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The way information is represented by sequences of action potentials of spiking neurons is determined by the input each
neuron receives, but also by its biophysics, and the specifics of the circuit in which it is embedded. Even the “code” of
identified neurons can vary considerably from individual to individual. Here we compared the neural codes of the identified
H1 neuron in the visual systems of two families of flies, blow flies and flesh flies, and explored the effect of the sensory
environment that the flies were exposed to during development on the H1 code. We found that the two families differed
considerably in the temporal structure of the code, its content and energetic efficiency, as well as the temporal delay of
neural response. The differences in the environmental conditions during the flies’ development had no significant effect.
Our results may thus reflect an instance of a family-specific design of the neural code. They may also suggest that individual
variability in information processing by this specific neuron, in terms of both form and content, is regulated genetically.
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Introduction

The nervous system relies on a nearly universal “alphabet’:
most neurons, in different brain modules and in many different
species, use sequences of electrical spikes to represent and
transmit information [1]. However, the structure of this “neural
code” — Le. the way information is carried by spike trains and
how it can be read — can differ even between brain areas in the
same animal. The similarity in anatomical and functional
organization of the nervous system in different individuals reflects
the universal properties of brain design and function. However, it
1s unclear how different the corresponding brain modules of two
animals are, or how they differ in terms of the computations they
perform.

Behavioral differences between individuals are often attributed
to genetic variations between species or even between individuals,
which are likely to be reflected in the neural circuit architecture,
synaptic connection patterns, etc. [2,3]. Sensory experience also
has a profound impact on the structure and performance of the
nervous system [4]. Here we aimed at a detailed quantitative
analysis of the differences between individuals at the level of their
neural codes. The putative design of the neural code as regards
efficiency in terms of energy [5,6], information content [7,8], or
predictive value [9] has been explored in different neural systems.
We expect that differences (or similarities) that are informative
about the “conserved” and idiosyncratic parts of the neural code
could have a functional relation to behavioral differences between
individuals, species, or families. To conduct such analyses, we need
a quantitative framework in which to explore neural code
variability, which could then be related to behavioral variability.
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We used the identified H1 neuron in the fly visual system to
study the individual nature of the neural code. HI is a motion
sensitive neuron that processes wide field visual motion, and is part
of a network that is responsible for stabilizing yaw optomotor
responses [10,11]. In each brain hemisphere there is one HI
neuron that responds to horizontal back to front motion and is
inhibited by backwards motion; each one of the neurons projects
to the contra-lateral hemisphere of the fly’s brain. This neuron has
been widely used in the study of various properties of the neural
code, including the reliability of its response, information content,
the temporal structure of its code and its adaptation properties
[7,12-22], and its sensitivity to the fly’s activity state [23,24].
Within the same species, the H1 code can demonstrate both high
variability, and some universal properties [17]. It is also well
known that sensory experience has an extensive effect on the
development of the fly’s peripheral visual system [25,26],
although, as shown by [25], rearing flies in a dark environment
did not affect the response of H1 to local visual stimuli in a small
region of the visual field. Here we focused on differences between
two fly families, and explored the effect of sensory experience on
the structure of the neural code at the level of individuals.

Results

We analyzed the structure and content of the spiking patterns of
the identified H1 neuron in 24 flies from two families - six blow
flies, and 18 flesh flies — responding to wide field motion stimuli.
HI1 is a directional selective spiking neuron in the lobula plate,
which is selective for wide field horizontal motion in front of the
fly’s eye. We identified the H1 neuron according to its response
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properties; namely, directional selectivity and spiking response to
wide field horizontal motion in front of the fly’s contra-lateral eye
(see methods).

To compare the neural code of H1 in the two families we bred
blow flies (Fig. 74, group Bl, n=6) under similar visual
conditions as a group of flesh flies (group F1, n=6). To estimate
the effect of the environment on the neural code we further
studied two other groups of flesh flies (six individuals each),
which were bred under different visual environments: one group
was bred outdoors in a transparent cage (Fig. /B, group F2), and
the other (F3) was bred outside but in an opaque cage, which
exposed the flies to similar natural light intensities, but no details
of the natural environment.

