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Abstract

The problem of neural coding is to understand how sequences of
action potentials (spikes) are related to sensory stimuli, motor out-
puts, or (ultimately) thoughts and intentions. One clear question
is whether the same coding rules are used by different neurons, or
by corresponding neurons in different individuals. We present a
quantitative formulation of this problem using ideas from informa-
tion theory, and apply this approach to the analysis of experiments
in the fly visual system. We find significant individual differences
in the structure of the code, particularly in the way that tempo-
ral patterns of spikes are used to convey information beyond that
available from variations in spike rate. On the other hand, all the
flies in our ensemble exhibit a high coding efficiency, so that every
spike carries the same amount of information in all the individuals.
Thus the neural code has a quantifiable mixture of individuality
and universality.

1 Introduction

When two people look at the same scene, do they see the same things? This basic
question in the theory of knowledge seems to be beyond the scope of experimental
investigation. An accessible version of this question is whether different observers of
the same sense data have the same neural representation of these data: how much
of the neural code is universal, and how much is individual?

Differences in the neural codes of different individuals may arise from various
sources: First, different individuals may use different ‘vocabularies’ of coding sym-
bols. Second, they may use the same symbols to encode different stimulus features.
Third, they may have different latencies, so they ‘say’ the same things at slightly
different times. Finally, perhaps the most interesting possibility is that different
individuals might encode different features of the stimulus, so that they ‘talk about
different things’.

If we are to compare neural codes we must give a quantitative definition of similarity
or divergence among neural responses. We shall use ideas from information theory



[1, 2] to quantify the the notions of distinguishability, functional equivalence and
content in the neural code. This approach does not require a metric either on the
space of stimuli or on the space of neural responses (but see [3]); all notions of
similarity emerge from the statistical structure of the neural responses.

We apply these methods to analyze experiments on an identified motion sensitive
neuron in the fly’s visual system, the cell H1 [4]. Many invertebrate nervous systems
have cells that can be named and numbered [5]; in many cases, including the motion
sensitive cells in the fly’s lobula plate, a small number of neurons is involved in
representing a similarly identifiable portion of the sensory world. It might seem
that in these cases the question of whether different individuals share the same
neural representation of the visual world would have a trivial answer. Far from
trivial, we shall see that the neural code even for identified neurons in flies has
components which are common among flies and significant components which are
individual to each fly.

2 Distinguishing flies according to their spike patterns

Nine different flies are shown precisely the same movie, which is repeated many times
for each fly (Figure 1a). As we show the movie we record the action potentials from
the H1 neuron.1 The details of the stimulus movie should not have a qualitative
impact on the results, provided that the movie is sufficiently long and rich to drive
the system through a reasonable and natural range of responses. Figure 1b shows a
portion of the responses of the different flies to the visual stimulus – the qualitative
features of the neural response on long time scales (∼ 100ms) are common to almost
all the flies, and some aspects of the response are reproducible on a (few) millisecond
time scale across multiple presentations of the movie to each fly. Nonetheless the
responses are not identical in the different flies, nor are they perfectly reproduced
from trial to trial in the same fly.

To analyze similarities and differences among the neural codes, we begin by dis-
cretizing the neural response into time bins of size ∆t = 2ms. At this resolution
there are almost never two spikes in a single bin, so we can think of the neural
response as a binary string, as in Fig. 1c-d. We examine the response in blocks or
windows of time having length T , so that an individual neural response becomes
a binary ‘word’ W with T/∆t ’letters’. Clearly, any fixed choice of T and ∆t is
arbitrary, and so we explore a range of these parameters.

Figure 1f shows that different flies ‘speak’ with similar but distinct vocabularies.
We quantify the divergence among vocabularies by asking how much information
the observation of a single word W provides about the identity of its source, that
is about the identity of the fly which generates this word:

I(W → identity;T ) =
N

∑

i=1

Pi

∑

W

P i(W ) log2

[

P i(W )

P ens(W )

]

bits, (1)

1The stimulus presented to the flies is a rigidly moving pattern of vertical bars, ran-
domly dark or bright, with average intensity Ī ≈ 100mW/(m2 · sr). The pattern position
was defined by a pseudorandom sequence, simulating a diffusive motion or random walk.
Recordings were made from the H1 neuron of immobilized flies, using standard methods.
We draw attention to three points relevant for the present analysis: (1) The flies are freshly
caught female Calliphora, so that our ‘ensemble of flies’ approaches a natural ensemble.
(2) In each fly we identify the H1 cell as the unique spiking neuron in the lobula plate
that has a combination of wide field sensitivity, inward directional selectivity for horizon-
tal motion, and contralateral projection. (3) Recordings are rejected only if raw electrode
signals are excessively noisy or unstable.
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Figure 1: Different flies’ spike trains and word statistics. (a) All flies view the
same random vertical bar pattern moving across their visual field with a time dependent
velocity, part of which is shown. In the experiment, a 40 sec waveform is presented
repeatedly, 90 times. (b) A set of 45 response traces to the part of the stimulus shown
in (a) from each of the 9 flies. The traces are taken from the segment of the experiment
where the transient responses have decayed. (c) Example of construction of the local word
distributions. Zooming in on a segment of the repeated responses of fly 1 to the visual
stimuli, the fly’s spike trains are divided into contiguous 2 ms bins, and the spikes in each
of the bins are counted. For example, we get the 6 letter words that the fly used at time
3306 ms into the input trace. (d) Similar as (c) for fly 6. (e) The distributions of words
that flies 1 and 6 used at time t = 3306 ms from the beginning of the stimulus. The time
dependent distributions, P 1(W |t = 3306ms) and P 6(W |t = 3306 ms) are presented as a
function of the binary value of the actual ’word’, e.g., binary word value ′17′ stands for
the word ′010001′. (f) Collecting the words that each of the flies used through all of the
visual stimulus presentations, we get the total word distributions for flies 1 and 6, P 1(W )
and P 6(W ).

