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Abstract

Parental care is found in species across the animal kingdom, from small in-
sects to large mammals, with a conserved purpose of increasing offspring
survival. Yet enormous variability exists between different species and be-
tween the sexes in the pattern and level of parental investment. Here, we
review the literature on the neurobiological mechanisms underlying ma-
ternal and paternal care, especially in rodents, and discuss the relationship
between sex differences in behavior and sexual dimorphism in the brain. We
argue that although several brain regions and circuits regulating parental care
are shared by both sexes, some of the fundamental components comprising
the maternal brain are innate and sex specific. Moreover, we suggest that a
more comprehensive understanding of the underlying mechanisms can be
achieved by expanding the methodological toolbox, applying ethologically
relevant approaches such as nontraditional wild-derived animal models and
complex seminatural experimental set-ups.
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Uniparental care:
parental care of
offspring presented
solely by one parent

Biparental care:
provisioning of
offspring by both male
and female parents
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INTRODUCTION

The classic definition for parental care was offered by Robert Trivers in the 1970s as “any invest-
ment by the parent in an individual offspring that increases the offspring’s chance of surviving”
(Trivers 1972, p. 139). Parental care is found across the animal kingdom from invertebrates up to
humans (Royle et al. 2012), and evidence of male paternal care has even been found in fossils of
the avian ancestral theropod dinosaur (Prum 2008). The level of parental care varies, for example,
from solely laying eggs in a safe environment, in the case of turtles (Testudines) (Shine 1988), to
the female of the Pacific giant octopus (Enteroctopus dofleini), which protects her 100,000 or so eggs
for months, keeping them clean and constantly supplied with oxygen, without feeding herself, and
dies soon after they hatch (Conrath & Conners 2014). Large variations in parental investment can
also be seen within mammalian species. For instance, the European rabbit (Oryctolagus cuniculus)
mother, like all lagomorph mothers, spends only a few minutes a day in the burrow with her
offspring, during which lactation takes place (González-Mariscal et al. 2016). In contrast, female
marsupials, such as kangaroos (Macropus), keep their offspring within a skin pouch, where it is
permanently attached to a nipple for many months (Russell 1982). In nonhuman primates, the
female orangutan (Pongo pygmaeus) cares for her young for up to 6–7 years (van Noordwijk & van
Schaik 2005).

Parental care can be carried out solely by the female or male (uniparental care) or by both sexes
together (biparental care). Invertebrate parental care is very versatile; for example, tailless whip
scorpion (Phrynus marginemaculatus) mothers care for their young alone for 11 months, and sea
spider (Ammothea hilgendorfi) fathers carry the fertilized eggs on their legs until they hatch without
assistance from the mothers (Barreto & Avise 2008). Vertebrates usually produce fewer offspring
than invertebrates (Hendriks & Mulder 2008) and display a higher degree of parental care (Royle
et al. 2012), whereas the sex differences and similarities in parental care vary between the classes.
In fish, only 30% of species demonstrate parental care, among which paternal care is present in
50–80% of the cases and is more common than maternal or biparental care (Gross & Sargent 1985,
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Postpartum:
the period following
giving birth; usually
refers to the time
frame up to offspring
weaning

Reynolds et al. 2002). In the euryhaline tilapia (Sarotherodon melanotheron), for instance, only the
male incubates the eggs and guards the young inside its mouth (Dugué et al. 2014). More than
80% of amphibians abandon their eggs after laying them; however, the remaining species present
all forms of parental care (male/female uniparental or biparental), which can differ between closely
related species, as seen in subspecies of poison frogs (family Dendrobatidae) (Roland & O’Connell
2015). Similar to fish and amphibians, most reptiles (>95%) present no parental care following
egg laying, although most crocodilian (genus Crocodylus) mothers guard their nest and offspring
(Ferguson 1985). No known reptile species present male uniparental care (Shine 1988). In avians,
about 90–95% of species present biparental care of offspring posthatching, whereas females are
sole caregivers of the chicks in approximately 5% of species and male uniparental care is found in
only 1–2% of species. Both males and females can participate in building the nest, incubating the
eggs, and feeding and protecting their chicks (Liker et al. 2015).

When it comes to mammals, parental care is present in all species (Royle et al. 2012), and the
small variation lies mostly in the degree of parental care provided by the male. In most mammalian
species, the involvement of the male ends following fertilization, as in the case of laboratory rats
(Rattus norvegicus) (Lonstein & de Vries 2000); however, in 5–10% of species, males assist the
female with parental care (Leuner & Sabihi 2016, Numan & Young 2016). These include species
such as Djungarian hamsters (Phodopus sungorus), which actively assist their mate’s delivery ( Jones
& Wynne-Edwards 2000), or golden lion tamarins (Leontopithecus rosalia), which play and socialize
with their infants (Sussman 1999) as well as provide novel food to their juvenile offspring (Rapaport
2006). In titi (genus Callicebus) and owl (genus Aotus) monkeys, the father actually carries the infant
for up to 90% of the time, transferring it to the mother only for nursing bouts (Dixson & Fleming
1981, Fragaszy et al. 1982). Notably, there are no known mammalian species in which parental care
is completely carried out by the male (Kleiman & Malcolm 1981). Although in some mammalian
species, males play a considerable role in providing protection and shelter to the offspring and food
to support the mother (Kentner et al. 2010), the offspring have a fairly good chance of reaching
adulthood without the father. However, they are completely dependent on maternal lactation
during their early life ( Jackson et al. 2014).

These enormous variabilities in parental care might lead us to inquire whether there is actually
a conserved maternal brain that is shared by all mammals. Another open question concerns the
connection between dimorphic behavior and dimorphic neural circuits (i.e., to what extent does
the maternal brain differ from the paternal brain?). Finally, an emerging issue relates to the innate
and learned nature of parental care, raising thoughts regarding the effects of past environmental
experience on pup-caring behavior.

In this review, we analyze the concept of the maternal brain with emphasis on the mammalian
female brain. We discuss the currently available literature on how the maternal brain is formed;
what brain regions, cells, and molecules compose it; and how it differs from or is similar to the
male brain. Finally, we analyze the relationship between sexually dimorphic neural circuits and
sexually dimorphic behaviors in parental care.

THE MATERNAL BRAIN: WIRED FOR MOTHERHOOD?

As researchers have shown in many mammalian species, postpartum females present substan-
tially higher degrees of maternal care compared to sexually naive (virgin) females. The difference
between virgin and postpartum females can be simply quantitative, as in laboratory mice (Mus
musculus) (Svare & Mann 1981) or naked mole-rats (Sherman et al. 1995), in which virgin females
present spontaneous allomaternal care. In most cases, this difference is qualitative, as in wild mice
(McCarthy 1990, Soroker & Terkel 1988), rats (Schultz & Lore 1993), hamsters (Swanson &
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Campbell 1979), and prairie voles (Microtus ochrogaster) (Bales et al. 2007), in which virgin females
are spontaneously infanticidal toward alien pups. To prepare for maternal challenges, the female
brain undergoes vast modifications that shape and adapt it throughout gestation, parturition, and
lactation (reviewed in Bridges 2016, Champagne & Curley 2016, Leuner & Sabihi 2016, Pereira
2016) (Figure 1, Supplemental Table 1; follow the Supplemental Materials link from the An-
nual Reviews home page at http://www.annualreviews.org). We use the term maternal brain to
describe the female brain following these stages of pregnancy, delivery, and offspring exposure. In
the following section, we present the known literature regarding the components of the maternal
brain, examining to what extent they are hardwired or shaped by reproductive experience. We
focus on the differences and similarities between the male and female parental brains, showing that
there are in fact more distinctions than shared factors between the sexes. Yet some evidence indi-
cates the existence of a single bipotential parental brain that is differently regulated in males and
females by sex-specific elements such as hormones and sexually dimorphic neuronal populations
(Dulac et al. 2014, Kohl et al. 2016).

