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Information is carried in the brain by the joint activity patterns of
large groups of neurons. Understanding the structure and function
of population neural codes is challenging because of the expo-
nential number of possible activity patterns and dependencies
among neurons. We report here that for groups of ∼100 retinal
neurons responding to natural stimuli, pairwise-based models,
which were highly accurate for small networks, are no longer suf-
ficient. We show that because of the sparse nature of the neural
code, the higher-order interactions can be easily learned using a
novel model and that a very sparse low-order interaction network
underlies the code of large populations of neurons. Additionally,
we show that the interaction network is organized in a hierarchical
andmodular manner, which hints at scalability. Our results suggest
that learnability may be a key feature of the neural code.
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Sensory and motor information is carried in the brain by
sequences of action potentials of large populations of neu-

rons (1–3) and, often, by correlated patterns of activity (4–11).
The detailed nature of the code of neural populations, namely
the way information is represented by the specific patterns of
spiking and silence over a group of neurons, is determined by the
dependencies among cells. For small groups of neurons, we can
directly sample the full distribution of activity patterns of the
population; identify all the underlying interactions, or lack thereof;
and understand the design of the code (12–15). However, this
approach cannot work for large networks: The number of possible
activity patterns of just 100 neurons, a population size that already
has clear functional implications (16), exceeds 1030. Thus, our
understanding of the code of large neural populations depends on
finding simple sets of dependencies among cells that would cap-
ture the network behavior (17–19).
The success of pairwise-based models in describing the strongly

correlated activity of small groups of neurons (19–25) suggests one
such simplifying principle of network organization and population
neural codes, which also simplifies their analysis. Using only
a quadratic number of interactions, out of the exponential number
of potential ones, pairwise maximum entropy models reveal that
the code relies on strongly correlated network states and exhibits
distributed error-correcting structure (19, 21). It is unclear, how-
ever, if pairwise models are sufficient for large networks, partic-
ularly when presented with natural stimuli that contain high-order
correlation structure. Here we show that in this case pairwise
models capture much, but not all, of the network behavior. This
implies a much more complicated structure of population codes
(26, 27). Because learning even pairwise models is computation-
ally hard (28–33), this may seem to suggest that population codes
would be extremely hard to learn.
We show here that this is not the case for neural population

codes. The sparseness of neuronal spiking and the highly cor-
related behavior of large groups of neurons facilitate the learning
of the functional interactions governing the population activity.
Specifically, we found that a very sparse network of low-order
interactions gives an extremely accurate prediction of the prob-
ability of the hundreds of thousands of patterns that were ob-
served in a long experiment and, in particular, captures the

highly correlated structure in the population response to natural
movies. We uncover the dominant network interactions using
a novel approach to modeling the functional dependencies that
underlie the population activity patterns. This “reliable inter-
action” (RI) model learns the dominant functional interactions
in the network, of any order, using only the frequent and reliably
sampled activity patterns of the network. Although this approach
would not be useful for general networks, for neural populations
that have a heavy-tailed distribution of occurrences of activity
patterns, the result is an extremely accurate model of the net-
work code. Our results indicate that because of the sparse nature
of neural activity (34), the code of large neural populations of
ganglion cells is learnable in an easy and accurate manner from
examples. Finally, we demonstrate that large network models can
be constructed from smaller subnetworks in a modular fashion,
which renders the approach scalable and perhaps applicable to
much larger networks.

Results
To study the code of large networks of neurons, we recorded
simultaneously the spiking activity of groups of ∼100 ganglion
cells in a 2-mm2 patch of Salamander retina responding to long
natural and artificial movies (Fig. 1A and Methods). To give
a general representation of network activity, we discretized time
using a window of size Δt; for a small enough Δt, the responses
of each neuron, xi, are binary [i.e., the cell either spikes (1) or is
silent (0)]. Here, we used 20 ms, which reflects the temporal
structure of correlations between cells; different bin sizes did not
qualitatively affect our results.
The distribution of occurrences of activity patterns over the

population was heavy-tailed for both spatial and spatiotemporal
patterns (Fig. 1B). Similar to what was found for smaller pop-
ulations, typical pairwise correlations were weak (e.g., ref. 35)
(Fig. 1B, Inset), yet the network as a whole was strongly correlated.
Assuming that cells were independent Pð1ÞðfxigÞ ¼ Pðx1ÞPðx2Þ . . .
PðxnÞ resulted in orders-of-magnitude errors in describing the
network synchrony (Fig. 1C) and in predicting specific spatial
population activity patterns (Fig. 1D) as well as spatiotemporal
ones (Fig. 1E and Methods). We conclude that an accurate de-
scription of the population code must take into account corre-
lations between cells.

Pairwise Models Are Not Sufficient to Describe the Distribution of
Activity Patterns of Large Networks Responding to Natural Stimuli.
The most general description of the population activity of n
neurons, which uses all possible correlation functions among
cells, can be written using the maximum entropy principle (36,
37) as:
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where fαi; βij; γijk; δikjl; . . . g must be found numerically, such that
the corresponding averages, such as <xi>, <xi xj>, or <xi xj xk>
over bP, agree with the experimental ones; the partition function
Z is a normalization factor. However, bP has an exponential
number of parameters (interactions). Thus, this representation
would be useful only if a small subset of parameters would be
enough to capture the network behavior.
For small groups of 10–20 neurons, it has been shown that the

minimal model of the network that relies only on pairwise interac-
tions, namely, the maximum entropy pairwise Pð2Þ model, with
only fαigs and fβijgs in Eq. 1, captures more than 90% of the