After the flies matured, we recorded extracellularly the activity
of H1 in response to wide field stimulation by a pattern of random
horizontal motion of vertical bars (Fig. /(). Figure 1D presents
examples of the spiking patterns of the H1 neurons in eight flies
(two from each group), with respect to the same movie segment.
H1 responds with high firing rates when the horizontal motion is
in the preferred direction of the neuron, whereas motion in the
opposite direction results in almost complete silence [11].
Differences between the two families were already clear from
their average firing rates: flesh flies had 594 spikes/s (n = 6) and
blowflies had 86*5 spikes/s (n=6). The families also clearly
differed in their response latencies (Fig. 1E): blow flies were
significantly delayed compared to flesh flies (~2 ms difference) and
were also much more variable (the response of blow flies appears
less repetitive, which we will later quantify as higher entropy
values). However, importantly, the differences between families
were much more significant and intricate than firing rate or delay
alone.

Different families use different neural vocabularies and
code

To systematically compare the neural code of the different flies
from the different groups, we discretized the activity patterns of
their HI neurons into small bins of At=2 milliseconds, denoting
spiking in a given bin as ‘1’ and silence as ‘0’. Using this standard
binary representation [7], we characterized the vocabulary of
binary ‘words’ that each of the flies used to encode the visual
stimulus. This was done using the probability distribution over the
words that the i fly used during the whole experiment, P;( W),
and the distribution of words that the 7 fly used to encode the
same stimulus segment, s, denoted by P;(W|s). We estimated the
conditional distribution from repeated presentations of the same
stimulus.

Figure 2A shows the group-averaged probability distribution of
8-letter’ long words (a total duration of 16 ms) used by the blow
flies (LP(W) g (green, ()¢ denotes averaging over group G), and
the probability of the same words for the different flesh fly groups
P(W) Y g1, CP(W) ) and (P(W)) g3 (different shades of gray).
To avoid bias from the specific choice of code word length, our
analysis focused on the similarity or difference in codewords, and
their information content, per unit time. We therefore compared
the flies using codewords of length 1,2,4,8 and 16, and normalized
by the word length. We focus here on 8-letter words as these are
long enough to allow the temporal structure of codewords to be
studied [26], but still enable us to reliably sample the distribution
of the words [27]. It is easy to distinguish between fly families even
based on single words: the most common word of all the flies was
‘00000000 (Fig. 24, inset), but blow flies used this word about
40% of the time compared to almost 60% of the time in flesh flies.

We quantified the differences between the “vocabulary” of
spiking patterns of the two families, by the dissimilarity of the
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distributions of code words they used. The Jensen-Shannon (JS)
divergence [28] between two distributions, P and Q, is a
symmetrized, and bounded extension of the commonly used
Kullback-Leibler (KL) divergence between probability distribu-
tions [29], and measures in bits how easy it is to tell the
distributions apart (Fig. 2B). Recall that the KL divergence
between P and Q) is given by

Dy (P(X),0(X))= Z P(x)log, % )

The JS divergence between P and Q), ranges from ‘0’ which
indicates that the two distributions are identical, and ‘1’ when they
have no overlap.

P10
2

P+0

Dys(P,Q)= % (DKL(Ps )+DKL(QyT)> (2)

We then quantified the dissimilarity between the distributions of
words fly ¢ used in response to the whole movie, and those that fly
used:

Dy (flyifly;) = %DJS (Pi(W),Pi(W)), (3)

where N is the length of word W. We found that the code words of
the two families were 3.1+0.4 bits/s apart, whereas only 1 bit is
needed to tell them apart with certainty. Thus, given a neural
response segment of a fly, and knowing the total distribution of
words that the flies use, about 300 ms are needed to identify to
which of the two families it belongs. The differences between the
different groups of flesh flies were less pronounced, at
1.240.2 bits/s, which was similar to the difference between
individual flies within each of the flesh fly groups (1.3 +0.2 bits/s).
To quantify the difference in the way the flies use their
vocabularies to convey information about the stimulus, we
compared the distribution of codewords that each of the flies
used to encode the same stimulus segments over repeated
presentations of a 40 second long stimulus. Thus, for each
stimulus segment, s, we estimated the difference between the local
distributions  of codewords that flies ¢ and j wused,
Dys[Pi(W|S)||[P;(W|S)] and averaged it across all stimulus
segments. Since exactly the same stimulus was repeated in every
trial, we can average over time instead of stimulus segments.