The Expectant Brain: Effects of Pregnancy

Viviparity (live birth) is found in many vertebrate groups, including fish, amphibians, reptiles, and
mammals (Lodé 2012). It is often considered a female-only trait, although there is an entire family
of fish (Syngnathidae), comprising 233 species of seahorse and pipefish, in which the males incubate
the fertilized eggs inside their body (Stölting & Wilson 2007). Mammalian viviparity (henceforth
termed pregnancy) is different and more complex than in other classes. During gestation, a placenta
forms and produces endocrine components promoting physiological and morphological changes
in both the mother and embryo (Feldt-Rasmussen & Mathiesen 2011, Stölting & Wilson 2007).
Researchers have assumed for several decades that at least some of the components of the maternal
brain are formed during pregnancy, as classic studies have demonstrated that, compared to virgin
female rats, pregnant rats undergoing a cesarean section during mid- or late pregnancy (from day
10 of pregnancy onward) display shorter latencies before presenting maternal behavior toward
unfamiliar pups (Bridges 1977, Rosenblatt 1969). This effect was dependent on gonadal hormones,
as rats ovariectomized during cesarean failed to show this effect (Rosenblatt 1969).

Some of the changes occurring in the female brain during pregnancy can be attributed to
maintaining and supporting the fetus and pregnancy itself (Slattery & Hillerer 2016) and thus
do not persist following parturition. In this review, we focus only on adaptations that commence
during pregnancy and persist or are even enhanced during lactation. Of those, notable changes
include increases in neurogenesis in the olfactory bulbs of dams and pregnant mice starting from

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 1
Plasticity in the brain of parenting rodents. The major changes in morphology and gene expression occurring in the brain between
sexually naive and postpartum parental rodents are shown. (a,b) Uniparental rodent species (i.e., rats, house mice, deer mice, meadow
voles, and montane voles). Brain regions displaying modifications (a) in a female-exclusive pattern and (b) in both males and females are
shown. (c) Brain regions with alterations in biparental males (i.e., California mice, mandarin and prairie voles). For further details, see
Supplemental Table 1. Abbreviations: 5-HT, serotonin; Amy, amygdala; Arc, arcuate nucleus; Au1, primary auditory cortex; AVP,
arginine vasopressin; AVPV, anteroventral periventricular nucleus; BNST, bed nucleus of the stria terminalis; CC, corpus callosum;
Cg, cingulate cortex; CPu, caudate putamen; CRF, corticotropin-releasing factor; D1-R, dopamine receptor type 1; D2-R, dopamine
receptor type 2; DA, dopamine; E, estrogen; GABA, γ-aminobutyric acid; Gal, galanin; Glu, glutamate; Hipp, hippocampus; LH,
lateral habenula; LHA, lateral hypothalamic area; LS, lateral septum; MPOA, medial preoptic area; NAc, nucleus accumbens; OB,
olfactory bulbs; OT, oxytocin; P, progesterone; PAG, periaqueductal gray; PFC, prefrontal cortex; POMC, proopiomelanocortin;
PRL, prolactin; PVN, paraventricular nucleus; S1, primary somatosensory cortex; SON, supraoptic nucleus; TH, tyrosine hydroxylase;
VMH, ventromedial hypothalamus; VTA, ventral tegmental area.
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Nulliparous: a female
that has never borne
offspring

gestation day 7, an effect that is dependent on proper prolactin signaling (Shingo et al. 2003).
In pregnant rats, studies have demonstrated increases in oxytocin (OT) signaling in various brain
regions (Insel 1990, Young et al. 1997). Most changes have been shown in the hypothalamus, where
researchers have also found increases in prolactin signaling in rats (Kokay et al. 2006, Torner et al.
2002) and mice (Salais-López et al. 2016), and increased synaptic densities in the medial preoptic
area (MPOA) of rats (Keyser-Marcus et al. 2001). In addition, an increase in dendritic spine density
was also found in the hippocampus of pregnant and postpartum rats (Kinsley et al. 2006) (Figure 1,
Supplemental Table 1). Finally, a recent high-throughput analysis measured gene expression in
four brain regions of virgin, pregnant, and postpartum mice and revealed hundreds of genes that
are differentially expressed in different reproductive stages (Ray et al. 2016). Interestingly, in all
brain regions examined, the overwhelming majority of changes were observed between the virgins
and the other groups (i.e., pregnant or postpartum) (Ray et al. 2016).

Scientists assume that at least some of these modifications are driven by the dramatic fluctu-
ations in hormonal levels during pregnancy (Bridges 2016, Stolzenberg & Champagne 2016). In
rats, these include two daily increases in prolactin and a gradual increase in progesterone during the
first half of gestation, followed by a gradual increase in estradiol during the final third of gestation
and a rapid depletion of progesterone toward parturition (Bridges 2015). Indeed, classic attempts to
mimic pregnancy-associated hormonal changes in nulliparous female rats by hormonal manipula-
tion reduced the latency to full maternal behavior significantly (Moltz et al. 1970). The effects were
also induced by a similar hormonal priming of progesterone followed by estradiol in hypophysis-
intact rats or hypophysectomized rats given prolactin supplementation (Bridges et al. 1985).

In contrast to females, almost no empirical attempts have been performed to identify changes
in neural circuitry or activity in males prior to the birth of their offspring (i.e., during their mate’s
gestation). However, in many rodents, including lab (Elwood 1985, Vom Saal 1985, Wu et al. 2014)
and wild (Labov 1980, Soroker & Terkel 1988) mice, rats (Brown 1986), prairie voles (Bamshad
et al. 1994), and Mongolian gerbils (Meriones unguiculatus) (Elwood 1977), following copulation,
males reduce their level of infanticide. As the day of delivery for their future offspring approaches,
these rodents display significantly less aggression and more parental care toward unfamiliar pups.
In the case of lab mice, this effect occurs even without cohabitation with the mated female (Vom
Saal 1985, Huck et al. 1982). Thus, we can assume that at least some of the neural alterations
underlying the switching of pup-directed behavior from infanticide to parental care should also
occur following mating and are independent of pup exposure. In line with this notion, studies in
laboratory mice have shown that the gradual reduction of circulating testosterone in the period
after mating is involved in inhibition of infanticide and induction of paternal responses toward
unfamiliar pups (Perrigo et al. 1989, Svare & Mann 1981). Other studies performed in biparental
prairie and mandarin voles (Lasiopodomys mandarinus) discovered several alterations in male fathers
compared to sexually naive males, some of which were also present in expectant fathers during
their mate’s pregnancy. In prairie voles, densities of arginine-vasopressin (AVP) fibers in the
lateral septum (LS) and lateral habenula (LH) were substantially reduced in early-pregnant mated
males and to a lesser extent in fathers (Bamshad et al. 1994). Early-pregnant mandarin vole males
were also similar to fathers in expression levels of OT and dopamine (DA) signaling factors in
the supraoptic nucleus (SON), MPOA, nucleus accumbens (NAc), ventral tegmental area (VTA),
and central amygdala (CeA) (Wang et al. 2015), whereas late-pregnant males resembled fathers
in their increase in OT-expressing cells in the SON (Song et al. 2010). However, many other
alterations found in fathers were absent in expectant fathers—for example, alterations in estrogen
receptor densities in different brain regions of prairie voles, which were similar between sexually
naive and mated late-pregnant males and significantly different from fathers (Song et al. 2010).

278 Zilkha · Scott · Kimchi

Supplemental Material

A
nn

u.
 R

ev
. N

eu
ro

sc
i. 

20
17

.4
0:

27
3-

30
5.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
W

ei
zm

an
n 

In
st

itu
te

 o
f 

Sc
ie

nc
e 

on
 0

9/
08

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 

http://www.annualreviews.org/doi/suppl/10.1146/annurev-neuro-072116-031447


NE40CH13-Kimchi ARI 8 June 2017 13:41

Nevertheless, some modifications in the paternal, as well as maternal, brains (detailed below) may
have actually developed during pregnancy but have not been tested empirically before parturition.

