct

turns on day 3 of the assay (p= 0.1, Fig. 6C), which

might suggest a mild impairment in reversal learning.
HFD in BTBR mice impairs social memory

To evaluate the effects of nutrition on social behaviors, we

measured social preference and social novelty preference

in BTBR mice using the three-chamber assay

(Fig. 3A–D), and social preference in the

running/jammed wheel assay (Fig. 3E, F).

In the social preference phase of the three-chamber

assay, both control and HFD groups displayed the

typical BTBR autism-related phenotype and failed to

present a significant preference toward the unfamiliar

mouse compared to the object (F= 1.52, p= 0.23,

Fig. 3B). In the social novelty preference phase, the

control-fed BTBR mice significantly preferred spending

more time with the novel unfamiliar mouse compared to
the familiar mouse (p< 0.01, Fig. 3D), whereas the

HFD mice spent only slightly more time (but not

significantly different, p= 0.07) interacting with the

unfamiliar mouse compared to the familiar one. Similar

difference was noticed in the measurements of sniffing

time, where significant preference for the novel over the

familiar mouse was found only for the control (194 ± 22

vs. 86 ± 12.2, p< 0.001) but not for the HFD (168.5

± 10.3 vs. 111.5 ± 17.2, p= 0.06) mice.

In the running/jammed wheel assay, both groups

spent similar durations interacting with the unfamiliar

mouse (p= 0.31, Fig. 3F). However, the HFD mice

spent significantly less time interacting with the wheel

compared to the control mice (p< 0.05, Fig. 3F).

In the C57 mice, similarly to the cognitive rigidity

measures, HFD had no significant effect on social

memory, as both control and HFD groups displayed a

significant preference toward the social novelty

(Fig. 6D).
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HFD has no effect on stereotypic behavior or
locomotor behavior in BTBR mice

We assessed stereotypic behavior by measuring

durations of digging and self-grooming during a 10-min

period in an open-field novel environment. In addition

we quantified duration of time spent in the center of the

arena, as a measure for exploration, and duration of

olfactory investigation. No differences were observed

between the HFD and control-fed groups in any of the

behavioral parameters measured (Fig. 4). Likewise, no

differences were noticed between HFD and control

groups of C57 mice (Fig. 6E, F).

Importantly, all the behavioral effects described above

cannot be attributed to any locomotor deficits, as HFD
mice did not differ from control mice in the locomotor

activity measured either in the open field assay

(Fig. 4A) or by the metabolic cages system (Fig. 1G).
Autism-like severity in BTBR mice is associated with
body weight and dopaminergic signaling in the
hypothalamus

In order to define the overall difference in autism-related

behavioral phenotype between the control and HFD

mice, we calculated a standardized score for six

behavioral parameters and integrated them into a single

value referred to as ‘‘autism composite score” as

described in the results section. The overall autism-like
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composite score was significantly higher in the HFD group

compared to controls (F= 6.4, p< 0.05, Fig. 5A),

indicating higher autism-related behavioral abnormality

in mice fed by HFD. Moreover, the autism-like severity

score was positively correlated with the weights of the

mice following 5 weeks of diet assignment (R2 = 0.32,

p< 0.01, Fig. 5B).

At the end of the behavioral testing, we measured

hypothalamic mRNA levels of several genes involved in

dopaminergic and oxytocinergic signaling, as presented

in Fig. 5C. No significant differences were found

between control and HFD groups, though marginally

significant increases of tyrosine hydroxylase (TH,

p= 0.097) and dopamine receptor D1 (D1-R, p= 0.06)

levels were noticed in the HFD group. Interestingly, we

found significant negative correlations between the

behavioral autism score and expression levels of TH

(R2 = 0.27, p< 0.05, Fig. 5D) and D1-R (R2 = 0.45,

p< 0.01, Fig. 5E). Consistently, the body weights of the

mice were also negatively correlated with both TH

(R2 = 0.43, p< 0.01, Fig. 5F) and D1-R (R2 = 0.4,

p< 0.01, Fig. 5G) levels.

Consistently with the results of the behavioral assays,

C57 mice fed by HFD did not differ in their autism-related

severity score compared to control-fed mice, nor was

there any correlation between the individual autism

composite score and the weight of the mice following

diet exposure (Fig. 6G, H).
DISCUSSION

In the past few decades, the world has been witnessing

an emergence of an obesity pandemic (Flegal et al.,

2010), which has been co-occurring alongside a gradual

increase in worldwide rates of ASD (Baxter et al., 2015).