Dty (1) = 5 <Dus (P W10, Py (W10)>, (4)

The average of all the pairwise distances between blow flies and
flesh flies was 20.7£0.7 bits/s (B1 vs. F1, Fig. 2C), whereas the
typical difference between conspecifics was 14.020.4 bits/s (F2 vs.
F3). Importantly, we quantified the difference between the neural
codes of the flies solely from the differences in the instantaneous
firing rates, by using 1 bin words. We found that the average
distance between families was 13.3+0.9 bits/s; hence the
temporal structure of the words increased the difference between
the codes by more than 35%. This again reflects that the difference
between these families goes far beyond differences in firing rates.

To verify that the differences between the stimulus dependent
word distributions of the two families were not only attributable to
the different temporal response delays shown in figure /F, for each
pair of flies we calculated the time shift between the responses of
the flies, A7, that minimized the Jensen-Shannon distance
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Figure 1. An overview of the experimental setup and H1 neuron responses to dynamic stimuli. (A) lllustration of the first part of the
experiment: comparing the neural activity of different fly families, Calliphoridae (blow flies, group B1) and Sarcophagidae (flesh fly group F1). (B)
lllustration of the second part of the experiment: comparing the neural activity of flies from the same family (flesh flies) that were exposed to different
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environmental conditions, natural surroundings (group F2) or covered by a white curtain (group F3). (C) Stimulus, horizontal velocity of moving bars.
Negative values correspond to motion in the preferred direction of the neuron. (D) Raster plots of two flies from each group. Each line represents one
repetition of the response to the stimulus shown in C, with each dot representing the occurrence of a spike. (E) Magnification of a short section of the
response of flies from groups B1 and F1. Note that the disparity between the two families is clearly apparent in response times and firing rates.
doi:10.1371/journal.pone.0033149.g001
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Figure 2. Word distributions of flies and a comparison between codewords of different fly families. (A) Mean and standard error values
of the distribution of 8-letter words in the four groups. Words are arranged in decreasing rank order of the probability of words in the response of
blow flies (note that the whole range of 256 possible words is not shown). Inset — mean and standard error of the probability of ‘00000000” which was
the most commonly used word. (B) Matrix of the Jensen Shannon distances between 8-letter word distributions of each pair of flies. Bars show mean
values+SEM of three clusters: distance within each of the four groups, between fly families (groups B1 and F1) and flies from different environmental
conditions (groups F2 and F3). (C) Matrix of the distances between the stimulus conditioned word distribution of each pair of flies, averaged across
the stimulus presentation. Bars show mean+SEM values of the same clusters as in B. (D) The distance between each two flies was minimized by
finding the time shift between their responses that resulted in the minimal value (see Methods). Matrix displays the time shift in milliseconds
between the responses of each pair of flies that minimized the distance. Bars show mean+SEM values of same clusters as in B. A similar analysis using
12-letter words produced qualitatively similar results.

doi:10.1371/journal.pone.0033149.g002

@ PLoS ONE | www.plosone.org 4 March 2012 | Volume 7 | Issue 3 | 33149



between them.

Dwia(lyifly;) = %<DJS (Payi(Wt+ A1), Pay(W1) >, (5)

We found that the distance between the families was slightly
reduced to 19.4+0.6 bits/s and between the flesh fly groups to
12.740.4 bits/s. The values of the time shifts (Fig. 2D) that
resulted in the minimal distance between flies in the blow fly and
flesh fly groups was ~2 ms (significantly different from zero,
P<0.01, permutation test), indicating that flesh flies responded
faster than blow flies to the stimulus. Among the flesh fly groups
the timing differences were not significantly different from zero,
similar to the average time shift that minimized the distances
between fly pairs within each group.

Experiencing different visual environments during early
development after pupation showed no significant effect
on the neural code

We found no effect of the visual environment that the flies were
exposed to from pupation on the neural ‘vocabularies’ of the
different flesh fly groups. This is consistent with Karmeier e al.,
who saw no effect of breeding flies in the dark on their receptive
field properties. Moreover, we found no differences in the
vocabulary they used to encode the stimulus. Fig. 2 B and C
show that the codes of the flesh flies that were exposed to different
visual environments were as different as the variability among
conspecifics from the same habitat (Fig. 2B,C inset), both in terms
of firing rate and temporal structure of the code.