The Postpartum Brain: Effects of Lactation and Offspring Care

Mammals are distinguished from other organisms by the ability of females to provide their young
with milk secreted from the mammary glands, as newborn mammals are dependent on maternal
milk as their primary nutritional source ( Jonas & Woodside 2016). Lactation is induced by pro-
lactin, which acts on mammary glands to initiate mammogenesis and milk production, and by OT,
which promotes milk let-down upon suckling (Crowley 2011). Lactation is considered a female-
exclusive quality trait, although mammalian male lactation (supplementary to female lactation) was
discovered in two species of old world bats (Dyacopterus spadiceus and Pteropus capistratus) (Francis
et al. 1994). Milk ejection in males has also been observed in humans following extreme cases of
hormonal imbalance in released prisoners of war or in patients with pituitary tumors (Kunz &
Hosken 2009).

During the lactation period and postpartum interaction with pups, the maternal brain un-
dergoes additional substantial modulations (see Figure 1 and Supplemental Table 1 for more
details). In humans, a recent functional MRI prospective study revealed that first-time mothers
presented significant decreases in their gray matter volume compared to their prepregnant scan,
specifically in areas related to social cognition such as frontal and cingulate cortices (Hoekzema
et al. 2016). In rodents, the total weight of the brain is reduced in lactating females compared to vir-
gin females (Hillerer et al. 2014, Shams et al. 2012), hippocampal neurogenesis is decreased (Brus
et al. 2010, Darnaudéry et al. 2007, Glasper et al. 2011, Pawluski & Galea 2007), and dendritic
branching is decreased in the dorsal striatum (Shams et al. 2012) and the amygdala (Rasia-Filho
et al. 2004). By contrast, neurogenesis in the olfactory bulbs is increased in lactating female ro-
dents (Kopel et al. 2012, Larsen & Grattan 2010), as is dendritic branching and synaptic plasticity
in the MPOA (Gubernick et al. 1993), SON (Brussaard et al. 1999, El Majdoubi et al. 1997),
hippocampus (Kinsley et al. 2006, Pawluski & Galea 2006, Tomizawa et al. 2003), and cortex
(Leuner & Gould 2010, Salmaso et al. 2011). Indeed, researchers have found increased represen-
tations of pup cues in the auditory (Cohen & Mizrahi 2015, Marlin et al. 2015) and somatosensory
(Xerri et al. 1994) cortices of lactating females. On the molecular level of the maternal brain, a
recent high-throughput analysis identified 700 genes that are differentially expressed between vir-
gin and postpartum female mice in several brain regions, including genes associated with reward
pathways, social behavior, and hormonal signaling (Gammie et al. 2016). More localized studies
showed widespread increases in expression and signaling of OT (Bosch et al. 2010, Driessen et al.
2014, Insel 1990), prolactin (Canavan et al. 2011, Pi & Grattan 1999), and vasopressin (Bamshad
et al. 1993) (Figure 1). Increases were also measured in levels of γ-aminobutyric acid (GABA)
and glutamate signaling factors (Arriaga-Avila et al. 2014, Zhao et al. 2012), as well as in signaling
factors of monoamines (Macbeth et al. 2008), especially DA (Arriaga-Avila et al. 2014, de Moura
et al. 2015, Matsushita et al. 2015).

Changes in DA signaling correspond to increased activation in the NAc and VTA (Gammie
et al. 2005, Matsushita et al. 2015). In addition, these findings of increased activity in the dopamin-
ergic reward system are in line with a large body of evidence demonstrating the robust salience of
pup reward for lactating dams. Pup reward was even higher than artificial drug reward (Febo 2011,
Ferris et al. 2005, Hauser & Gandelman 1985) or other natural rewards such as food (Fleming
et al. 1994).

As in the case of pregnancy-induced changes, the vast majority of adaptations in the postpartum
maternal brain were documented in the hypothalamus, especially in the MPOA and the adjacent
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regions sending and receiving inputs from it (see Supplemental Table 1 for more details). A
recent study has highlighted a novel region within the hypothalamus that is sexually dimorphic
and carries a crucial role in maternal care: the anteroventral periventricular nucleus (AVPV)
(Scott et al. 2015). Tyrosine-hydroxylase (TH) dopaminergic neurons within this region present
a high female bias in sexually naive mice and increase substantially in number in lactating females
(Figure 2). By contrast, this neural structure is unchanged in parental male mice and is not involved
in the control of paternal care (Scott et al. 2015) (Figure 2).

Modifications that do occur in the male paternal brain (see Figure 1 and Supplemental
Table 1 for more details) should be distinguished between uniparental and biparental species. In
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biparental prairie voles and California mice (Peromyscus californicus), neurogenesis is reduced in the
hippocampus of fathers (Glasper et al. 2011, Lieberwirth et al. 2013), similar to the effect found
in parental females. By contrast, in male laboratory mice, hippocampal neurogenesis is increased
in fathers compared to sexually naive males (Mak & Weiss 2010). Increased neurogenesis has
also been observed in the olfactory bulbs of parental male mice (Mak & Weiss 2010) but not
in biparental male rodents (Glasper et al. 2011, Lieberwirth et al. 2013). Finally, analysis of the
molecular differences discovered between fathers and sexually naive males showed that OT and
oxytocin receptor (OT-R) expression is increased in various brain regions (Kenkel et al. 2014,
Parker et al. 2001, Song et al. 2010, Wang et al. 2015) and in a similar manner in females and
males of both uniparental and biparental males. In the bed nucleus of the stria terminalis (BNST),
however, the number of OT cells in biparental prairie voles (Kenkel et al. 2014) and OT-R
levels in biparental California mice are both reduced (Perea-Rodriguez et al. 2015) compared to
virgin males. In contrast, fathers of uniparental meadow voles (Microtus pennsylvanicus) showed an
increase in OT binding in the BNST region (Parker et al. 2001), which resembled the increase
found in lactating female rats (Bosch et al. 2010). A parallel dichotomy in the BNST was found in
expression of AVP, with reduced expression in biparental California mice fathers (Perea-Rodriguez
et al. 2015) and increased expression in fathers of uniparental common deer mice (Lambert et al.
2011) and in mother rats (Bosch & Neumann 2010). Additional modifications in the male paternal
brain are detailed in Supplemental Table 1.

Taken together, it appears that several components of the maternal brain are found also in
the paternal brain, such as increases in OT signaling; however, most of the modifications are
female-exclusive, similar to the behavioral patterns of parental care. Moreover, the paternal brain
in biparental species is differently structured compared to paternal brains of uniparental species
and seems to resemble more closely the maternal brain. This implies the existence of conserved
brain regions regulating parental care in both sexes across mammalian species.

The Preexisting Components of the Maternal Brain

Nulliparous females can also display maternal care (termed allomaternal), and this has been demon-
strated in many mammals, including dolphins (Mann & Smuts 1998), elephants (Lee 1987), and
monkeys (Förster & Cords 2005). Yet perhaps the most studied form of allomaternal care, which
even includes arching over nest-retrieved pups in a lactating-like posture without actual milk

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 2
Sexual dimorphism in the brain controls female-specific parental care: AVPV TH+ neurons govern maternal behavior and OT
secretion in female mice. (a) Immunostaining for TH, displaying a female-biased sexual dimorphism in the AVPV. Left panels show the
whole brain, and right panels show enlargement of the AVPV region (indicated by white boxes). (b) Schematic of the sexually dimorphic
projections from TH+ AVPV neurons in adult males and females. The arrow thickness indicates projection density. (c) Quantification
of TH+ cells in the AVPV showing a female-exclusive increase in parental mice (left). Quantification of axonal projections from the
TH+ AVPV neurons to the MPOA and PVN regions revealing a female-biased dimorphism (right). (d) Summary of behavioral and
endocrine phenotype following specific ablation or optogenetic activation of AVPV TH+ cells in females and males. (e) Suggested
model integrating recent cell-specific investigations into the neural basis of maternal behavior:� Sensory signals from pups induce
activation of TH+ AVPV neurons, possibly in a cross talk with galanin-expressing MPOA neurons (Wu et al. 2014);� activated TH+
AVPV neurons stimulate OT-expressing PVN neurons;� OT neurons in the PVN activate OT receptor–expressing neurons in the
left auditory cortex (Marlin et al. 2015) and� secrete OT into the blood;� maternal behavior is facilitated. Figure adapted with
permission from Scott et al. (2015). Abbreviations: ARC, arcuate nucleus; Au1, primary auditory cortex; AVPV, anteroventral
periventricular nucleus; BNST, bed nucleus of the stria terminalis; DA, dopamine; DM, dorsomedial nucleus; Gal, galanin; LHA,
lateral hypothalamic area; LS, lateral septum; MPOA, medial preoptic area; OT, oxytocin; OT-R, oxytocin receptor; PAG,
periaqueductal gray; POA, preoptic area; PVN, paraventricular nucleus; SON, supraoptic nucleus; TH, tyrosine hydroxylase.
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Parental
sensitization: a
procedure of repeated
pup exposure,
designed to induce
parental care in
nonparental
individuals