Accumulating epidemiological data has been suggesting

a link between the two (Kawicka and Regulska-Ilow,

2013; Broder-Fingert et al., 2014; Curtin et al., 2014;

Suren et al., 2014), prompting us to explore the effects

of nutrition on the ASD-related behavioral phenotype in

BTBR mice.

Adult mice maintained on HFD from weaning onward

presented a massive increase in body weight and fat

accumulation compared to control-fed mice, while

expending less energy. However, these metabolic
changes were not due to differences in either food

consumption or locomotion. These effects are consistent

with the known literature regarding the effects of HFD

on other rodent strains (Rousso-Noori et al., 2011; Pan

et al., 2012; Shechter et al., 2013), and confirm the dra-

matic effect of HFD on metabolism.

When examining the effects of diet on cognitive

behaviors, we noticed marked impairments in the

performance of the HFD BTBR mice compared to the

control-fed mice in all three behavioral measurements.

HFD BTBR mice displayed enhanced cognitive rigidity in

both the T-maze and the running/jammed wheel assays,

whereas in the T maze poorer learning ability was

observed as well. Additionally, C57 mice exposed to

HFD displayed a marginally significant deficiency in

reversal learning, compared to control mice. These

findings are in line with previous studies demonstrating

impaired cognitive function in the presence of obesity in

humans (Elias et al., 2003; Waldstein and Katzel, 2006;

Smith et al., 2011) and rodents (Winocur et al., 2005;

Farr et al., 2008), and improved cognitive performance

following dietary interventions (Farr et al., 2008; Cohen

et al., 2011; Leidy et al., 2015) and physical exercise

(Smith et al., 2010). Moreover, cognitive rigidity was

increased in obese human individuals as measured by

the Wisconsin card sorting test (Fagundo et al., 2012),

while performance in the test was negatively correlated

with weight and BMI (Cserjesi et al., 2007; Reinert

et al., 2013). Additionally, in a modified version of this test

adapted to primates, rhesus monkeys under moderately

restricted diet displayed improved performance in adjust-

ing to a change in the task conditions (Sridharan et al.,

2012).

Next, we investigated the influence of diet on

sociability and social memory using the three chamber

assay. Both control and HFD BTBR mice spent similar

durations with the social and non-social stimuli,

consistent with previous studies performed in this line

(McFarlane et al., 2008; Karvat and Kimchi, 2012,

2014). In the social-novelty preference test, when com-

pared to the control group, we observed an exacerbation

of BTBR social-impairments in HFD mice, with no signifi-

cant display of preference to either novel or familiar, ani-

mal stimulus. In contrast, C57 mice in the HFD group

displayed a clear significant preference toward the novel
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mouse and did not demonstrate any social deficiency

compared to the control group. In the social phase of

the running/jammed wheel assay, both diet groups of

BTBR mice spent similar durations of time with the unfa-

miliar mouse, while the control mice spent significantly

more time with the wheel. This might suggest a lower

level of motivation to turn the wheel in the HFD group.

The literature regarding the effects of HFD on social

behavior is inconclusive. Some researchers observed

an increase in social behaviors in obese animals

(Hilakivi-Clarke et al., 1996; Buchenauer et al., 2009;

Haagensen et al., 2014), and a consistent reduction asso-

ciated with weight loss (Koizumi et al., 2006), though in

most cases the social parameter quantified was aggres-

sive behavior. Other studies have found opposite effects

of reduced social parameters in rats (Pohl et al., 2014),

mice (Jones et al., 2013) and in humans (Taylor et al.,

2013; Verdejo-Garcia et al., 2015). An analysis conducted

on 5 measures of social skills and behavior for more than

13,000 ninth graders revealed no difference between

overweight and non-overweight boys, while overweight

girls displayed poorer social skills, but this effect was

attributed, at least in part, to social discrimination from

the other students (Judge and Jahns, 2007). Notably, nei-

ther HFD nor exercise had any effect on the behavior of

C57 mice in the three-chamber social test (Kang et al.,

2014), similarly to the results obtained in our cohort of

C57 mice. Taken together, HFD appears to negatively

affect some aspects of social behavior. Our results are

for the most part in agreement, demonstrating an adverse

effect of HFD on social memory, but only for a condition of

pre-disposition to an autism-like phenotype in the BTBRmice.

