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The ability to record the joint activity of large groups of neurons

would allow for direct study of information representation and

computation at the level of whole circuits in the brain. The

combinatorial space of potential population activity patterns

and neural noise imply that it would be impossible to directly

map the relations between stimuli and population responses.

Understanding of large neural population codes therefore

depends on identifying simplifying design principles. We review

recent results showing that strongly correlated population

codes can be explained using minimal models that rely on low

order relations among cells. We discuss the implications for

large populations, and how such models allow for mapping the

semantic organization of the neural codebook and stimulus

space, and decoding.
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Redundancy reduction vs. robustness and
learnability
Efficient coding has been a key prospective design

principle of the neural code — suggesting that neuronal

spiking patterns convey information in a way that

maximizes their capacity, given constraints such as

energetic cost, number of neurons, time, etc. [1].

Accordingly, groups of neurons would maximize the infor-

mation they convey about their stimuli by minimizing the

overlap in the information they carry [2]. This idea of

redundancy reduction implies that the responses of cells

would be decorrelated, and was used to predict or explain

the nature of the receptive fields and response properties of

cells in different parts of the visual system, the nature of

eye movements, and more [3–7].
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However, correlations among neurons are fundamental

for robustness of the code to abundant neuronal noise.

Moreover, redundancy is exactly what makes a code

learnable from examples [8]. It is clear then that correla-

tions must be an inherent part of the design of the neural

code. Indeed, analysis of large neuronal populations has

shown that large groups can be strongly correlated (see

below) and the potential importance and benefits of these

correlations have been extensively discussed [5,9–13].

The design of the code of large populations of neurons in

terms of correlation structures, connectivity, and sparse-

ness have been explored theoretically (see e.g. [14–16]),

but the ability to record simultaneously from large popu-

lations of cells makes it possible to study population codes

directly [17–24]. Importantly, neuronal variability or noise

means that in studying these codes we need to use

probability distributions over the vast space of combina-

torial coding patterns. Thus, we will not be able to

exhaustively map the code of large populations by direct

sampling, and would need to find simplifying principles

that govern the organization of the codebook and its

functional role [25,26�,27,28].

Correlation structures of population codes
In many neural systems, the correlation between pairs of

neurons is typically weak. This is the case for the corre-

lation between cells averaged over stimuli (sometimes

called signal correlations): denoting the spiking patterns

of cells i and j with xi and xj, P(xi, xj) is typically close to

P(xi)P(xj) [11,25,29]. Similarly, the pairwise correlations in

responses to repeated presentation of the same stimulus,

s, are weak: P(xi, xjjs) is typically not far from P(xijs)P(xjjs)
[5,30,31], and so averaging over stimuli, cell pairs have

been reported to have low ‘noise correlations’ (a some-

what misleading name as the difference between these

two distributions measures stimulus dependent coding

correlations). Moreover, the information that pairs carry

about their stimuli is typically weakly redundant: I(xi,

xj ; s) is usually a little lower than I(xi ; s) + I(xj ; s)
[30,32,33], where I(x ; y) is the mutual information be-

tween x and y. All these seem consistent with the idea of

redundancy reduction.

However, groups of a few tens of cells can be strongly

correlated, even when their typical pairwise correlations

are weak [25,34,35,36,37�,38�,39]. These group correla-

tions — quantified by the difference between P(x1, x2, . . .,
xn) and P(x1)P(x2) � � � P(xN) — mean that the ‘vocabulary’

of the neural population is more structured and less
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diverse than it would have been if the cells were inde-

pendent, given the coding properties of single cells.

Similarly, the stimulus-dependent distribution of neural

responses P(x1, x2, . . ., xnjs) can be far from the condition-

ally independent one P(x1js)P(x2js) � � � P(xNjs), for partic-

ular stimulus s, showing that while noise correlations may

be weak on average, they can be strong for interesting

stimuli and play a role in coding [40,41�,42�].