correlation structure of the network patterns (19, 20). Learning
Pð2Þðx1; x2; . . . ; xnÞ, which has only Oðn2Þ parameters, is a known
hard computational problem (29). For 100 cells, we cannot even
enumerate all network states and must rely on a Monte Carlo
algorithm to find the parameters of Pð2Þ (Methods). The resulting
model gave a seemingly accurate description of the network spa-
tial patterns (Fig. 1D), correcting the orders-of-magnitude mis-
takes that Pð1Þ makes. We obtained similar results for the
spatiotemporal activity patterns of 10 neurons over 10 consecutive
time bins, which we learned using the temporal correlations be-
tween cells hxiðtÞxjðtþ ΔtÞit (Fig. 1E and Methods).
However, closer inspection reveals that the most common

population activity patterns were actually misestimated (Fig. 1 D
and E), whereas the rare patterns were predicted well by Pð2Þ.
This reflects a real failure of the pairwise model in this case and
not a numerical artifact of our algorithm (Fig. S1). Moreover,
Pð2Þ is an accurate model of the population’s response to artificial
movies without spatial structure, such as spatiotemporal white
noise (24) (Fig. 1F and Fig. S1). Thus, the inaccuracy of the
pairwise model for the retina responding to natural stimuli is the
signature of the contribution of higher-order interactions to the
neural code of large populations.
High-order interactions, which reflect the tendency of groups of

triplets and quadruplets, for example, to fire synchronously (or to
be silent together) beyond what can be explained from the pair-
wise relations between cells, have been studied before in small
networks (4, 26, 27, 36, 37). These synchronous events are be-
lieved to be crucial for neural coding and vital for the transmission
of information to downstream brain regions (4, 6, 7, 10). However,
unlike the case of small groups of neurons, where one can sys-
tematically explore all interaction orders, how can we find the
high-order interactions that define the neural population code in
large networks among the exponential number of potential ones?

Learning the Functional Interactions Underlying the Neural Code from
Reliably Sampled Activity Patterns. We uncovered the structure of
the population code of the retina using a network model that gives
an extremely accurate approximation to the empirical distribution
of population activity patterns. We note that if we were given the
true distribution, PðfxigÞ, over all the network activity patterns, we
could then infer the interactions among neurons simply by solving
a set of linear equations for the parameters. For a specific activity
pattern fxig, substituting the appropriate 0’s and 1’s in Eq. 1, we
get that logPðfxigÞ ¼ − logZþ

P
i
αi þ

P
i< j βij þ . . . , where the

sums are only over terms where all xis are 1. The interaction
parameters that govern the network could then be calculated re-
cursively, starting from the low-order ones and going up (36, 38):

bZ ¼ 1=Pð000 . . . 0Þ;

bα1 ¼ logPð100000::Þ þ logbZ;
bβ12 ¼ logPð110000 . . .Þ þ logbZ−bα1 −bα2; etc: [2]

In general, this approach would not be useful for learning large
networks, because the number of possible activity patterns grows
exponentially with network size. We would therefore rarely see
any pattern more than once, regardless of how long we observe
the system, and as a result we would not be able to estimate the
parameters in Eq. 2. However, the distribution of pattern
occurrences in large networks of neurons had many patterns,
both spatial and spatiotemporal ones, that appeared many times
during the experiment (Fig. 1B). This feature of the pattern
count distribution is a direct result of the sparseness of the neural
code and the correlation structure of neural activity, and does
not hold for other kinds of distributions (Fig. S2).
We can then use the frequently occurring patterns to estimate

the interactions governing the joint activity of neural populations
accurately and to build the RI model that approximates the
distribution of neural population responses:

Fig. 1. Pairwise maximum entropy models for spatial and spatiotemporal
activity patterns of a large network responding to natural stimuli and signs
of higher-order interactions. (A) Segment of the simultaneous action po-
tential sequences of 99 ganglion cells in the salamander retina responding to
a natural movie clip. Each line corresponds to a single neuron, and each tick
represents a single spike. (B) All activity patterns of the 99-neuron network
described in A that were observed in the experiment were sorted and
plotted according to the number of times they were observed (y axis) for
both spatial patterns over all cells (purple) and for spatiotemporal activity
patterns of 10 neurons over 10 time steps (green). (Inset) Histogram of
correlation coefficients between all pairs of neurons in A. Corr. coeff., cor-
relation coefficient. (C ) Probability distribution of synchronous spiking
events in the 99-cell population in response to a long natural movie (black).
The distribution of synchronous events for the same 99 cells after shuffling
each cell’s spike train to eliminate all correlations among neurons (Pð1Þ, gray)
and the synchrony distribution predicted from the second-order maximum
entropy model (Pð2Þ, red) are also shown. (D) Probability of occurrence of
each simultaneous (spatial) population activity pattern that appeared in the
experiment as predicted if all cells are independent (Pð1Þ, gray) or by the
second-order maximum entropy model, which takes into account pairwise
correlations (Pð2Þ, red), are plotted against the measured rate. Although
most rare patterns fall within a 95% confidence region (not included), fre-
quently observed patterns are misestimated by the pairwise model. (E) Same
as in D but for spatiotemporal activity patterns. We define temporal pop-
ulation patterns as the 100-bit binary words of 10 retinal ganglion cells from
A over 10 time steps (200 ms) and fit the independent model (Pð1Þ) and
second-order maximum entropy model (Pð2Þ) to the population spatiotem-
poral patterns. Plot details are as in D. (F) Probability distribution of syn-
chronous spiking events in the 99-cell population in response to artificial
white noise stimuli (black); second order model and independent model are
also shown (as described in C ). Unlike the responses to natural movies, the
pairwise model provides a very good fit to the responses to white noise
stimuli, reflecting a negligible role for higher-order interactions in the
population activity evoked by such stimuli.
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where OμðfxigÞ are the dependencies of any order among neu-
rons, whose interaction parameters, bgμ, are inferred, as in Eq. 2,
from patterns μ that appeared more than nRI times (our learning
threshold) in the training data. The order of interactions in the
model is therefore determined by the nature of the patterns in the
data and not by an arbitrarily imposed finite order; higher-order
interactions beyond pairs, if needed, would stand for synchronous
events that could not be explained by pairwise statistics.