production (Lonstein et al. 1999), is found in laboratory mice and rats (Lonstein et al. 2015,
Rosenblatt 1967). Sexually naive female rats might ignore pups upon the first encounter; however,
repeated exposure (termed parental sensitization) will induce maternal care even in the absence
of any hormonal or other physiological manipulations (Bridges et al. 1972). Similarly, wild, sex-
ually naive female mice will typically ignore or attack foster pups ( Jakubowski & Terkel 1982,
Soroker & Terkel 1988), but prolonged exposure to pups with their parents can shift their be-
havior toward parental care ( Jakubowski & Terkel 1982). In contrast, female laboratory mice,
artificially selected to present high maternal performance and reduced aggression (Harper 2008)
(see the section titled Methodological Issues in Studying Parental Care Using Animal Models),
are usually spontaneously maternal. In fact, sexually naive female laboratory mice might present
a high degree of maternal behavior even in the first encounter with foster pups (Chalfin et al.
2014, Kuroda et al. 2011, Scott et al. 2015). Evidence suggests that alloparenting behavior is not
dependent on hormonal factors, as it was also demonstrated in female rats following removal of the
gonads, adrenal gland, or pituitary gland (Rosenblatt 1967) and in estrogen-deficient (Stolzenberg
& Rissman 2011) or hypophysectomized mice (Leblond & Nelson 1937).

These behavioral findings could indicate the existence of some innate components of the mater-
nal brain that are not dependent on postfertilization events and hormonal modulation and might
be activated upon pup exposure. Such sensitization-induced maternal care in sexually naive female
rats was accompanied by increased activity in several regions identified as components of the ma-
ternal brain in postpartum females, as measured by c-Fos immunoreactivity, including the MPOA,
BNST, cortical amygdala, and LH (Kalinichev et al. 2000, Numan & Numan 1994). Similar pat-
terns of immediate early gene expression following pup exposure were also found in sexually naive
female prairie voles, in which c-Fos expression was increased following pup exposure in the ante-
rior olfactory bulbs, MPOA, medial amygdala (MeA), LS, and BNST (Kirkpatrick et al. 1994). In
the MPOA of sexually naive female mice, Wu et al. (2014) identified similar activation of galanin-
expressing neurons in postpartum and sexually naive females following pup exposure. Recently, a
novel sexually dimorphic female-biased region was identified in the striohypothalamic nucleus of
mice. The number of c-Fos immunoreactive cells in this region is reduced in virgin female mice
following pup exposure, similar to what is observed in postpartum females (Moe et al. 2016).

However, most neural adaptations found in postpartum females are not found in maternally be-
having virgin females and in some cases are even opposite in the latter, as in the case of hippocampal
neurogenesis, which is reduced in postpartum female rats but elevated in virgin females following
pup exposure (Pawluski & Galea 2007). Sensitization-induced or even hormonally primed alloma-
ternal care in virgin females is still substantially inferior to that of postpartum females (Lonstein
et al. 2015). In addition, allomaternal care usually does not contain a meaningful aggressive el-
ement in defense of foster pups (Ferreira et al. 2002, Martı́n-Sánchez et al. 2015). So, at least
some of the components integrating the maternal brain apparently do not preexist in the virgin
female brain but are rather forged during pregnancy, parturition, and lactation. Also, the maternal
behavior of virgin females in response to pup exposure may be partly mediated through a differ-
ent neural circuit that does not regulate maternal behavior in postpartum females. For example,
maternally sensitized virgin rats show elevations in the number of c-Fos immunoreactive cells in
the lateral preoptic area and cortical amygdala following pup exposure, whereas postpartum rats
do not (Numan & Numan 1994).

In rodent males, researchers have also reported sensitization-induced paternal behavior of
sexually naive individuals (Rosenblatt 1967). However, for wild mice, it seems to require prolonged
exposure to a social environment in which the males cohabit with other parents and their pups
and are exposed to both pup sensory cues and parental behavior displayed by fathers and mothers
( Jakubowski & Terkel 1982). In laboratory rats, the duration of sensitization required was similar
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Alloparental care:
care of young
presented by
individuals other than
their biological parents

Sexual dimorphism:
a morphological,
physiological, or
behavioral difference
between males and
females of the same
species

in males and females; however, males did not reach the same level of parental performance as
females (Rosenblatt 1967, Samuels & Bridges 1983). In addition, acute forced-swim stress has
been shown to facilitate alloparental care in virgin male prairie voles but had no effect on virgin
females (Bales et al. 2006). In contrast, allomaternal care of virgin female rats was associated
with reduced levels of stress (Agrati et al. 2008, Ferreira et al. 2002). Unfortunately, the neural
mechanism underlying this behavioral transformation in males has been very poorly examined
and requires additional extensive research.

BRAIN SEXUAL DIMORPHISM IN PARENTAL CARE

The roles of males and females in parental care might often be substantially different (Dewsbury
1985); therefore, it is essential to examine to what extent the underlying mechanisms regulat-
ing this behavior are indeed sex specific. In this section, we examine the known elements in the
neural regulation of parental care, focusing on sexually dimorphic components and their interac-
tion with other factors controlling offspring-directed behavior (also see the sidebar titled Sexual
Dimorphism in the Brain).

Brain Structures

Sexual dimorphism in morphology has been described in several brain regions involved in the
pathway receiving inputs from the vomeronasal organ (VNO) (Beny & Kimchi 2014), which
processes pup-related olfactory cues and regulates pup-directed aggression (de Vries & Villalba
1997). These include the accessory olfactory bulb (Segovia et al. 1984), bed nucleus of the olfactory
tract (Collado et al. 1990), MeA (Hines et al. 1992), and medial BNST (del Abril et al. 1987,
Hines et al. 1992); all are larger in males, and the differences are all dependent on sex-specific

SEXUAL DIMORPHISM IN THE BRAIN

Sexual dimorphism in the brain can be found at the level of morphology, circuit connectivity, and molecular
expression (Yang & Shah 2014). For example, morphological differences are found in songbirds, in which three
out of four brain regions regulating vocal control are substantially larger in males than in females (Nottebohm
& Arnold 1976). Morphological sexual dimorphism was also described in postmortem human studies, such as the
sexually dimorphic nucleus in the hypothalamus (Swaab & Fliers 1985), which has been linked to sexual behavior and
sexual orientation (Swaab & Bao 2013). An interesting example for dimorphism in circuit connectivity is found in
Drosophila, in which researchers have identified a male-specific neural circuit including sensory, central, and motor
neurons controlling male courtship behavior (Kohl et al. 2013, Stockinger et al. 2005, Stowers & Logan 2010, von
Philipsborn et al. 2014). Recently, Oren-Suissa et al. (2016) elegantly demonstrated a female-specific mechanism of
projections pruning in Caenorhabditis elegans. This developmental process forms a sexually dimorphic connectome
between neurons found in both sexes, establishing the neural circuitry regulating sex-specific mating behaviors. In
males of C. elegans, sex-specific interneurons derived from glial cells integrate into sex-shared neural circuits and
thus mediate sexual associative learning (Sammut et al. 2015). At the molecular level, numerous studies describe
sexually dimorphic patterns of gene expression in specific brain regions (Dewing et al. 2003, Werling et al. 2016,
Yang et al. 2006). One of the comprehensive studies performed in this regard compared gene expression patterns
between male and female brains in mice and revealed 16 novel genes that are regulated by sex hormones and present
dimorphic expression in different brain regions. Through the use of knockout mice, four of these genes were shown
to be crucial for sex-specific behaviors (Xu et al. 2012).
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hormonal regulation during early development. Disruption of this pathway leads to inhibition of
infanticide in male rats (Izquierdo et al. 1992, Mennella & Moltz 1988) and mice (Tachikawa et al.
2013, Wu et al. 2014) and in female wild mice (Chalfin et al. 2014), and to initiation of parental
behavior in rats and mice of both sexes (Del Cerro et al. 1991, Fleming et al. 1979, Izquierdo et al.
1992, Numan et al. 1993, Tachikawa et al. 2013, Wu et al. 2014). By contrast, under seminatural
conditions, female postpartum mice with disrupted VNO-mediated pheromone signaling showed
impairments in maternal care (Kimchi et al. 2007).