where Pi = 1/N is the a priori probability that we are recording from fly i, P i(W )
is the probability that fly i will generate (at some time) the word W in response
to the stimulus movie, and P ens(W ) is the probability that any fly in the whole
ensemble of flies would generate this word,

P ens(W ) =

N
∑

i=1

PiP
i(W ). (2)

The measure I(W → identity;T ) has been discussed by Lin [11] as the ‘Jensen–
Shannon divergence’ DJS among the distributions P i(W ).2

2Unlike the Kullback–Leibler divergence [2] (the ’standard’ choice for measuring dissim-
ilarity among distributions), the Jensen–Shannon divergence is symmetric, and bounded
(see also [12]). Moreover, DJS can be used to bound other measures of similarity, such as
the optimal or Bayesian probability of identifying correctly the origin of a sample.



We find that information about identity is accumulating at more or less constant
rate well before the undersampling limits of the experiment are reached (Fig. 2a).
Thus I(W → identity;T ) ≈ R(W → identity) · T ; R(W → identity) ≈ 5 bits/s,
with a very weak dependence on the time resolution ∆t. Since the mean spike rate
can be measured by counting the number of 1s in each word W , this information
includes the differences in firing rate among the different flies.

Even if flies use very similar vocabularies, they may differ substantially in the way
that they associate words with particular stimulus features. Since we present the
stimulus repeatedly to each fly, we can specify the stimulus precisely by noting the
time relative to the beginning of the stimulus. We can therefore consider the word
W that the ith fly will generate at time t. This word is drawn from the distribution
P i(W |t) which we can sample, as in Fig. 1c–e, by looking across multiple presen-
tations of the same stimulus movie. In parallel with the discussion above, we can
measure the information that the word W observed at known t gives us about the
identity of the fly,

I(W → identity|t;T ) =

N
∑

i=1

Pi

∑

W

P i(W |t) log2

[

P i(W |t)

P ens(W |t)

]

, (3)

where the distribution of words used at time t by the whole ensemble of flies is

P ens(W |t) =
N

∑

i=1

PiP
i(W |t). (4)

The natural quantity is an average over all times t,

I({W, t} → identity;T ) = 〈I(W → identity|t;T )〉t bits, (5)

where 〈· · ·〉t denotes an average over t.

Figure 2b shows a plot of I({W, t} → identity;T )/T as a function of the observation
time window of size T . Observing both the spike train and the stimulus together
provides 32 ± 1 bits/s about the identity of the fly. This is more than six times as
much information as we can gain by observing the spike train alone, and corresponds
to gaining one bit in ∼ 30ms; correspondingly, a typical pair of flies in our ensemble
can be distinguished reliably in ∼ 30ms. This is the time scale on which flies actually
use their estimates of visual motion to guide their flight during chasing behavior
[6], so that the neural codes of different individuals are distinguishable on the time
scales relevant to behavior.

3 Different flies encode different amounts of information

about the same stimulus

Having seen that we can distinguish reliably among individual flies using relatively
short samples of the neural response, we turn to ask whether these substantial
differences among codes have an impact on the ability of these cells to convey
information about the visual stimulus. As discussed in Refs. [7, 8], the information
which the neural response of the ith fly provides about the stimulus, I i(W → s(t);T ),
is determined by the same probability distributions defined above: 3

I i(W → s(t);T ) =

〈

∑

W

P i(W |t) log2

[

P i(W |t)

P i(W )

]

〉

t

. (6)

3Again we note that our estimate of the information rate itself is independent of any
metric in the space of stimuli, nor does it depend on assumptions about which stimulus
features are most important in the code.
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Figure 2: Distinguishing one fly from others based on spike trains. (a) The
average rate of information gained about the identity of a fly from its word distribution,
as a function of the word size used (middle curve). The information rate is saturated
even before we reach the maximal word length used. Also shown is the average rate of
information that the word distribution of fly 1 (and 6) gives about its identity, compared
with the word distribution mixture of all of the flies. The connecting line is used for
clarification only. (b) Similar to (a), we compute the average amount of information that
the distribution of words the fly used at a specific point in time gives about its identity.
Averaging over all times, we show the amount of information gained about the identity of
fly 1 (and 6) based on its time dependent word distributions, and the average over the 9
flies (middle curve). Error bars were calculated as in [8]. A “baseline calculation”, where
we subdivided the spike trains of one fly into artificial new individuals, and compared their
spike trains, gave significantly smaller values (not shown).