Sparse Low-Order Interaction Network Model Captures the Code of
Large Populations of Neurons. We learned an RI model for the
data from Fig. 1, and the resulting model had far fewer param-
eters than the pairwise maximum entropy model but included
a small set of higher-order interactions. This RI model predicted
the probability of the spatial population activity patterns in a 1-h
test data extremely well (Fig. 2A). Its accuracy was actually
within the experimental sampling error of the data itself, which
we quantified using the log-likelihood ratio of the model and the

empirical data, log2
Pempiricalðx1; x2; . . . ; xnÞ
Pmodelðx1; x2; . . . ; xnÞ

. The RI model was

equally accurate in predicting the spatiotemporal patterns in the
population (Fig. 2B). For comparison, we also present the poor
performance of the independent Pð1Þ model and the systematic
failure of the pairwise Pð2Þ model (Fig. 2 A and B). We found
similar behavior of the models when we used only the sub-
population of “Off” cells in the salamander retina recorded in
our experiment (Fig. S3). Moreover, the interactions among the
Off cells network were similar to the ones we found using the full
network of all ganglion cells recorded (Fig. S3). The RI model
remained a highly accurate model for different time bin values
used to analyze neural activity (Fig. S4), whereas Pð2Þ became
even less accurate for larger time bins of 40 ms.
Because of the sparseness of the neural code, the number of

interaction parameters that the RI model relies on is very small,
much smaller than the number of all possible pairs, and these
parameters are low-order ones. The functional architecture of

the retina responding to a natural movie, inferred from the RI
model, is shown in Fig. 3A, overlaid on the physical layout of the
receptive field centers of the cells. We found that beyond a se-
lective group of single-cell biases (αi) and pairwise interactions
(βij), there were significant higher-order interactions (e.g., γijk,
δijkl). However, importantly, the model was very sparse, using
only hundreds of pairwise and triplet interactions, tens of qua-
druplets, and a single quintuplet (with a learning threshold of
nRI ¼ 10). The pairwise interactions were mostly positive; that is,
cells tended to spike together or to be silent together, and their
strength decayed with distance (Fig. 3D). These higher-order
interactions had a similar decay with distance, but the interactions
among nearby cells were mostly negative, indicating that neurons
were more silent together than would be expected from pairwise
relations alone (Fig. 3D). We note that the decay of interactions
with distance is stronger than the decay of spatial correlations in
the natural movies we showed the retina (Fig. 3D, Inset). We found
a similar decay of pairwise and higher-order temporal interactions
among cells with the time difference between them as well as
a similar polarity of the interaction sign (Fig. 3E).

Higher-Order Interactions in the Neural Code of the Retina Respond-
ing to Natural Scenes. We found that the RI model was much
better than the pairwise Pð2Þ model in describing the retinal
population’s response to different natural movies (Fig. 4 A and
B). The benefit of the high-order interactions that the RI models
identify was even more pronounced when the whole retina patch
was presented with the same stimulus, as we found for a “natural
pixel” (NatPix) movie in which the stimulus shown was the lu-
minance of one pixel from a natural movie, retaining natural
temporal statistics, and for Gaussian full-field movies (Methods).
The RI model’s accuracy in describing the population activity
patterns was similar to that of the Pð2Þ model (but with far fewer
parameters) for spatiotemporal white noise stimuli that had no
temporal or spatial correlations (Fig. 4 A and B). The RI model
was also similar to the Pð2Þ model in capturing the retinal re-
sponse to a manipulated natural movie, which retained the
pairwise correlations in the movie but with randomized phases
(Methods). Fig. 4B summarizes the average gain in accuracy of
the RI model compared with Pð2Þ for many groups of neurons in
salamander and archer fish retinae responding to artificial, nat-
uralistic, and natural stimuli. Our results indicate that as the
stimulus becomes more correlated, the network response
becomes more correlated with a growing contribution of high-
order interactions; thus, the improvement introduced by the RI
model becomes more pronounced. We conclude that the higher-
order interactions in the neural response to natural movies are
driven by the higher-order statistics in natural scenes. Further-
more, most of the high-order interactions that we found for
widely correlated stimuli were gone when we constructed the
conditionally independent response of the cells (Fig. 4C). This is
done by shuffling the responses of each neuron to a repetitive
movie, thereby retaining only stimulus-induced correlations
among neurons. Thus, beyond the stimulus statistics, the retinal
circuitry does play an important role in generating the functional
higher-order interactions in the response.
We emphasize that fRI was much more accurate than Pð2Þ using

a considerably smaller number of parameters. In particular, al-
though the full-pairwise model requires almost 5,000 parameters
for 99 neurons, the RI model was already more accurate with just
450 parameters (Fig. 4D). The model continued to improve as
we added more parameters or lowered the learning threshold
nRI, or when we added training samples (Fig. S5). The cross-
validation performance continued to improve even when we used
patterns that appeared only twice in the data to train the model,
indicating that the model was not overfit (other measures of
model performance and validation are shown in Fig. S6). We
found similar behavior of the RI and Pð2Þ models for spatio-
temporal patterns (Fig. S5).
We note that the RI model is not guaranteed to be a nor-