In contrast to these brain regions, a marked female-biased sexual dimorphism was discovered in
the AVPV, which is one of the few brain regions found to be larger in volume in females compared
to males (Bleier et al. 1982) and contains significantly more neurons in females (Hoffman et al.
2005). On top of the gross morphological sexual dimorphism, the AVPV contains about four-fold
more TH cells in females compared to males (Simerly et al. 1985, 1997), and these have been
recently demonstrated to play a crucial role in the regulation of maternal behavior (detailed in the
next sections).

Neuronal Projections

At the level of innervations, very few studies have linked sexual dimorphism with parental behavior.
Earliest findings were concerned with vasopressin projections to the LS, which are substantially
greater in males compared to females of several species, including rats (de Vries et al. 1981), mice
(de Vries et al. 2002), gerbils (Crenshaw et al. 1992), and prairie voles (Bamshad et al. 1993, de Vries
& Miller 1999). In parental prairie voles, this sexual dimorphism was retained but significantly
reduced, as vole fathers presented lower levels of vasopressin fibers compared to virgin males
(Bamshad et al. 1993, 1994). The sexual dimorphism in the vasopressin input to the LS may
reflect the dimorphism in parental behavior, and its attenuation may enable biparental males to
display parental care in a manner similar to parental females (de Vries & Boyle 1998). Indeed, the
effect was absent in the closely related uniparental species of montane voles (Microtus montanus),
in which vasopressin fibers in the LS were higher in males compared to females, regardless of
reproductive state (Wang et al. 1994b).

The male-biased AVP inputs to this region originate mainly from the BNST and MeA (de Vries
& Miller 1999). Interestingly, another brain region receiving innervations from these two areas in a
sexually dimorphic manner is the AVPV, which receives about ten-fold more projections from the
BNST and amygdala in males compared to females (Hutton et al. 1998, Polston et al. 2004). The
AVPV itself, as described above, is also sexually dimorphic, but in a female-biased direction, and
sends substantial projections to other brain regions, such as the MPOA, paraventricular nucleus
(PVN), and SON, in a female-biased pattern (Forger et al. 2004, Scott et al. 2015, Simerly 2002).
Importantly, these brain regions that receive female-biased AVPV TH input are not sexually
dimorphic themselves. They are involved in parental care and OT secretion, however, suggesting
AVPV TH neurons play a key role in the circuit regulating maternal care and in the sexual
dimorphism of parental care (Scott et al. 2015) (Figure 2).

Hormonal Regulation

One of the earliest molecules implicated in parental care was the neuropeptide OT (Klopfer 1971),
which is highly conserved across the animal kingdom and has been characterized as an essential
regulator of offspring care in many species (Rilling & Young 2014). In female mice, genetic deletion
of OT (Nishimori et al. 1996, Ragnauth et al. 2005) or OT-R (Rich et al. 2014, Takayanagi et al.
2005) did not induce severe impairments in maternal care, except for inability to nurse. However,
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Primiparous:
a female that has given
birth only once

genetic knockouts might represent various developmental or compensatory mechanisms unrelated
to the regulation of parental care (Kohl et al. 2016). In contrast, maternal behavior was enhanced
in sexually naive female mice and rats following intraperitoneal (Marlin et al. 2015, McCarthy
1990), subcutaneous (McCarthy et al. 1986), or intracerebroventricular (Fahrbach et al. 1984,
Pedersen & Prange 1979, Pedersen et al. 1982) administration of OT. In addition, a recent study
showed that direct infusion of OT to the left auditory cortex, as well as cell-specific optogenetic
stimulation of OT neurons in the PVN, facilitates pup retrieval in virgin female mice (Marlin
et al. 2015). Researchers later showed that these PVN OT neurons are directly innervated by
TH dopaminergic neurons in the AVPV that regulate maternal care, and that regulation of OT
secretion by AVPV TH neurons is female specific (Scott et al. 2015). Also, administration of OT
antagonists either intracerebroventricularly (Bosch & Neumann 2008, Fahrbach et al. 1985, van
Leengoed et al. 1987) or directly to the MPOA or the VTA (Pedersen et al. 1994) impairs maternal
behavior in lactating dams. Very few studies have examined the effects of OT manipulations on
parental behavior in males (Bales & Saltzman 2016). Central administration of OT antagonist
to sexually naive male prairie voles did not impair parental behavior by itself but did so only in
combination with an AVP antagonist (Bales et al. 2004).

As for the neuropeptide AVP itself, either central administration of AVP or overexpression
of AVP V1a receptor in the MPOA promoted maternal behavior in lactating rats, whereas cen-
tral administration of an AVP antagonist or local virally mediated downregulation of AVP in the
MPOA impaired maternal care in these animals (Bosch & Neumann 2008). Central administration
of an AVP receptor antagonist in lactating rats increased maternal aggression in defense of pups
(Nephew & Bridges 2008). Yet, when administered into the CeA (Bosch & Neumann 2010) or
BNST (Bosch et al. 2010) of lactating rats, an AVP antagonist reduced maternal aggression (i.e.,
aggression toward adult intruders in defense of pups), whereas AVP increased it. In virgin female
rats, central administration of AVP enhances (Pedersen et al. 1982), and AVP antiserum inhibits
(Pedersen et al. 1985), the initiation of allomaternal behavior. In males, AVP by itself failed to
impair allopaternal behavior in virgin male prairie voles when administered intracerebroventric-
ularly (Bales et al. 2004). However, when administered locally into the LS, an AVP antagonist
did reduce, and AVP increased, allopaternal responses in these animals (Wang et al. 1994a). In
contrast, in uniparental meadow voles, centrally infused AVP enhanced, and an AVP antagonist
impaired, parental behavior in virgin males (Parker & Lee 2001). Hence, the degree of sexual
dimorphism in the role of AVP in parental behavior may be related to the degree of behavioral
dimorphism itself (de Vries & Södersten 2009).

Prolactin plays a key role in the regulation of parental behavior across the animal kingdom.
Virgin as well as lactating female mice with a null mutation in the prolactin receptor gene display
deficits in pup retrieval (Lucas et al. 1998), and most pups born to heterozygous primiparous fe-
males bearing only one intact copy of the prolactin receptor (Prl-R) gene did not survive (Ormandy
et al. 1997). Systemic administration of prolactin to nulliparous steroid-primed female rats reduces
the latency to display full maternal behavior (Bridges et al. 1985, 1990), and a similar antagonist
infusion increases the latency (Bridges et al. 2001). Similar effects were shown when researchers
administered prolactin or a prolactin antagonist directly into the MPOA (Bridges et al. 1990,
2001). In males, recent work in mice has shown that Prl-R-deficient mice did not distinguish their
own offspring from unfamiliar pups, and this phenotype was rescued by systemic administration
of luteinizing hormone (Mak & Weiss 2010).