The neural code of males and females was

indistinguishable

We repeated the same analysis for males and females in our
flies. We found no difference between the sexes, as the average
distance was similar to the distances found within each gender
(within the male group and within the female group, Fig. S7).
Moreover, the distance we observed between the sexes was similar
to the distance between individual flies that was discussed above. It
should be noted that since we could not identify with certainty the
species of the female flesh flies our result here is limited in scope.

Codeword differences between fly families

To characterize the differences in the information carried by the
neural codes of the different species, we mapped the relation
between stimuli and the neural responses that the flies used to
encode them. Figure 3A shows the average stimulus preceding a
single spike (known as the spike triggered average, or STA) of each
of the groups. Similar to what we found when comparing the
codewords themselves, the STA of blow flies differed from those of
the flesh flies (all groups) in width and time of the peak, and was
consistent with the time shift that minimized the distance between
the responses in figure 2D. Again, we found no differences
between the different groups of flesh flies.

To explore the role of combinatorial coding patterns in the two
species, we estimated the word-triggered average (WTA), or the
average stimulus that preceded each of the 8-letter words in the
vocabulary [30]. Figures 3C—T depict four examples of the WTA
of frequent words, and the corresponding probability of these
words in the different groups. Specifically, we found words that
have different WTAs between the species and different probabil-
ities of use by each of the species (e.g. the word ‘00000000’,
Fig. 3C). We also found words (e.g. ‘10101010°, Fig. 3D) that had
similar WTAs for all flies but with different probabilities for the
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two species, and words that had different WTAs but appeared with
similar probabilities. In all cases, we did not find any significant
differences between the three groups of flesh flies.

Blow flies’ H1 carries more information than flesh flies

using a noisier code

To measure the differences in content of the neural codes of
the flies, we assessed how much information they carried about the
same stimulus [7,12]. The mutual information between the
responses (W) and the stimuli ($) is given by the difference
between two terms: the total entropy of the neural vocabulary
[8,31].

H(W)=— ZP(wk) log, P(wy) (6)
k
and the entropy of the “noise” in the neural response,

H(W|S)=(— Z «P(wils) log, P(wils) D (7)

which together gives

I(W.S)=H(W)—H(W|S) (8)

The entropy of this distribution H(W) measures the richness of
the vocabulary of the cell and is a bound on the information
coding capacity of the cell. The noise entropy of the response,
H(W|S), to each stimulus segment was estimated from repeated
presentations of the stimulus. The average noise entropy over
stimulus segments was replaced by averaging over stimulus time
[27] such that the mutual information between the stimulus and
response is given by:

(W, T)=— Z k P(wi) logy P(wy) —

©)
(= kP(welt)logy P(welt) ),

We estimated information rates by extrapolating the information
estimate for finite words to infinite word length and data size as
in Strong et al. [27]. The average information carried per spike
was estimated by dividing the amount of information carried by
the neuron per second by the number of spikes that the flies used
per second.

Figure 4A shows the noise entropy rate as a function of the total
entropy rate for all the flies. We found that blowflies had a more
diverse codebook than the three groups of flesh flies (higher total
entropy), but that this code was also noisier (higher noise entropy).
There were no significant differences between the total entropy
and noise entropy for the different groups of flesh flies.

Flesh flies use a more efficient neural code

By estimating the information carried by the flies per unit time,
we found that the blowflies encoded 20% more information about
the stimulus than the flesh flies (121.6+43.4 bits/s, vs.
100.8 +4.5 bits/s, P<0.025). To convey the additional informa-
tion blowflies used firing rates that were about 45% higher than
flesh flies 86.4+5.3 spikes/s, vs. 59.0+4.0 spikes/s, P<0.034).
Despite the higher information rates conveyed by blowflies, the
average information carried by each spike was 1.4+40.1 bits,
whereas the information per spike carried by flesh flies was higher,
1.740.2 bits (Fig. 4B inset), suggesting a higher energetic
efficiency of the flesh fly code (P =0.034, permutation test).
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Figure 3. Neural responses of the two fly families convey different information about the stimulus. (A) STA, spike-triggered average, the
average stimulus that preceded the occurrence of a single spike, averaged in the four groups. Line width represents standard error of the mean. The
STA of the blow fly group was significantly different from the STA of all flesh fly groups. (B) Mean firing rates and standard error of the four groups;
again the blow fly exhibited significantly higher rates. (C-F) Four examples of word triggered averages (WTAs); the average stimulus that preceded
the occurrence of each specific 8-letter word. Inset - corresponding probabilities that each word will appear in the response of each group,
mean+SEM.