malized probability distribution over all the population activity
patterns. The reason is that by using only the reliable patterns to
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Fig. 2. RI model is a highly accurate and easy-to-learn model of large neural
population activity. (A) For all spatial activity patterns of the cells from Fig.
1A that occur with probability P (abscissa), we plot the mean and SD (error
bar) of the log-likelihood ratio of the model and data (ordinate):

log2
Pempiricalðx1; x2; . . . ; xnÞ
Pmodelðx1; x2; . . . ; xnÞ

. The blue funnel marks the estimated 95% con-

fidence interval of the empirical measurement. Independent model
Pð1Þ(Left), pairwise maximum entropy model Pð2Þ(C enter), and RI model
(Right). (B) Model predictions for population spatiotemporal activity pat-
terns of 10 neurons over 10 time steps. Other details are as in A.
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learn the model, we are inevitably missing nonzero interactions,
corresponding to less common patterns that are not used in the
training. Unlike other such pseudolikelihood models, which are
common in machine learning and statistics (29, 38, 39), the RI
model does give an extremely accurate estimate of the actual
probability for almost all patterns observed in the test data. The
patterns for which it would fail are typically so rare that we would
not see them even in a very long experiment.

Hierarchical Modular Organization of the Interaction Network Under-
lying the Code of Large Neural Populations. For networks much
larger than 100 neurons, we expect that no activity pattern will
appear more than once even in a very long experiment because
of neural noise; thus, the RI approach could not be simply ap-
plied. However, because the interactions of all orders decayed
with distance between cells, we hypothesized that the RI model
might be applied in a hierarchical manner. Indeed, we found that
the interactions inferred from smaller overlapping subnetworks
of spatially adjacent neurons (based on their receptive fields)
were very similar to those estimated using the full network (Fig.
4E). This surprising result reflects an overlapping modular
structure of neuronal interactions (40, 41); namely, neurons di-
rectly interact only with a relatively small set of adjacent neurons,

known as their “Markov blanket” (28), and the interaction
neighborhood of each neuron overlaps with that of its neighbors.
This is not an ad hoc approximation but rather a mathematical
equality based on the local connectivity structure of the network
(42). This suggests that the RI approach may be scalable and
useful to model and analyze much larger networks, also beyond
the retina.

Contribution of Higher-Order Interactions to Stimulus Coding. The
average stimulus preceding the joint spiking events of pairs and
of triplets of ganglion cells (pattern-triggered average) was sig-
nificantly different from what would be expected from condi-
tionally independent cells (Fig. 5 A–C), reflecting that the pop-
ulation codebook carried information differently than what
could be read from the single cells or pairs (4, 7). To demon-
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Fig. 3. Functional interaction maps of retinal ganglion cells responding to
a natural movie, based on the RI model. (A) Pairwise interactions, βij, learned
by the RI model for 99 retinal ganglion cells responding to a natural movie.
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(yellow). (Inset) Decay of pairwise interaction terms (blue; line is a scaled
exponential fit to the blue dots in D) and of the correlations between pixels
in the movie (black) as a function of the distance on the retina. corr., cor-
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the temporal delay between the interacting neurons (blue dots; solid line
corresponds to exponential fit). Higher-order interaction values are plotted
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Fig. 4. Higher-order interactions in neural response are driven by long-
range stimulus correlations and give more accurate, easier to learn, and
hierarchical models of the neural population activity. (A) Comparison of the
accuracy of the second-order maximum entropy model and the RI model,
measured by the absolute log-likelihood ratio dðPempirical ; fRIÞ, where
dðp; q Þ ¼

P
fxig pðfxigÞjlogðpðfxigÞ=q ðfxigÞÞj is summed only over patterns x,

which appear more than once in the experiment. dðPempirical ; fRIÞ is plotted
against dðPempirical ; Pð2ÞÞ, such that dots below the equality line (black)
demonstrate better performance of the RI model. Each dot of the same color
represents one network of 50 neurons taken from one experiment. Different
natural and artificial visual stimuli were used. (B) Overall summary of aver-
age and STD of dðPempirical ; Pð2ÞÞ=dðPempirical ; fRIÞ for many groups of 50
neurons from different retinae responding to many different kinds of
movies. Datasets used for the salamander retinas had about 100 cells
recorded simultaneously (Methods). In the archer fish retina (purple), 38
neurons were recorded; averages are over randomly selected groups of 30
neurons. (C ) Histograms of the number of interactions of different orders
observed in the real data (green bars) compared with the number observed
in conditionally independent surrogate data (gray bars) for a NatPix movie
(Upper) and a natural movie (Lower). Cond. indep., conditionally in-
dependent. (D) Accuracy of the RI model as a function of the number of
parameters in the model. dðPempirical ; fRIÞ is plotted against the number of
parameters in the model for the spatial activity patterns of the 99-neuron
network. Results were averaged over 10 randomly selected train and test
data (STD error bars are smaller than marker size). The maximum entropy
pairwise model (red dot) and the independent model (gray dot) are also
shown for comparison. The number of parameters was varied by changing
the learning threshold, nRI. (E) RI model parameters averaged over all 30-
neuron subnetworks containing the 29 nearest neighbors of each neuron
are plotted against their value estimated from the full 99-neuron network.
Error bars represent SDs over different randomly selected subsets of data (x
axis) and SDs across different subnetworks (y axis). sub-nets, subnetworks.
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strate the role of higher-order interactions in stimulus coding
under natural conditions, we presented the retina repetitively
with a 50-s natural movie and trained an RI model on the
responses of groups of 10 neurons to each 1-s clip of the movie
using half of the repeats. We found that these models could
discriminate between the clips very accurately (Fig. 5D). For
larger networks, more samples are required; thus, we presented
the same retina with two long and different full-field stimuli: one
with natural temporal statistics (NatPix) and one in which each
frame was sampled from a Gaussian distribution [full field flicker
(FFF); Methods]. For each of the stimuli, an RI model was
learned from the population responses fNatPix and fFFF, re-
spectively. New stimuli (not used for the training) were sampled
from both stimulus classes and presented to the retina, and they
were then classified according to the log-likelihood ratio,
logð fNatPixðxÞ=fFFFðxÞÞ. Using the RI models, we found that we
could accurately classify new stimulus segments within a few
hundred milliseconds (Fig. 5E) far better than Pð2Þ (almost three-
fold faster) or the independent model (almost 10-fold faster).
Finally, we also show that a limited memory-based estimation of
fRI, which is learned using only frequent patterns that appeared
at least once every few minutes in the training data (Fig. 5F),
proves to be highly accurate. This limited memory approach can
be readily converted into an online learning algorithm: As new
samples are presented, only the parameters corresponding to
patterns that appear frequently are retained, whereas parameters
learned from patterns that have not appeared in the recent past
are completely forgotten.