In virgin laboratory mice, maternal behavior appears to be independent of hormonal priming
or the estrus cycle (Scott et al. 2015, Wu et al. 2014). In female rats, the hormonal priming
of the brain toward full maternal care, either during normal pregnancy or an artificial regi-
men mimicking pregnancy, comprises mainly estrogen and progesterone (Moltz et al. 1970).
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Administration of estradiol either subcutaneously (Siegel & Rosenblatt 1975a,b) or directly into
the MPOA (Fahrbach & Pfaff 1986, Numan et al. 1977) enhances the onset of maternal behavior in
virgin and pregnant rats. Inhibition of estrogen receptor α (Esr1) signaling in the MPOA of post-
partum female mice using small interfering RNA severely impaired maternal behavior (Ribeiro
et al. 2012), similar to genetic deletion of Esr1 (Ogawa et al. 1998). In contrast, elevation of Esr1
expression levels in the MeA of male prairie voles significantly decreased alloparental behavior
(Cushing et al. 2008). As for progesterone, although it plays a key role in the priming of the
maternal brain toward parental care (Bridges 2015), artificial administration of high levels of pro-
gesterone throughout late pregnancy and postpartum impaired maternal behaviors of rats (Bridges
et al. 1978, Sheehan & Numan 2002). Thus, the rapid reduction in progesterone levels just before
delivery (termed progesterone withdrawal) is apparently also important for functional maternal
care. In males, progesterone receptor knockout virgin mice showed less aggression and elevated
paternal care toward foster pups (Schneider et al. 2003). Similarly, systemic chronic administration
of a progesterone receptor antagonist increased parental behavior of males, whereas an agonist
treatment enhanced pup-directed attack (Schneider et al. 2003). Notably, sexually naive male rats
can be induced to present full maternal behavior following a similar pregnancy-mimicking hor-
monal regimen of estradiol and progesterone, administered either systemically (Rosenblatt et al.
1996) or directly into the MPOA (Rosenblatt & Ceus 1998). Unlike in females, however, this pro-
cedure also involves complete abolition of testosterone, achieved by gonadectomy. Circulating
levels of testosterone decrease in many vertebrate fathers compared to virgins, including cichlid
fish (O’Connell et al. 2012), California mice (Trainor et al. 2003), Djungarian hamsters (Reburn &
Wynne-Edwards 1999), common marmosets (Callithrix jacchus) (Ziegler et al. 2009), and humans
(Gettler et al. 2011). Moreover, castration leads to a reduction in infanticide in mice (Svare &
Mann 1981) and rats (Rosenberg 1974), which can be reversed by testosterone replacement.

Finally, a striking sexual dimorphism is found in the role of the stress hormone corticosterone.
Numerous studies have demonstrated a general reduction in the plasma levels of glucocorticoids
and in the activity of the hypothalamic-pituitary-adrenal (HPA) axis in postpartum females (for a
review, see Slattery & Hillerer 2016). This reduced stress has proved essential for many processes of
plasticity in the maternal brain, such as alterations in dendritic spine densities and neurogenesis in
the hippocampus (Hillerer et al. 2014). Activating the HPA axis in lactating mice by administration
of corticotropin-releasing factor agonists either centrally (D’Anna et al. 2005, Gammie et al. 2004)
or directly to the LS (D’Anna & Gammie 2009) impaired maternal aggression but did not affect
pup retrieval. In contrast, studies in males found no differences in basal glucocorticoid levels
between fathers and virgin animals, and manipulating their levels usually did not produce any
meaningful effects on paternal behavior (Bales & Saltzman 2016, Campbell et al. 2009, Harris &
Saltzman 2013). The one exception was found in biparental prairie voles, in which acute stress
promoted male paternal behavior without affecting female maternal behavior (Bales et al. 2006).

Neurotransmitters

The most studied neurotransmitter in the context of parental behavior is DA. Systemic adminis-
tration of DA antagonists severely impaired maternal behavior of postpartum female rats (Byrnes
et al. 2002, Hansen et al. 1991b, Silva et al. 2001), and the effect was reversed by a DA agonist
(Giordano et al. 1990). Local disruption of DA signaling in the NAc, but not in other striatal re-
gions, produced similar effects (Keer & Stern 1999, Numan et al. 2005a, Parada et al. 2008, Silva
et al. 2003). Likewise, specific ablation of dopaminergic neurons by 6-hydroxydopamine admin-
istration to the NAc (Hansen et al. 1991a) or to the VTA (Hansen et al. 1991b) also impaired pup
care in lactating female rats, whereas disinhibition of VTA neurons promoted maternal behavior
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in virgin female rats (Byrnes et al. 2011). Specific activation of DA receptor type 1 (D1-R) in the
NAc or MPOA via a selective agonist shortened the latencies to full maternal behavior in late-
pregnant female rats (Stolzenberg et al. 2007). Also, selective antagonism of D1-R, but not DA
receptor type 2 (D2-R), in the MPOA of lactating rats impaired pup retrieval (Miller & Lonstein
2005). However, selective ablation of TH-expressing neurons, most probably dopaminergic, in
the MPOA did not impair maternal care in female mice (Wu et al. 2014).

In contrast to the MPOA, specific ablation of TH cells in the adjacent AVPV region severely
impaired pup retrieval, reduced the duration of maternal care, and reduced plasma OT levels in
both virgin and postpartum female mice (Scott et al. 2015). Also, optogenetic activation of these
cells enhances maternal behavior and OT secretion. Notably, manipulation of AVPV TH neurons
does not affect paternal behavior of males, but rather regulates intermale aggression (Scott et al.
2015). These findings suggest that DA might play a sexually dimorphic role in relation to parental
behavior. Indeed, although studies examining the direct role of DA in male paternal care are
scarce, it has been shown that repeated systemic administration of a D2-R agonist did not affect
male paternal behavior in Djungarian hamsters (Brooks et al. 2005) or marmosets (Almond et al.
2006). By contrast, administration of the DA antagonist haloperidol reduced parental responses
in both male and female biparental prairie voles (Lonstein 2002).

Another neurotransmitter involved in parental care is serotonin [5-hydroxytryptamine
(5-HT)]. Specific ablation of 5-HT neurons in the medial raphe nucleus of postpartum female
rats impaired nursing and pup retrieval and increased infanticide (Barofsky et al. 1983). Likewise,
pharmacological research demonstrated that clozapine hinders maternal behavior by blocking 5-
HT, as a specific 5-HT agonist reversed clozapine effects in lactating rats (Zhao & Li 2009). In
addition, in two mouse strains with genetic null mutations of Pet-1 and Tph-2, in which 5-HT
transmission is disrupted, pup retrieval was substantially impaired and infanticide was increased
(Alenina et al. 2009, Lerch-Haner et al. 2008). In males, a single study performed in paternal
California mice showed an increase in c-Fos reactivity, specifically in 5-HT neurons in the dor-
sal raphe nucleus, following exposure to pups (de Jong et al. 2010). However, further research
is needed to determine whether 5-HT might play some role in paternal behavior of males and
whether the involvement of this neurotransmitter in parental behavior is sexually dimorphic.

Considerably fewer studies examined the direct role of other neurotransmitters in parental care.
Yet researchers have found maternal behavior deficiencies in lactating rats after administration
of GABA agonists into several brain regions, including the periaqueductal gray (Salzberg et al.
2002), medial prefrontal cortex (mPFC) (Febo et al. 2010), MPOA (Arrati et al. 2006), and ventral
pallidum (Numan et al. 2005b). Additionally, unilateral infusions of a GABA agonist into the VP
combined with contralateral excitotoxic lesion to the MPOA produced similar effects, suggesting
that the MPOA facilitates maternal care through its GABAergic inputs to the NAc (Numan et al.
2005b). Administration of a GABAA antagonist to the LS of lactating mice impaired maternal
aggression without affecting care of pups (Lee & Gammie 2009). To the best of our knowledge, no
research has been conducted to explore the direct role of GABA transmission in parental behavior
of males. Notably, the majority of galanin-expressing neurons in the MPOA are GABAergic, and
these galanin neurons have been shown to play a key role in regulating both maternal and paternal
behavior (Wu et al. 2014). This specific neuronal population was activated in both male and female
parental mice following pup exposure, and their targeted ablation resulted in impaired parental
behavior of both sexes and even induction of pup-directed aggression in virgin females. By contrast,
optogenetic activation of MPOA galanin-expressing neurons in virgin male mice inhibited pup-
directed attacks and promoted parental care in both virgin males and fathers (Wu et al. 2014).