Figure 3a shows that the flies in our ensemble span a range of information rates
from ≈ 50 to ≈ 150 bits/s. This threefold range of information rates is correlated
with the range of spike rates, so that each of the cells transmits nearly a constant
amount of information per spike, 2.39 ± 0.24 bits/spike. This universal efficiency
(10% variance over the population, despite three fold variations in total spike rate),
reflects that cells with higher firing rates are not generating extra spikes at random,
but rather each extra spike is equally informative about the stimulus.

Although information rates are correlated with spike rates, this does not mean
that information is carried by a “rate code” alone. To address the rate/timing
distinction we compare the total information rate in Fig. 3a, which includes the
detailed structure of the spike train, with the information carried in the temporal
modulations of the spike rate. As explained in Ref. [10], the information carried by
the arrival time of a single spike can be written as an integral over the time variations
of the spike rate, and multiplying by the number of spikes gives us the expected
information rate if spikes contribute independently; information rates larger than
this represent synergy among spikes, or extra information in the temporal patterns
of spike. For all the flies in our ensemble, the total rate at which the spike train
carries information is substantially larger than the ‘single spike’ information—2.39
vs. 1.64 bits/spike, on average. This extra information is carried in the temporal
patterns of spikes (Fig. 3b).

4 A universal codebook?

Even though flies differ in the structures of their neural responses, distinguishable
responses could be functionally equivalent. Thus it might be that all flies could be
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Figure 3: The information about the stimulus that a fly’s spike train carries
is correlated with firing rate, and yet a significant part is in the temporal
structure. (a) The rate at the H1 spike train provides information about the visual
stimulus is shown as a function of the average spike rate, with each fly providing a single
data point The linear fit of the data points for the 9 flies corresponds to a universal rate
of 2.39 ± 0.24 bits/spike, as noted in the text. (b) The extra amount of information that
the temporal structure of the spike train of each of the flies carry about the stimulus,
as a function of the average firing rate of the fly (see [10]). The average amount of
additional information that is carried by the temporal structure of the spike trains, over
the population is 45 ± 17%. Error bars were calculated as in [8]

endowed (genetically?) with a universal or consensus codebook that allows each
individual to make sense of her own spike trains, despite the differences from her
conspecifics. Thus we want to ask how much information we lose if the identity of
the flies is hidden from us, or equivalently how much each fly can gain by knowing
its own individual code.

If we observe the response of a neuron but don’t know the identity of the individual
generating this response, then we are observing responses drawn from the ensemble
distributions defined above, P ens(W |t) and P ens(W ). The information that words
provide about the visual stimulus then is

Imix(W → s(t);T ) =

〈

∑

W

P ens(W |t) log2

[

P ens(W |t)

P ens(W )

]

〉

t

bits. (7)

On the other hand, if we know the identity of the fly to be i, we gain the information
that its spike train conveys about the stimulus, I i(W → s(t);T ), Eq. (6). The
average information loss is then

Iavg
loss(W → s(t);T ) =

N
∑

i=1

PiI
i(W → s(t);T ) − Imix(W → s(t);T ). (8)

After some algebra it can be shown that this average information loss is related to
the information that the neural responses give about the identity of the individuals,
as defined above:

Iavg
loss(W → s(t);T ) = I({W, t} → identity;T )

−I(W → identity;T ). (9)

The result is that, on average, not knowing the identity of the fly limits us to
extracting only 64 bits/s of information about the visual stimulus. This should be



compared with the average information rate of 92.3 bits/s in our ensemble of flies:
knowing her own identity allows the average fly to extract 44% more information
from H1. Further analysis shows that each individual fly gains approximately the
same relative amount of information from knowing its personal codebook.

5 Discussion

We have found that the flies use similar yet distinct set of ‘words’ to encode informa-
tion about the stimulus. The main source of this difference is not in the total set of
words (or spike rates) but rather in how (i.e. when) these words are used to encode
the stimulus; taking this into account the flies are discriminable on time scales of
relevance to behavior. Using their different codes, the flies’ H1 spike trains convey
very different amounts of information from the same visual inputs. Nonetheless, all
the flies achieve a high and constant efficiency in their encoding of this information,
and the temporal structure of their spike trains adds nearly 50% more information
than that carried by the rate.

So how much is universal and how much is individual? We find that each individual
fly would lose ∼ 30% of the visual information carried by this neuron if it ‘knew’ only
the codebook appropriate to the whole ensemble of flies. We leave the judgment
of whether this is high individuality or not to the reader, but recall that this is
the individuality in an identified neuron. Hence, we should expect that all neural
circuits—both vertebrate and invertebrate—express a degree of universality and a
degree of individuality. We hope that the methods introduced here will help to
explore this issue of individuality more generally.

This research was supported by a grant from the Ministry of Science, Israel.
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