Discussion
Using a novel nonnormalized likelihood model, we have found
that a sparse low-order interaction network captures the activity
of a large neural population in the retina responding to natural
stimuli. This RI model gave an extremely accurate prediction of

the observed and unobserved patterns using a small number of
interaction parameters. The network interaction model further
revealed the modular nature of the code, which could also be
learned using limited memory/history.
Studies of the “design principles” of the neural code have

suggested efficiency, optimality, and robustness as central features
(3, 43–45). Our results suggest a possible new feature following
(43), namely that the neural code is learnable from examples.
What makes the code learnable in our case is the combination of
several characteristics. First, the sparseness of neuronal spiking,
which has long been suggested as a design principle of the neural
code (34), means that even for large networks many population
activity patterns appear often enough so that interactions gov-
erning the joint activity of the network can be estimated reliably.
Second, the network activity as a whole is strongly correlated.
Third, although higher-order interactions are present and mean-
ingful (e.g., ref. 27), they are few and do not go to very high orders.
Finally, the limited range of direct interactions (small Markov
blankets) results in the ability to learn the model from small
subnetworks, thus rendering the approach scalable and perhaps
applicable to much larger networks.
Based on these observations, we expect that the RI approach

may be applicable to brain regions beyond the retina. Any neural
population that exhibits highly correlated and sparse activity, as
well as a limited range of interaction, may be a good substrate for
the RI approach.
The accuracy and simplicity of the RI model in the case of the

retinal neural code are related to the fact that although fRI
predicts the actual probability of almost all patterns we observe
in the experiment, it is not a normalized probability distribution
over all pattern space. Sacrificing this mathematical complete-
ness means that we can then overcome the computational diffi-
culty of learning probability distributions exactly. Moreover, we
note that in many decision or classification problems, it is like-
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Fig. 5. Role of high-order interactions in encoding and
decoding of natural stimuli. (A) Examples of the average
stimulus preceding a specific triplet (Left, blue) or quadruplet
(Right, blue) of cells spiking within 20 ms for FFF stimulus;
stimuli are shown in contrast-normalized units. The STAs of the
single neurons comprising the triplet/quadruplet are shown in
gray. The vertical scale bar is expressed in units of stimulus STD.
STA, spike-triggered average. (B) Absolute value of the triplet
STA peak is plotted against the absolute value of the peaks of
the average STAs of the subsets comprising the triplet (single
neurons, yellow; pairs, purple; normalized contrast units). As in
A, triplet STAs correspond to significantly greater changes in
luminance (P < 1e-9, n = 70, two-sided paired Wilcoxon signed
rank test). (C ) Norm of the difference between pair STAs (in
normalized contrast units) and the average STAs of the single
neurons is plotted for real neural data (x axis) vs. conditionally
independent surrogate data (y axis). Conditionally indepen-
dent pair STAs were significantly more similar to the single-
neuron STAs (P < 1e-3, n = 57, two-sided paired Wilcoxon
signed rank test). (D) Accurate classification of short natural
movie clips by the RI model. A 50-s natural movie was pre-
sented repetitively to the retina 101 times. We divided the
movie into 50 consecutive 1-s clips, and an RI model was con-
structed for each clip, based on training data, for 10 randomly
chosen groups of 10 neurons. Later, the likelihood of each
trained model was estimated on test data taken from the
different clips. The (i, j)th entry in the matrix is the log ratio between the likelihood of the data taken from clip j according to the model trained on clip i and
the likelihood of the same data according to the model trained on clip j. Negative values indicate that the model trained on the tested clip gave a higher
likelihood. (E) For large groups of neurons, the RI model rapidly outperforms the independent and pairwise models. The same group of neurons was pre-
sented with naturalistic (NatPix) and artificial (FFF) stimuli (Methods). RI models were trained on each stimulus. The average log-likelihood ratio,#
log2

fNatPix fxig
fFFF fxig

$

fxig
, is plotted for test data taken from the NatPix (red) or FFF (green) stimuli as a function of time (shaded area represents SEM over 100

repeats). Classification by Pð1Þ and Pð2Þ models is shown for comparison. Note that a difference of 10 in the ordinate means a likelihood ratio of over 1,000.
Indep., independent. (F) Performance of a limited memory (“online”) version of the RI model, where each interaction is estimated from the corresponding
activity pattern only if it has appeared at least once every Δτ¼ 15 min in the experiment (Methods). (Inset) dðPempirical ; fRIÞ of the limited-memory RI model
and the data as a function of the time window Δτ used for training the model. Data from the main panel are marked by the orange dot.
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lihood ratios rather than the likelihood values that matter.
However, unlike other pseudolikelihood models commonly used
in statistics and machine learning, the RI model gives an excel-
lent estimate of the partition function Z, because the all-zero
pattern is so common.
We reiterate that the functional interactions inferred by the