Finally, a study in sheep found that blocking the noradrenergic pathway in the olfactory bulb
with a norepinephrine antagonist caused lactating mothers to lose the ability to recognize their
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offspring (Lévy et al. 1990). A similar effect was seen in cesarean-sectioned rats, in which a nor-
epinephrine antagonist impaired the facilitating effect of a brief pup exposure on maternal behav-
ior (Moffat et al. 1993). Consistently, female mice completely lacking noradrenaline show marked
deficits in maternal behavior (Thomas & Palmiter 1997). Conversely, increasing norepinephrine
levels in the BNST and MPOA compromised maternal behavior of lactating rats (Smith et al.
2012), and lesioning noradrenergic projections to the hypothalamus produced only a partial im-
pairment in nest building and lactation (Bridges et al. 1982). Similar to the limited research on
GABA, we could not find any studies exploring the direct role of noradrenaline in the regulation
of parental behavior in males.

The Parental Brain in Males and Females: Shared or Sex-Specific?

To elicit the maternal performance necessary for offspring survival, the female brain has to be
forged into the maternal brain. Although some aspects underlying maternal care, as seen in allo-
maternal females, are hardwired circuits that preexist in the female brain, some crucial elements
in the maternal brain are shaped only through gestation, pup exposure, and lactation (Champagne
& Curley 2016, Pereira 2016). Some of these components can also be found in parental males
(Kohl et al. 2016, Leuner et al. 2010), as researchers have identified the involvement of regions
such as the olfactory bulbs, MPOA, LS, BNST, amygdala, and PFC in both maternal and paternal
behavior (de Jong et al. 2009, Gubernick et al. 1993, Kirkpatrick et al. 1994, Lee & Brown 2007,
Parker et al. 2001, Wu et al. 2014). However, closer and more specific observations within these
brain regions and others, allowed through advanced molecular techniques, revealed sex-specific
features in the neurobiology of parental behaviors. For instance, optogenetic activation of galanin
neurons in the MPOA elevated parental care in both male and female sexually naive mice; however,
it induced pup retrieval only in the females (Wu et al. 2014). Moreover, similar activation of TH
neurons in the AVPV induced maternal behavior and OT secretion in females but had no effect
on either in males (Scott et al. 2015). Likewise, specific silencing of OT signaling in the mPFC
impaired social behaviors of female but not male mice (Nakajima et al. 2014), whereas specific
activation produced anxiolytic effects in males alone (Li et al. 2016). These findings suggest that
both the specific wiring of the parental circuitry and its regulation are at least partly different
between males and females, allowing sex-specific behaviors (Figure 1, Supplemental Table 1).
Whereas many of the brain regions and circuits are shared by male and female parents, most of
the factors regulating them, especially sex hormones, modulate sex-specific behaviors.

Nevertheless, we emphasize that one of the key problems with identifying sexual dimorphism in
the neural circuitry underlying parental behavior is methodological, as the vast majority of studies
in this field were performed only in females (Zilkha et al. 2016). Furthermore, most of the research
on parental care in males focused on biparental species (Bales & Saltzman 2016) (see Supplemental
Table 1), which do not reflect typical sexual dimorphism as it usually appears in most mammalian
species (Bamshad et al. 1993, Lambert et al. 2011, Reburn & Wynne-Edwards 1999). Thus, in
many cases, it is unclear whether a neural circuit governing parental behavior is truly female-
exclusive or has simply never been examined in uniparental males. A recent study that did examine
both sexes of a uniparental species showed that a crucial circuit governing maternal care in female
mice—TH neurons in the AVPV—has no effect on male paternal behavior (Scott et al. 2015).

METHODOLOGICAL ISSUES IN STUDYING PARENTAL
CARE USING ANIMAL MODELS

The modern scientific examination of parental care was established half a century ago by Jay
Rosenblatt (1967) and his colleagues, who showed that prolonged and repeated exposure of virgin
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Domestication:
the process by which
captive animals adapt
to humans and the
environment they
provide

female rats to unfamiliar pups induces behaviors of maternal care, in a process termed maternal
sensitization. These scientists then discovered the hormonal regulation of maternal care by trans-
ferring blood transfusions from lactating dams to sexually naive females or administrating various
female hormones to ovariectomized rats, which also resulted in induction of maternal behavior
(Moltz et al. 1970, Terkel & Rosenblatt 1968).

Current behavioral neuroscientists use molecular and tissue-specific approaches such as opto-
genetics and calcium imaging to study specific neuronal populations, which have already led to
novel discoveries. These include, for instance, the role of aromatase-expressing neurons in the
MeA of female mice in maternal aggression (Unger et al. 2015) or the mediation of response to
pups by OT-R neurons in the left auditory cortex (Marlin et al. 2015) and by newly born neu-
rons in the olfactory bulbs (Kopel et al. 2012). Nonetheless, the questions that must be raised are
whether standard laboratory methodologies actually represent real-life parental care and whether
they are the most appropriate for examining the neurobiology of reproductive behaviors, especially
parental care.

Studying Parental Care in the New Era: Are We Doing It Right?

As detailed in the preceding sections, the vast majority of scientific data in the field of parental
behavior was collected using a limited reservoir of animal models, mostly domesticated rats and
mice, tested under standardized laboratory conditions. These studies are severely biased in three
key elements: the examined sex (Beery & Zucker 2011), the chosen animal model (Brenowitz &
Zakon 2015), and the environmental setup (Peters et al. 2015, Spruijt et al. 2014). The influence
of these biases in the research of social and reproductive behaviors has been reviewed recently
elsewhere (Zilkha et al. 2016). For the purpose of this review, we focus only on the elements
relevant to the methodology of investigating parental care.

The first bias in parental behavior research, that of the examined sex, is discussed in the previous
section. Here we discuss bias in the chosen animal model. In the first few decades of research,
almost all the empirical research of parental care employed female rats, either lactating or virgins
undergoing hormonal priming or repeated pup sensitization (Bridges 2015). In recent years, the
introduction of advanced genetic tools such as developmental knockouts and, later, conditional
gene expression shifted some research efforts into laboratory mice (Brenowitz & Zakon 2015). Yet
the focus on these two rodent strains profoundly reduces the potential behavioral repertoire that
can be examined to that typically presented by these model animals. This effect is quite noticeable
in the field of parental care, which is considerably varied across the animal kingdom and even within
the mammalian class (Dulac et al. 2014, Royle et al. 2012). For example, rats and mice cannot
be used to examine the neurobiology of biparental care of offspring, found in approximately 5%
of mammalian species (Numan & Young 2016) and in much higher proportions in other classes
(Lynn 2016, Roland & O’Connell 2015). Rats and mice are also unsuitable models to study aspects
of selective parent-offspring bonding found in herding animals such as sheep (Nowak et al. 2011)
or parent-offspring exclusive attachment found in some primates, including humans (Feldman
2016). Moreover, laboratory rats and especially mice have undergone considerable processes of
domestication and selective inbreeding, which have transformed their social communication traits
(Hurst et al. 2001, Thoß et al. 2016) and abolished many behavioral traits encompassing the core
behavioral repertoire of parenting and pup-directed responses (Price 1999, Thoß et al. 2011).
First, laboratory mice present early sexual maturation and produce substantially larger litters than
their ancestral wild mice (Harper 2008, Miller et al. 2002). Second, domestication and inbreeding
processes have robustly diminished the natural circulating levels of glucocorticoids (Chalfin et al.
2014) and the heightened stress responses (Fonio et al. 2012, Takahashi et al. 2008) found in
wild mice and affect pup-directed behavior substantially (Slattery & Hillerer 2016). Importantly,
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laboratory mice of both sexes are significantly less aggressive than wild mice (Blanchard et al. 1998),
and this effect is even more pronounced in females, as naive female laboratory mice typically
do not show any aggression toward conspecifics, males or females (Chalfin et al. 2014). Thus,
unlike virgin female laboratory mice, which typically display spontaneous parental care toward
unfamiliar pups, virgin wild females attack unfamiliar pups, similarly to male mice ( Jakubowski
& Terkel 1982, McCarthy & Vom Saal 1985). Moreover, in wild mice, sexual dimorphism is
manifested in the plasticity of pup-directed behavior: Whereas male wild mice gradually transfer
from infanticide to parental behavior following mating (Perrigo et al. 1989, Vom Saal 1985),
or cohabitation with parentally behaving males ( Jakubowski & Terkel 1982), female wild mice
switch rapidly to maternal behavior only following their own parturition (McCarthy & Vom Saal
1985, Soroker & Terkel 1988) and resume infanticidal behavior following the weaning of their
own offspring (Soroker & Terkel 1988). Finally, inbred laboratory animals present an unvaried
homologous genetic background, unlike wild animals and humans (Guénet & Bonhomme 2003).
Therefore, investigating the underlying mechanism of parental behavior and related pathologies
such as postpartum depression using laboratory rodents might harbor serious limitations and
inhibit the discovery of novel genes or circuits involved (Harper 2008, Turner & Paterson 2013).