Models of population activity reveal sparse
high-order organization of the neural code
To understand and quantify the nature and origin of

the correlated structure of population codes, several fam-

ilies of models have been commonly used. Generalized
linear models (GLMs) extend the Linear-nonlinear

Poisson rate models of single cells to predict the

instantaneous rate of neuron i, given by liðtÞ ¼
exp ki�s þ hi�xi þ

P
jlij�xj þ mi

� �
where s is the stimulus,

xj is the spiking history of cell j at time t, mi is the log of the

cell’s baseline firing rate, ki is a spatio-temporal filter

describing the cell’s response to the stimulus, lij is the

incoming coupling of cell j to i, and hi is a temporal filter

on the cell’s own history; the last three are fit to maximize

the likelihood of the data under this model. These models

surpass conditionally independent models in predicting

the activity of single cells and low-order correlations

between cells [43,44], give a causal interpretation of

the temporal patterns of cells, and have been successfully

used in stimulus decoding [45�,46,47,48,49]. The maxi-

mum entropy (ME) framework offers the mathematically

minimal probabilistic model of population activity that

satisfies a set of desired constraints without making arbi-

trary assumptions [50]. For example, if we denote the

activity of cell i in a small time bin by xi = 0 for silence,

and xi = 1 for spiking, then the most random and unique

model that obeys the firing rates and pairwise correlations

between cells, is given by Pðx1; x2; . . .; xnÞ ¼
ð1=ZÞexp

P
iaixi þ ð1=2Þ

P
i 6¼ jbijxixj

n o
, where the set of

ai’s and bij’s are chosen to obey the constraints, and Z is a

normalization factor (or partition function). Such pairwise

models capture with high accuracy the probability of

individual spatial spiking patterns of tens of cells in

different systems at the level of individual combinatorial

patterns [25,34,35,39,51,52,53�,54]. Restricted Boltzmann

Machines offer a natural extension for capturing high-

order relations between cells [55�]. Figure 1 presents an

example of the accuracy of pairwise ME models in

capturing population activity patterns at the resolution

of individual population patterns.

The accuracy of these models reflect the low-dimensional

nature of population codes. For example, the accurate

pairwise ME model relies on n(n + 1)/2 parameters, com-

pared with the 2n that would be needed for the distribu-

tion of binary activity patterns of n cells in the general

case, and the n parameters needed for the independent

model. Even these pairwise model may be further
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reduced while retaining accuracy by taking local structure

or discretized interaction values into account [52].

For larger populations, an accurate model of the vocabu-

lary of activity patterns may require models that go

beyond pairs, in particular for spatio-temporal patterns

[36,39,53�,54,55�,56]. Adding a small number of high-

order terms such as the distribution of synchrony values

of the population or a selected set of high-order terms are

sufficient for �100 cells responding to natural stimuli

[53�,54,57]. These high-order dependencies may arise

from the nature of the stimulus, the internal structure

of larger populations, or the activity of unseen (hidden)

neurons [53�,55�,58,59].

Extending this approach to the dynamics of population

responses to stimuli, the stimulus-dependent maximum

entropy models (SDME) of population encoding capture

population responses significantly better than condition-

ally independent models (Figure 2A). Moreover, the

importance of including correlations in population encod-

ing models becomes more apparent with population size

[40,41�,42�] (see e.g. Figure 2b).

Mapping the semantic space of population
codes, and a neural metric on stimulus space
The correlated activity of neuronal populations suggests

that we should revise the classic view of the receptive field

of a neuron with that of the collective response properties of

populations [27,28,60�]. To understand information repre-

sentation and computation in large populations, we must go

beyond detailed analysis of combinatorial coding patterns

[61–63] to characterize the ‘semantic organization’ of the

spaces of stimuli and responses. Characterizing the noisy

nature of mapping between stimuli and responses would

enable deciphering the meaning of novel patterns that we

have not seen before, and decode new stimuli that have

been presented before. But how can we learn such neural

dictionaries by generalizing from unavoidably severely

undersampled set of observations of stimuli and responses,

without making arbitrary assumptions?

Quantifying the similarity of population  activity patterns {xi}

and {xj} by their semantic overlap, namely, how similar are

the stimuli these patterns are used to encode by comparing

P(sj{xi}) and P(sj{xj}) — gives an assumption-free way to map

the organization of the neural codebook (Figure 3a). In the

vertebrate retina this revealed that the neural codebook of

groups of 20 cells is organized in a relatively small number of

semantic clusters that capture almost all the information

carried by the population (Figure 3b and c). Importantly,

metrics like Hamming distance, edit-distance, or other

linear or bi-linear metrics fail to capture this organization

of the space of population patterns [42�].