model do not necessarily correspond to physical connections.
They may also result from joint input circuitry between cells,
unrecorded neurons, or stimulus correlations. In particular, our
results indicate that the higher-order interactions are strongly
driven by the stimulus statistics. In addition, the abundance of
higher-order interactions in the data compared with condition-
ally independent surrogate data indicates a contribution of ret-
inal processing to higher-order interactions. Regardless of how
higher-order interactions arise from the physical retinal circuitry,
they are crucial for any observer of the retina to capture the
statistics of the neural circuit response accurately. Our record-
ings did not capture all neurons in the retinal patch. It will be
interesting to explore how dense recordings affect both higher-
order interactions and the size of the Markov blankets we have
found here. Based on the full-field stimuli experiments, we ex-
pect that dense populations will exhibit more highly correlated
activity with a larger contribution of higher-order interactions,
thus increasing the advantage of the RI model over pairwise
approaches, similar to our results for NatPix stimuli.
Finally, we point out that the modular structure of the RI

model, its computational efficiency, and the fact that it can be
updated continuously using limited memory suggest that the RI

model may also be a biologically plausible approach to learning
and representing the joint activity of large neural populations (34).

Methods
Full details on experimental procedures, analysis, andmodeling are presented
in SI Methods.

Electrophysiology. Experiments were performed on adult tiger salamanders
and archer fish in accordance with Ben-Gurion University of the Negev and
government regulations. Retinal responses were recorded using a multi-
electrode array with 252 electrodes (salamander) or 196 electrodes (archer
fish). Extracellularly recorded signals were amplified and digitized at 10
kSamples/s. Datasets used in this study had simultaneous recordings of 99,
115, and 101 ganglion cells responding to natural movies; 99, 99, and 68 cells
responding to spatiotemporal white noise; 90 cells responding to full-field
stimuli; 99 and 83 cells responding to random phase movie from salamander
retina; and 38 cells in archer fish.

Visual Stimulation. Natural movie clips were acquired using a video camera
and converted to gray scale. Stimuli were projected onto the retina from
a cathode ray tube video monitor. NatPix stimuli were generated by
selecting a random pixel from a natural movie and displaying the intensity
of that pixel uniformly on the entire screen.
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SI Methods
Electrophysiology.Experiments were performed on the adult tiger
salamander (Ambystoma tigrinum) and the archer fish (Toxotes
chatareus). Before the experiment, the tiger salamanders were
adapted to bright light for 30 min. Retinas were isolated from the
eye and peeled from the sclera, together with the pigment epi-
thelium. Retinas were placed with the ganglion cell layer facing
a multielectrode array with 252 electrodes (Ayanda Biosystems)
and superfused with oxygenated (95% O2/5% CO2) Ringer’s
medium, which contains 110 mM NaCl, 22 mM NaHCO3, 2.5
mM KCl, 1 mM CaCl2, 1.6 mM MgCl2, and 18 mM glucose, at
room temperature (1). The electrode diameter was 10 μm, and
electrode spacing varied between 40 and 80μm.Recordings lasting
24–30 h were achieved consistently. Archer fish retinas were iso-
lated from the eye in the dark. Each retina was peeled from the
sclera, together with the pigment epithelium, and placed in a Petri
dish with a glass bottom, with the ganglion cell layer facing down.
Retinas were superfused with oxygenated (97% O2/3% CO2)
Ringer’s medium at room temperature (2). An array of 196 elec-
trodes in a fakir bed-like formation was produced by placing two
Cyberkinetics 3Dmultielectrode arrays side by side. The array was
lowered onto the retina from above using a standard mechanical
manipulator. Extracellularly recorded signals were amplified
(Multi Channel Systems), digitized at 10 kSamples/s on four per-
sonal computers, and stored for off-line spike sorting and analysis.
Spike sorting was done by extracting amplitude and width from
each potential waveform, followed by manual clustering using an
in-housewrittenMATLABprogram (MathWorks).Datasets used
in this study from salamander retinas had simultaneous recordings
of 99, 115, and 101 ganglion cells responding to naturalmovies; 99,
99, and 68 cells responding to spatiotemporal white noise; 90 cells
responding to full-field stimuli; and 99 and 83 cells responding to
random phase movies. The archer fish retina experiment had 38
recorded cells.

Visual Stimulation.Natural movie clips were acquired using a Sony
video camera (Handycam DCR-HC23) at 30 frames/s. The
stimulus was projected onto the retina from a CRT video monitor
(ViewSonic G90fB) at a frame rate of 60 Hz, such that each
acquired frame was presented twice using standard optics (3). The
original color movies were converted to gray scale using a γ-
correction for the computer monitor. The checkerboard stimulus
was generated by setting each checker (∼100 μm on the retina)
randomly every 33 ms to be either black or white. In all cases, the
visual stimulus covered the retinal patch that was used in the
experiment entirely. The receptive field of each cell was mapped
by calculating the average stimulus pattern preceding a spike
under the random checkerboard stimulation. The location of the
center of each receptive field was found by fitting a 2D Gaussian
field to the spatial profile of the individual cell’s response. FFF
stimuli were generated by sampling the projected gray level at
each time point from a normal distribution in an independent
and identical manner. NatPix stimuli were generated by selecting
one random pixel from a natural movie and displaying the in-
tensity of that pixel uniformly on the entire screen. The phase-
scrambled movie was obtained from the original movie in the
following way. First, we segmented the movie into non-
overlapping segments of 2,048 frames. The phase of the Fourier
transform of each segment was then randomized, such that the
inverse transform was real (i.e., maintaining symmetry about the
origin).