High-fat diet in BTBR or C57 mice did not affect

repetitive or stereotypic behavior, assessed by

quantifying the duration of digging and self-grooming in

a novel environment. Very few studies have investigated

the influence of HFD or obesity on repetitive behavior,

though one study showed that C57 female mice fed with

HFD buried more marbles in the marble burring test

(Krishna et al., 2015). The discrepancy compared to our

results might be explained by the sex differences between

the studies, though further research is required to assess

the full interaction between the factors of sex and nutrition

with regard to stereotypic behavior.

Taken together, our behavioral assessment suggest a

general worsening in autism-related phenotype and

specifically cognitive rigidity and social behavior, in

BTBR mice fed by HFD continuously from their

weaning. This effect is also manifested in the significant

increase of their autism composite score. Notably, HFD

in C57 mice produced only minor effects on autism-

related behaviors, and the summarizing autism-related

severity score was not associated with the individual

weight of each mouse. This might indicate that the

effect of HFD on autism-related behavior is specifically

relevant in a condition of predisposition to an autism-like

phenotype. These results correspond well with current

epidemiological findings, demonstrating an association

between autism and obesity (Curtin et al., 2014), and with

reports on improved cognitive and behavioral symptoms

of autism due to diet (Herbert and Buckley, 2013;
Ruskin et al., 2013) or exercise (Srinivasan et al.,

2014). Our results strengthen the assumption of causal

link between obesity and autism, and further highlight

the importance of balanced nutrition and weight monitor-

ing in individuals with autism and other ASD.

An interesting question is regarding the physiological

factor through which HFD enhances autism-related

behavioral deficits. As in every study where high-caloric

diet is administered ad libitum, it is not clear whether the

behavioral outcome is due to exposure to certain

ingredients in the diet itself or the resulting weight-gain

(Coradini et al., 2013). It has been previously shown that

HFD can alter social-related behaviors independently of

weight gain (Michel et al., 2005; Finger et al., 2011). How-

ever, we assume that in our study, the factors of diet and

weight were inter-connected, as autism-related severity

score in BTBR mice was significantly correlated with the

weights of the mice following 5 weeks of diet, suggesting

some effect for the weight itself. It should be emphasized,

though, that the effects of the weight were not due to any

locomotor deficits, since we found no differences between

the groups in two independent locomotion measure-

ments. Further research is needed to assess the exact

contribution of HFD compared to weight gain on autism-

related behaviors in BTBR, possibly through restricting the

amount of calories consumed by the mice in the HFD group

to prevent excessive weight gain (Tauriainen et al., 2011).

Considering the major role of the hypothalamus in

regulation of both social behavior (Goodson, 2005) and

metabolism (Berthoud and Munzberg, 2011), we ana-

lyzed gene expression in this region following behavioral

testing. We hypothesized that the effects of diet-induced

obesity on social and autism-related behavior might be

connected to alterations in dopamine or oxytocin signaling

in the hypothalamus region (Love, 2014). Our results indi-

cated marginally significant increases in the expression

levels of TH and D1-R in the HFD mice. In addition, we

found significant correlations between autism-related

severity and weight to these two factors of dopamine

transmission in the hypothalamus. Exposure of rodents

to HFD has been shown to induce extensive alterations

in dopamine signaling and dopamine down-stream

response elements in several brain regions, including

the prefrontal cortex (Vucetic et al., 2012; Grissom

et al., 2015), nucleus accumbens (South and Huang,

2008; Labouesse et al., 2013), ventral tegmental area

(Abizaid et al., 2006) (Teegarden et al., 2008) and the

hypothalamus (Li et al., 2009; Vucetic et al., 2012;

Kaczmarczyk et al., 2013). These alterations, in turn,

have been associated with changes in behaviors related

to various aspects of motivation and reward processing,

such as executive function (Grissom et al., 2015), reward

sensitivity (Davis et al., 2008; Carlin et al., 2013), learning

and memory (Kaczmarczyk et al., 2013), anxiety-related

behaviors (Sharma et al., 2013) and social interactions

(Grissom and Reyes, 2013). Our findings are in line with

these previous studies, suggesting a possible mechanism

through which HFD exacerbates cognitive and social

impairments in BTBR. In other words, the autism-related

behavioral deficiencies induced by HFD might be medi-

ated by the involvement of the dopaminergic system,
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including reduction in dopamine signaling in the hypotha-

lamus and perhaps also dysfunctions in additional regions

of the brain reward system. However, extensive experi-

mental research is needed to prove this relationship.
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