On the decoding side, mean-squared-error (MSE) has

been commonly used to measure how well sensory stimuli
www.sciencedirect.com
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Figure 1
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Example of the high accuracy of a pairwise maximum entropy models for spatial activity patterns of a large network responding to natural stimuli,

and signs of higher order interactions. (a) A segment of the simultaneous action potential sequences of 99 ganglion cells in the salamander retina

responding to a natural movie clip. Each line corresponds to a single neuron, each tick represents a single spike. (b) The probability of occurrence

of each simultaneous (spatial) population activity pattern that appeared in the experiment as predicted if all cells were independent (P(1), grey), or

by the 2nd order maximum entropy model, which takes into account pairwise correlations (P(2), red), are plotted against the measured rate. Note

that while most rare patterns fall within the confidence region (not shown), frequently observed patterns are misestimated by the pairwise model.

Adding a small number of high-order dependencies in this case gives a nearly perfect fit (not shown). (c) Probability distribution of synchronous

spiking events in the 99 cell population in response to a long natural movie (black). The distribution of synchronous events for the same 99 cells

predicted by the independent model (grey, P(1)), and the synchrony distribution predicted from the 2nd order maximum entropy model P(2) (red)

are shown (d). Probability distribution of synchronous spiking events in the 99 cell population in response to artificial white noise stimuli (black).

2nd order model, and independent model, built as described in (c). Unlike the responses to natural movies, the pairwise model provides a very

good fit to responses to white noise stimuli, reflecting a negligible role for higher order interactions in the population activity evoked by such

stimuli.

Adapted from [53�].
or movements are reconstructed from neural activity. The

similarity between two stimuli si and sj, can be quantified

by the overlap of the neural responses they elicit, P({x}jsi)

and P({x}jsj) — again, without the need of arbitrary

assumptions of similarity. For the vertebrate retina this

showed that similarity as judged by the retina was very

different than what we would expect from Euclidean

metrics, and MSE in particular [40,41�] (Figure 2c).

Thus, the brain’s ‘metrics’ on stimulus space and on

neural space are very different than our intuitive notion

of similarity, and the clustered semantic organization of

the space of neural activity patterns cannot be inferred

from simple intuitive notions of what would constitute

spiking similarities (see [42�]). Extending these ideas

beyond sensory circuits and linking the brain metrics

on stimuli and neural activity patterns would be necessary

for our understanding of the code of high brain areas.
www.sciencedirect.com 
Neural population codes of larger populations
and cognitive processing
Cognitive processing relies on computational architec-

tures that are far more complicated than those of sensory

circuits. Higher brain areas are usually built of many more

cells, display a myriad of recurrent connections, and no

apparent simple correlation structures. These imply in-

tricate spatio-temporal processing that still empowers fast

classification, decisions, and actions.

Experimental advances that would enable accurate record-

ings from thousands, millions, or all the neurons in an

animal’s brain at single spike resolution [18,22,64], would

still suffer from the inability to quantify directly the full

nature of correlations in large populations because of sam-

pling issues. In many cases no specific population activity

pattern would repeat itself over any experimental time

window [53�]. Can smaller networks reveal simplifying
Current Opinion in Neurobiology 2016, 37:133–140
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Figure 2
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Stimulus dependent ME model captures noise correlations between cells, and allow for learning a metric on stimulus space, based on the neural

population. (a) Pairwise SDME model predicts population activity patterns for N = 100 retinal ganglion cells responding to Gaussian white noise

stimulus much better than conditionally independent model. The log-likelihood ratio of the population firing patterns under the SDME model and

under the conditional independent model, shown as a function of time (red dots, scale at left) for an example stimulus repeat (models fitted on

train data; example shown is for test data). For reference, the average time dependent population firing rate is shown in grey (scale at right). (b)

The performance of the SDME model relative to conditionally independent LN models. The average log likelihood ratio between the SDME and the

conditional independent models evaluated on the test set, as a function of the population size, N (error bars = std over 10 randomly chosen

groups of neurons at that N). (c) An example of learning a metric on stimulus space from population neural responses: Stimulus segment with two

400 ms stimulus clips s1 (red), s2 (blue). Bottom: For every pair of time bins in the experiment, the Euclidean distance D2 between the

corresponding stimulus clips is shown in the upper diagonal part of the matrix, and the retinal neurons’ distance Dret in the lower part.

Adapted from [40,41�].
principles for large networks? The organization of the

code of a few hundred cells in sensory systems already

diverges from the view at the level of tens of cells — in

terms of higher-order  interactions [53�,54,65�], and the

spatial decay of functional dependencies [52]— suggest-

ing that there may be a typical functional module size. A

promising direction has been given by an example of

learning the codebook of a large population by combin-

ing many models of small overlapping subnetworks,

suggesting a hierarchical organization of learnable

high-order codes [53�,66].