Data Analysis.Analysis was carried out in MATLAB. Spikes were
binned at 20 ms (bins of 10 and 40 ms did not affect our results;
Fig. S4). When model accuracy was estimated, data were sepa-
rated into disjoint train and test sets, with each consisting of
50% of the relevant experimental data.

Exact Solution for the Maximum Entropy Pairwise Distribution. The
maximum entropy pairwise distribution is known to take the form

Pð2ÞðxÞ ¼ 1
z
expð∑N

i¼1αixi þ∑i< jβijxixjÞ (4, 5); the parameters
(αi, βij) can be found by maximizing:

Λðα; βÞ ¼ H
!
Pð2Þ

"
þ∑iαi

!
< xi > pempirical − < xi > pð2Þ

"

þ∑i< jβij
!
< xixj > pempirical − < xixj > pð2Þ

"

þ γ
!
∑xP

ð2ÞðxÞ− 1
"
;

where H denotes the entropy function. This function is concave

with the following derivatives:
∂Λ
∂αi

¼ < xi > pempirical − < xi > pð2Þ and

∂Λ
∂βij

¼ < xixj > pempirical −< xixj > pð2Þ . The parameter values were

found using gradient ascent.
The spatiotemporal pairwise maximum entropy models were built

for groups of cells, such that the firing rates of each cell, < xtki > , and
temporal correlation functions between them,< xtki ; x

tl
j > , were

constrained to be identical to the ones observed experimentally (tk
indexes discrete time bins; in our case, ten 20-ms time bins from 0 to
180 ms time lag). The result is a unique maximum entropy model of
spatiotemporal activity that satisfies all single and pairwise marginal
distributions of the form Pðxtki Þ;Pðx

tk
i ; x

tl
j Þ (6).

Estimating Maximum Entropy Distributions for Large Networks. To
find the maximum entropy distribution using exact methods, one
must calculate the expected values of the constrained observables
under the model, which are < xi >p(2) and < xi xj >p(2) in our case
Because the number of patterns is exponential in the number of
neurons in the population, it quickly becomes unfeasible to
calculate the expected values exactly. To estimate the expected
values for such networks, we used Monte Carlo methods (7). We
used a gradient ascent algorithm, applying a combination of
Gibbs sampling and importance sampling (7) to estimate the
gradient efficiently. Sampling was carried out in parallel on a 21-
node cluster with 160 Intel cores in total. Our algorithm is
similar to the one described by Broderick et al. (8) and was much
more efficient for this specific task than previously suggested
algorithms (9, 10). The optimization was terminated when the
average error in firing rates and coincident firing rates reached
below 1% and 5%, respectively, which is within the experimental
error. To estimate the partition function, we generated samples
from the desired distribution using Gibbs sampling and defined

our estimate as bZ ¼ 1
pð00 . . . 0Þ, because it holds that

Pð00 . . . 0Þ¼ 1
Z
. This estimate proved better than several other

estimators we tested (11, 12).

Simulated Data. Simulated data were generated by sampling from
a pairwise maximum entropy distribution that was initially defined
to have similar expected values to those observed in experiments.
Samples were generated using Gibbs sampling. Sample size was
similar to that of our experimental dataset.
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Error Measures. Error estimates for pairwise model parameter
values were generated using a bootstrap approach. The dataset
was resampled with repetitions, and the optimization procedure

was carried out for each bootstrap sample. Error estimates for
the RI model parameters were obtained by using different
random train and test data.
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Fig. S1. Underlying model can be accurately reconstructed for spatiotemporal white noise and for surrogate data. (A) Fitted model predictions for simul-
taneous activity patterns of 99 neurons (same as in Fig. 1) responding to artificial white noise stimuli. The observation frequency of each pattern occurring in
the recorded data (abscissa) is plotted against the probability assigned to the same pattern by the pairwise model fitted to the firing rates and pairwise
correlations (ordinate). Compare with Fig. 1D. (B) Surrogate dataset of 100 artificial neurons was constructed by sampling from a pairwise distribution. The
statistics of the pairwise distribution were similar to those measured experimentally (in response to natural movies), and the dataset was the same size as our
experimental data. The firing rates and correlations were then fit with a pairwise model. Other details are as in A. (C) Comparison of the parameters used to
generate the surrogate data (abscissa) with the parameters recovered using our fitting algorithm (ordinate) (Methods).
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Fig. S2. Pattern counts for different joint activity distributions. (A) Cumulative distribution of the number of times each spatial pattern of activity was ob-
served in the experiment is plotted in black. Also plotted are the cumulative distributions expected if neuron spiking activity followed a Poisson distribution
with the same firing rate for each neuron as in the data (red) and for a distribution in which all activity patterns had the same probability (blue). (B) Same as in
A, except for spatiotemporal activity patterns. Clearly, the data display many more frequently occurring patterns than any of the model distributions. Prob.,
probability.