doi:10.1371/journal.pone.0033149.g003

Discussion flies use much higher firing rates than flesh flies presented with the
same visual stimuli. The energetic efficiency of the code also differs

We showed that the neural code of an identified neuron that between the fly families, as blow flies carry less information with
encodes similar visual properties in two fly families differs each spike. For all the comparisons that exhibited differences
considerably. The HI1 neuron in the blow fly conveys more between families, there were no significant differences between
information about the stimulus than in the flesh fly, although blow groups of flies from the same family (flesh flies) that were exposed
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to different visual environments. We concluded that manipulation
of the visual environment soon after pupation does not affect the
firing rate of this specific neuron, or more complex properties of
the neural code that displayed differences between the two fly
families.

There was no effect of the visual environment experienced by
the flies on the code of their HI neuron. Our results are in line
with the study of Karmeier ¢f al. [25] who showed that rearing flies
in darkness does not affect the firing rate of the Hl neuron in
response to local visual stimulation compared to normal
surroundings. One possible explanation is that flies need to fly
almost immediately after they hatch from the cocoon, and thus the
optomotor system, and HI1 in particular, are genetically hard-
wired although some response properties, as response latency, vary
with the age of the fly [32]. Moreover, since H1 is highly adaptive
[19,21,33], flies could rely on its dynamic range to allow for
matching the coding properties to the environment. If so,
adaptation of the code to new environment statistics would occur
only over generations due to evolutionary pressure.

Niven et al. [34] examined the relation between information
content and energy consumption in the responses of photorecep-
tors of flies of different species. They showed that the relationship
between information rate and energy follows the law of
diminishing returns: increasing encoded information rates requires
more energy per bit. Assuming that the H1 neuron of both fly
families uses the same amount of energy to produce a spike, our
results show that a similar rule exists as well at higher levels of the
fly’s visual system. Blow flies use 45% *7% more spikes than flesh
flies to convey information about the stimulus, which requires
investing higher amounts of energy compared to flesh flies.
However, the additional amount of information does not increase
in a similar fashion, and the response contained only 20% *5%
more bits per second. Interestingly, Borst and Haag [13]
demonstrated a similar sub-linear increase in information rate of
the H1 neuron by manipulating the stimulus to increase the cell’s
firing rate in the same fly.

It is not immediately clear why H1 neurons of blow flies carry
more information than those of flesh flies or why they use 45%
more spikes to encode wide-field horizontal motion. As H1 is part
of the optomotor system, and the information it conveys is used for
determining the flight pattern of the fly, the disparity between the
neural codes may be optimized for the species’ flight properties in
terms of flight velocities, optic flow and turning speeds. The

@ PLoS ONE | www.plosone.org

significant differences we have found in the code and processing of
information between the two families suggest a further exploration
of the relation of the specifics of the neural code and the
behavioral phenotypes. Identified neurons, like H1, could be used
for a comparative analysis over several species, linking behavior
and the neural code, by using the framework presented here to
quantify coding differences.

We recorded HI1 activity from immobilized flies, which
minimizes artifacts that result from self-motion and thus provide
a clear view of the differences in the encoding schemes of the two
families. Since the activity of H1 depends on the behavioral state
of the fly [23,24], a comparison of the codes of the same neuron
under more natural fly-like conditions, might reveal other
differences between families or species, and show possible links
between the properties of the neural code and behavior.

The biophysical sources of the differences we observed in the
structure and content of the code across families — either at the
level of H1 itself, or in the synaptic inputs it receives are promising
directions for future work.

Methods

Experimental Models

We compared the activity of two fly families: the green bottled
blow fly Calliphoridae, Chrysomya albiceps, and Sarcophagidae flesh flies.
The male flesh flies belonged to two species, Aegyptica and
Argyrostoma. The females of the flesh fly family could not be
identified at the level of the species. All the flies are relatively the
same size, and were caught outdoors in Beer-Sheva, Isracl. To
obtain flies, meat was placed outdoors. Several days later,
maggots, the fly larval phase, were collected and placed in
transparent plastic cages. After about two to three weeks from
pupation, adult flies hatched. We began by comparing flies from
two different families. Six flies from each family, blow flies and
flesh flies, were kept under identical conditions inside the lab
(Fig. 14). We further compared flies from the same family that
experienced different environmental conditions. Twelve flesh flies
were separated after pupation into two groups and kept in cages
placed outdoors among the bushes. One group was placed in a
transparent cage and viewed a natural scene of vegetation. The
second group was kept nearby under similar conditions but a white
curtain enclosed the cage. Other than the passage of light, the
curtain blocked the total view of the natural environment around
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the flies (Fig. 7B). All flies in each group came from the same pool;
hence, although we could not identify the females to the level of
the species, they are most likely similar to the males. Flies from all
groups were 5-12 days old when we recorded their H1 neuron
activity, after experiencing these environmental conditions for at
least five days. All groups of flies contained both males and females
flies with at least a third of each sex in every group.