The third bias in the typical research of parental behavior lies in the experimental setup. The
majority of studies, especially in recent years, have typically been performed in the standard shoe-
box home cage of the tested animal by introducing a fixed number of pups for a predefined duration
of about 10–30 min (Numan & Insel 2003). In addition, the behavioral assays are performed with-
out the presence of conspecific animals, males or females (Tanaeva et al. 2014). In contrast, real
parental care in nature occurs in various familial and communal designs, and several patterns of
offspring rearing can appear in the same species under different environmental conditions (Hayes
2000). For example, female wild mice can form communal nests and even nurse pups communally
when nesting in the territory of the same male, and joined nests are shown to reduce the risk of
infanticide for their pups (Manning et al. 1995). In single nests, the complexity of the brood nest
built by a pregnant female wild mouse depends on climate conditions, with the most complex
nests built in cold climates (Wolfe & Barnett 1977). In montane voles, higher population density
induced the creation of extended families, in which dams rear old and new litters together in-
stead of abandoning their litter 15 days postpartum, which occurs under conditions of low density
( Jannett 1978). All these diverse familial systems are not represented in current laboratory studies.
However, the expansion of research boundaries to include such systems might bring us closer to
discovering the neural mechanisms underlying parental care. Another major difference between
natural and laboratory parenting lies in the fact that diverse social behaviors in nature are carried
out in large open spaces, as even mothers who spend most of their time in the nest leave it to forage
for food (Auclair et al. 2014, Klug & Barclay 2013). Therefore, the constant and secure availability
of food and water in the laboratory home cage, alongside the lack of necessity (or ability) to leave
the nest, may also influence features of the parental care displayed by the lactating mice or rats
(Meehan 1984). Indeed, numerous studies have demonstrated that various social behaviors are
qualitatively different in isolated and confined small experimental setups (Fone & Porkess 2008,
Gross et al. 2012, Spruijt et al. 2014, Würbel 2001). Thus, limiting the scope of research on social
parental behavior to standard laboratory conditions might also restrict the variety of behavioral
phenotypes expressed in response to various manipulations. As a result, the potential to discover
the neural mechanisms regulating parental behaviors would also be limited.

Combining Ethologically Relevant Methods with Advanced Laboratory Tools

In an attempt to emulate wild life, several research groups have developed seminatural enclo-
sures, in which several animals are cohabitated in complex enriched large environments and their
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behavior is quantified automatically for prolonged durations (Blanchard et al. 1995, Ohayon et al.
2013, Shemesh et al. 2013, Thoß et al. 2011, Weissbrod et al. 2013, Zilkha et al. 2016). Under these
conditions, scientists can examine parental behavior more similarly to how it occurs in reality, with
the presence of other conspecifics (males, females, or both) and the opportunity to establish com-
munal nests, with or without limited availability of food. Such enclosures revealed the formation of
communal breeding nests in wild-type laboratory mice, alongside severe impairments in maternal
behavior of TrpC2 knockout female mice (Kimchi et al. 2007). In addition, OT knockout female
mice placed under seminatural conditions displayed infanticidal behavior (Ragnauth et al. 2005).
None of these phenotypes were observed in the standard maternal behavior tests performed in
these mice (Hasen & Gammie 2009, Kimchi et al. 2007, Nishimori et al. 1996).

Other groups have used similar seminatural enclosures to compare patterns of maternal be-
havior between primiparous and multiparous woodrat (Neotoma floridana smalli) females (Alligood
et al. 2008) and to monitor the effects of an immune state and genetic diversity on the reproduc-
tive success of male wild mice (Thonhauser et al. 2014, Zala et al. 2015). Scientists investigating
laboratory mice can find great advantages in using wild or wild-derived mice, which are the an-
cestors of the laboratory mice we use today (Crawley 2007). These mice present complex genetic
heterogeneity and display important behavioral features that were lost in laboratory mice, such
as infanticide in virgin females ( Jakubowski & Terkel 1982). A recent study has shown that both
interfemale aggression and infanticide in female wild-derived mice are mediated by pheromone
signaling through the VNO, as TrpC2 knockout females with a wild-derived genetic background
lacked these two behaviors (Chalfin et al. 2014). The molecular mechanism of such a phenotype
could not have been examined in female laboratory mice, which have lost it completely. The tra-
ditional laboratory rats and mice are also not very useful in studying the mechanism underlying
biparental care, found in rodents such as M. ochrogaster (Numan & Young 2016) or P. californicus
(Bedford & Hoekstra 2015, Dewsbury 1985). Utilizing these unique rodent species, scientists
discovered important roles for testosterone and vasopressin in the regulation of paternal behavior
(Gleason & Marler 2013, Wang et al. 1994a). Biparental care can also be explored in nonmam-
malian species, such as poison frogs, in which closely related substrains display different parental
styles, regardless of pair bonding (Roland & O’Connell 2015). Novel methodologies for gene
editing can now enable scientists to employ specific manipulations of genes of interest in desig-
nated brain regions in many species beyond standard laboratory animals (Heidenreich & Zhang
2016). The extensive research in genetically modified mice and rats in the laboratory has led
to enormous progress in understanding the mechanisms underlying parental behavior. Now, we
and others propose to expand the research toolbox by using nondomesticated rodents and other
species and employing ethologically relevant methods, in combination with current advanced ge-
netic tools (i.e., optogenetics, pharmacogenetics, viral tracing). This will readily allow more and
more unique behavioral phenotypes and parental styles to be investigated and pave the way for
new discoveries.

CONCLUSIONS AND FUTURE PROSPECTS

The most robust transformations in the adult mammalian brain occur in females during the
transition to motherhood to form the maternal brain. These neurobiological mechanisms driving
maternal care are so intense and conserved that only simultaneous eradication of three major senses
(vision, olfaction, and touch) could cause a severe impairment of maternal care in postpartum rats.
Debilitation of one or even two of these senses did not substantially slow down pup retrieval
(Beach & Jaynes 1956). The paternal brain contains some of the adaptations seen in maternal
females; however, it seems that males cannot reach a fully active maternal brain as females do,
and manipulations on adult males do not produce parental performance that can equal parous
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females. This appears to be due to the sexual dimorphism that configures different male and
female brains according to their different reproductive roles (Yang & Shah 2014). One of the
common hypotheses suggests that the sexual differentiation of the brain happens mostly during
early development (MacLusky & Naftolin 1981), and when the animal reaches adulthood, these
sex-specific neural circuits are already hardwired. Therefore, any local manipulation of the adult
brain can shape the behavior only within sex-specific boundaries and cannot induce female-specific
behavior, namely full maternal behavior, in males (Scott et al. 2015). Within these boundaries,
recent evidence suggests that even a supposedly innate preference of males to female stimuli can
be manipulated into aversion through a learning process (Beny & Kimchi 2016). Thus, it would be
interesting to examine whether postpartum wild-type females can be trained, for example, to avoid
their own offspring. On a final note, biparental rodent species have presented a useful tool in the
scientific research of male paternal care in the past few decades. However, to fully understand the
sexual dimorphism of the neural circuits regulating offspring-directed behavior, it is crucial that
future studies examine and compare males and females of both biparental and the more common
uniparental species.
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Liker A, Freckleton RP, Remeš V, Székely T. 2015. Sex differences in parental care: gametic investment,
sexual selection, and social environment. Evolution 69:2862–75
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