A

B C D

10
-5

-2

0

2

4

lo
g 2

(P
em

pi
ric

al
/P

m
od

el
)

Empirical probability

Independent

10
-5

-2

0

2

4

Empirical probability

Pairwise
lo

g 2
(P

em
pi

ric
al

/P
m

od
el

)

10
-5

-2

0

2

4

Empirical probability

RI model

lo
g 2

(P
em

pi
ric

al
/P

m
od

el
)

0 10 20 30

10
-5

10
0

# spiking neurons

P
ro

ba
bi

lit
y

Data

Pairwise

-5 0 5

-5

0

5

Off cells

A
ll 

ce
lls

0 1 2

-2

0

2

4

6

RF distance (mm)

In
te

ra
ct

io
n 

st
re

ng
th
Pairs

High order

Fig. S3. RI model for the “Off” cell subpopulation. (A) Model predictions for simultaneous activity patterns of 64 Off cells (subset of the population in Fig. 2A).
For all patterns occurring in the data with log probability P (abscissa), we plot the mean and STD of the log prediction error (ordinate) of the independent
model (Left, gray), pairwise model (Center, red) and RI model (Right, blue). The shaded area marks the estimated 95% confidence interval of the empirical
error. Compare with Fig. 2A. (B) Distribution of synchronous spiking events as measured from the data (black) and as predicted by the pairwise model (red) for
the subpopulation of Off cells. Results are very similar to those obtained for the full population in Fig. 1C. (C) RI model interaction parameters learned from the
entire population (as in Fig. 3 A–C) are plotted against the values of the same interactions, when present, between Off cells inferred from the activity of the
Off subpopulation alone. (D) RI model interactions are plotted as a function of receptive field distance between neuron pairs (red) and average pairwise
distance for higher order interactions (blue). Compare with Fig. 3D.
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Fig. S4. Performance of the RI model is not sensitive to the size of time bin used. The effect of bin size was tested on the independent, pairwise, and RI
models. (A) Model predictions for simultaneous activity patterns of 99 neurons binned at 10 ms. For all patterns that occur in the data with log probability P
(abscissa), we plot the mean and STD of the log prediction error (ordinate) of the independent model (Top, gray), pairwise model (Middle, red) and the RI
model (Bottom, blue). The shaded area marks the estimated 95% confidence interval of the empirical error. The learning threshold for the RI model was set to
20 observations (1,049 parameters) to account for the increase in the number of samples compared with the main text (20-ms bin). (B) Same as in A, except for
bin size of 40 ms. The learning threshold for the RI model was set to 5 observations (312 parameters) to account for the reduction in the number of samples
compared with the main text (20-ms bin is shown in Fig. 2 A and B). As bins grow larger, some bins may contain more than one spike; in our case, for 10-ms,
20-ms, and 40-ms bins, 0.12%, 0.59%, and 1.8% of the bins contained more than one spike, respectively.
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Fig. S5. (A) Accuracy of the RI model as a function of the number of training samples. Average d(Pempirical, fRI) is plotted against the number of samples used to
train the model. Error bars represent STD over 10 randomly selected train and test sets. The RI model’s accuracy does not saturate, given the number of samples
in our dataset. (B) Accuracy of the RI model for spatiotemporal patterns as a function of the number of parameters in the model. d(Pempirical, fRI) is plotted
against the number of parameters in the model for the spatiotemporal activity patterns of 10 neurons over ten 20-ms time bins. Results were averaged over 10
randomly selected train and test data (error bars represent STD). The maximum entropy pairwise model (red dot) and the independent model (gray dot) are
also shown for comparison. The number of parameters was varied by changing the learning threshold, nRI. There are no signs of overfitting, even when we
learn from patterns that appeared only twice in the experiment. Spatial patterns are shown in Fig. 4D.

Fig. S6. Superior performance of RI models is similar under different distance measures used for assessment. In the main text, the distance measure used to

evaluate the models’ performance is dðP;QÞ ¼ ∑
X:PðXÞ>

1
N

PðXÞ
####log2

$
PðXÞ
QðXÞ

%#### (N denotes the number of data samples). This measure differs from the more

common Kullback–Leibler divergence
$
DKLðP∥QÞ ¼ ∑XPðXÞlog2

$
PðXÞ
QðXÞ

%%
in two ways: The sum is only over patterns that are observed more than once, and the

absolute value of the logarithm is taken. The absolute value of the logarithm was taken because the RI model is not normalized; thus, it is important to penalize errors
in which the model overestimates the empirical probability (such events will actually reduce the Kullback–Leibler divergence) as well as events in which the model
underestimates the probability. We only used patterns that appeared more than once because the error estimates for patterns that appear only once are very large and
their probability cannot be accurately estimated or modeled even if the distribution is known a priori. (For the surrogate data generated from a strictly pairwise
distribution and fit by a pairwise distribution, presented in Fig. S1, the mean prediction error for patterns that appeared only once was outside our estimated con-
fidence interval. This is not attributable to a bad fit but, rather, to large errors in empirical sampling and very conservative confidence estimates). (A) Accuracy of the RI
model as a function of the number of parameters as quantified by the estimated Kullback–Leibler divergence (over patterns that appear more than once, train and test
data kept separate) as in Fig. 4D, only we used themodified distance measure there. The independent model (gray dot) and pairwisemodel (red dot) are also shown for
comparison. Error bars (approximately the same size as the dots) represent STD over different train and test sets. DKL, Kullback–Leibler divergence. (B) Accuracy of the RI
model was verified using a second method of cross-validation. Here, we measured the accuracy of the RI model using the d measure but tested the model only on
patterns that did not reach the learning threshold [i.e., were not used to train the model (including patterns that appear only once)]. The accuracy of the independent
model (gray) and pairwise model (red) is also shown for the same set of patterns used to test the RI model. (C) Accuracy of the RI model as a function of the number of
parameters as quantified by the dmeasure defined above, including patterns that appear only once. Compare with Fig. 4D, in which patterns that appeared only once
were excluded. Error bars represent STD over different train and test sets. (D) Same as in B but excluding patterns that appear only once.
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