This study was conducted according to animal welfare
regulations for invertebrates in Israel; no specific permits were
required.

Electrophysiology

We used a standard extracellular method [35] to record the
activity of the H1 neuron. The fly was anesthetized by keeping it at
a low temperature for few minutes until it ceased moving. It was
then immobilized in wax and its head fixed to look downwards by
a tiny drop of adhesive. A small hole was made through the cuticle
in the back of its right eye and reference silver wire coated with
silver chloride and a tungsten microelectrode (1 MQ, FHC, USA)
was inserted to capture extracellular signals generated by the H1
neuron. In both fly families we identified the neuron by a spiking
response to wide-field motion towards the center of the field of
view in front of the left (contra-lateral) eye and inhibition due to
motion in the opposite direction. To our knowledge, we are the
first to identify the H1 neuron in flesh flies according to these
criteria, and this neuron has yet to be identified by other common
techniques. Thus, we cannot exclude that we recorded from a
different neuron that share the exact same properties used to
identify H1. The signal was filtered and amplified by a DAM-50
amplifier (WPI, USA) digitized at 10 kSamples/s by NI-6071 A/D
converter (National Instruments, Israel). Recording procedures for
H1 activity of all flies were carried out at constant room
temperature (22°-24°), similar to the average outside temperature
in Beer Sheva, Israel at time of the recording. Stimulus display and
data recordings were carried out by a single dedicated LABVIEW
program. Data analysis was done using MATLAB. A dedicated
off-line threshold-crossing algorithm was used to detect spikes.

Visual Stimulation

We used a directed beam monitor, Tektronix 608, to present
motion stimuli to the flies with an average frame rate of over 3000
frames/s. The monitor was covered with an opaque material that
had a 80 mm round shaped hole. All flies were placed 120 mm
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away from the monitor in the same orientation that resulted in
stimulating the center of the visual field of the left eye. Each fly was
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three hours of repeated stimuli composed of 256 repetitions of an
identical 40-second movie. In both cases, the stimulus was a
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level — 0.92) throughout the whole movie. The bar pattern
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distributed sequence of step lengths that were interpolated to
produce a smooth appearance of movement (=0 deg/s, 8 =470

deg/s).

Statistical significance measure

Statistical significance of the similarity between groups of flies
(firing rates, codeword entropy, information, JS divergence) was
estimated by comparison to the values between many randomly
assigned groups of flies (when each fly was randomly assigned to
one of the groups, regardless of its species or background). All
significance values were higher than P<<0.01 (or as otherwise
noted in the text).

Supporting Information

Figure S1 A comparison between codewords of different
sexes. Matrix of the Jensen Shannon distances between 8-letter
word distributions of each pair of flies, similar to figure 2B, but
clustered according to sex. Bars show mean values+SEM of the
distances within each of the two clusters.

(TIF)

Acknowledgments

We would like to thank Dr. Krzysztof Szpila (Institute of Ecology and
Environmental Protection, Nicolaus Copernicus University, Torun, Po-
land) for the identification of the fly species and Allon Kira who kindly
provided the pictures of the flies.

Author Contributions

Classified the flies: IR. Conceived and designed the experiments: YK ES
RS. Performed the experiments: YK. Analyzed the data: YK ES RS.
Wrote the paper: YK ES RS.

11. Eckert H (1980) Functional properties of the Hl-neurone in the third optic
ganglion of the blowfly, Phaenicia. Journal of Comparative Physiology A:
Neuroethology, Sensory, Neural, and Behavioral Physiology 135: 29-39.

12. Bialek W, Rieke F, de Ruyter Van Steveninck RR, Warland D (1991) Reading a
Neural Code. Science 252: 1854-1857.

13. Borst A, Haag J (2001) Effects of mean firing on neural information rate. Journal
of Computational Neuroscience 10: 213-221.