An especially intriguing feature of the vocabulary of

neural populations is the distribution of frequencies of

observed activity patterns, which resembles a power-law

[53�,54]. While some of this behavior might be expected

from the nature of collective responses with hidden

elements (be it the stimulus or other neurons)

[53�,59,67,68], it has been suggested to reflect design

rather than epiphenomena of the code (see also [69]).

Interestingly, this structure allows for learning the Reli-

able Interaction model (an approximate non-normalized

ME model), which finds the dominant interactions of any

order based on the frequent population patterns. In the

retina, this model gave a very sparse high-order model

with unparalleled accuracy in predicting the appearance

of individual activity patterns in test data — showing that

the code learnable from examples [53�]. More broadly,
Current Opinion in Neurobiology 2016, 37:133–140 
the Zipf-like distribution of population states is reminis-

cent of physical systems near critical behavior, congruent

with the possibility of collective behavior states of the

code of large groups of neurons that allow for a wide

range of distinct responses that would be easily decod-

able [65�,70]. Signatures of such critical behavior and its

possible role as a feature of large networks in coding and

adaptation have been presented in several different

systems [65�,70,71].

Merging these ideas of codebook generalization, sparse

high-order interactions, semantic clusters, and the collec-

tive behavior of large populations, would be fundamental

to our ability to understand the design principles of large

networks and cognitive computations.

What could the nature of spatio-temporal
codes reveal about the cognitive
computations they perform?
The functional interactions between cells that underlie

correlated codes set a form of a prior over population activity

patterns, thus shaping the way stimuli would be perceived

and encoded. Analysis of simple population models suggests

that the interactions between cells that would maximize the

information they carry about their stimuli, are the ones that

would result in spontaneous activity that resembles the

patterns that would be used to encode the stimuli [9,72]
www.sciencedirect.com
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Figure 3
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Mapping the semantic organization of population codebook, reveals a

small set of semantic clusters. (a) A cartoon of the way the semantic

similarity between neural activity patterns was estimated. For two

neural words, we inferred the distribution over stimuli given the neural

word, using an SDME model for the neural population response. Then

www.sciencedirect.com 
— in accordance with experimental results of spontaneous

(ongoing) cortical activity [37�,51,73,74,75,76�]. Moreover,

rather than encoding specific stimuli,  it has been suggested

that neurons may be representing the likelihood of their

inputs — under an internally learned model [77–79]. Hier-

archical population codes may allow for neurons to learn and

encode these likelihoods as biological plausible models

suggest [80–83].

Extending the models we presented here, for the spatio-

temporal dynamics of population activity in high brain

areas, would allow us to explore the computation or

algorithms that these circuits implement. Ultimately,

mapping the way population codes change or adapt on

short time scales [84,85�], and during learning, would

delineate the dynamics of individual cells and of groups

in terms of stimulus features or information they learn to

represent and compute [86,87].

Finally, the ability to map the layout of connections in

large networks [88] and to ‘put numbers’ on these

connections [89,90�], and a model-based description

of population activity patterns of the kind we pre-

sented here, would hopefully allow for understanding

the relations between neural architecture and function

and the development of neural circuits, and allow for

tinkering and engineering of networks and neural

computation.
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the similarity between patterns was estimated using the Jensen–

Shannon divergence between the distributions, d. (b) The neural

codebook of the retina is comprised of distinct clustered responses

with highly similar meaning. Example of the similarity matrix of the

population responses of representative group of 20 neurons to a

natural movie. Each entry in the matrix corresponds to the similarity d

between two population responses (‘words’) observed in the test data.

Matrix rows (and columns) are ordered according to the result of

clustering the words using k-means. On the bottom we show the

population responses corresponding to the entries in the matrix; the

blue lines mark borders between different clusters. (c) A graphical

representation of the organization of the codebook of these cells: The

responses belonging to clusters that contain 30–300 patterns were

embedded in 3D using a dimensionality reduction algorithm (The

Euclidean distance in the plot approximates the similarity measure d).

Each ellipse represents the 1 STD Gaussian fit to all responses

belonging to a single cluster. The coordinates also correspond to the

RGB value of each ellipse, thus nearby clusters share similar colors.

Adapted from [42�].
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