14. Borst A (2003) Noise, not stimulus entropy, determines neural information rate.
Journal of Computational Neuroscience 14: 23-31.

15. Haag J, Borst A (1997) Encoding of visual motion information and reliability in
spiking and graded potential neurons. The Journal of neuroscience 17: 4809.

16. Nemenman I, Lewen GD, Bialek W, van Steveninck RRR (2008) Neural
Coding of Natural Stimuli: Information at Sub-Millisecond Resolution. PLoS
Computational Biology 4.

17. Schneidman E, Brenner N, Tishby N, de Ruyter van Steveninck RR, Bialek W
(2001) Universality and individuality in a neural code. Advances in neural
information processing systems. pp 159-165.

18. Grewe J, Kretzberg J, Warzecha AK, Egelhaaf M (2003) Impact of photon noise
on the reliability of a motion-sensitive neuron in the fly’s visual system. The
Journal of neuroscience 23: 10776.

19. Maddess T, Laughlin SB (1985) Adaptation of the motion-sensitive neuron H1 is
generated locally and governed by contrast frequency. Proceedings of the Royal
Society of London Series B Biological Sciences 225: 251-275.

March 2012 | Volume 7 | Issue 3 | e33149



20.

Grewe J, Matos N, Egelhaaf M, Warzecha AK (2006) Implications of
functionally different synaptic inputs for neuronal gain and computational
properties of fly visual interneurons. Journal of neurophysiology 96: 1838-1847.

. Warzecha AK, Egelhaaf M (1999) Variability in spike trains during constant and

dynamic stimulation. Science 283: 1927.

Kurtz R, Egelhaaf M, Meyer HG, Kern R (2009) Adaptation accentuates
responses of fly motion-sensitive visual neurons to sudden stimulus changes.
Proceedings of the Royal Society B: Biological Sciences 276: 3711.

Rosner R, Egelhaaf M, Warzecha AK (2010) Behavioural state affects motion-
sensitive neurones in the fly visual system. Journal of Experimental Biology 213:
331.

. Jung SN, Borst A, Haag J (2011) Flight Activity Alters Velocity Tuning of Fly

Motion-Sensitive Neurons. The Journal of neuroscience 31: 9231.

Karmeier K, Tabor R, Egelhaaf M, Krapp HG (2001) Early visual experience
and the receptive-field organization of optic flow processing interneurons in the
fly motion pathway. Visual neuroscience 18: 1-8.

Brenner N, Bialek W, de Ruyter van Steveninck R (2000) Adaptive rescaling
maximizes information transmission. Neuron 26: 695-702.

Strong SP, Koberle R, De Ruyter Van Steveninck RR, Bialek W (1998) Entropy
and Information in Neural Spike Trains. Physical review letters 80: 197-200.

@ PLoS ONE | www.plosone.org

28.

29.
. Van Steveninck RDR, Bialek W (1988) Real-time performance of a movement-

Variations in the Neural Code of the H1 Neuron

Lin J (1991) Divergence measures based on the Shannon entropy. IEEE
Transactions on Information theory 37: 145-151.
Cover TM, Thomas JA Elements of information theory: Wiley Online Library.

sensitive neuron in the blowfly visual system: coding and information transfer in
short spike sequences. Proceedings of the Royal Society of London Series B,
Biological Sciences 234: 379-414.

Shannon C (1948) A mathematical theory of communication. Bell System
Technical Journal 27: 379-423.

. Warzecha AK, Egelhaaf M (2000) Response latency of a motion-sensitive

neuron in the fly visual system: dependence on stimulus parameters and
physiological conditions. Vision research 40: 2973-2983.

Fairhall AL, Lewen GD, Bialek W, de Ruyter van Steveninck RR (2001)
Efficiency and ambiguity in an adaptive neural code. Nature 412: 787-792.
Niven JE, Anderson JC, Laughlin SB (2007) Fly photoreceptors demonstrate
energy-information trade-offs in neural coding. PLoS Biol 5: e116.

. Warzecha AK, Egelhaaf M (1997) How Reliably Does a Neuron in the Visual

Motion Pathway of fhe Fly Encode Behaviourally Relevant Information?
European Journal of Neuroscience 9: 1365-1374.

March 2012 | Volume 7 | Issue 3 | e33149



