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The ability to record the joint activity of large groups of neurons
would allow for direct study of information representation and
computation at the level of whole circuits in the brain. The
combinatorial space of potential population activity patterns
and neural noise imply that it would be impossible to directly
map the relations between stimuli and population responses.
Understanding of large neural population codes therefore
depends on identifying simplifying design principles. We review
recent results showing that strongly correlated population
codes can be explained using minimal models that rely on low
order relations among cells. We discuss the implications for
large populations, and how such models allow for mapping the
semantic organization of the neural codebook and stimulus
space, and decoding.
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Redundancy reduction vs. robustness and
learnability

Efficient coding has been a key prospective design
principle of the neural code — suggesting that neuronal
spiking patterns convey information in a way that
maximizes their capacity, given constraints such as
energetic cost, number of neurons, time, etc. [1].
Accordingly, groups of neurons would maximize the infor-
mation they convey about their stimuli by minimizing the
overlap in the information they carry [2]. This idea of
redundancy reduction implies that the responses of cells
would be decorrelated, and was used to predict or explain
the nature of the receptive fields and response properties of
cells in different parts of the visual system, the nature of
eye movements, and more [3-7].
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However, correlations among neurons are fundamental
for robustness of the code to abundant neuronal noise.
Moreover, redundancy is exactly what makes a code
learnable from examples [8]. It is clear then that correla-
tions must be an inherent part of the design of the neural
code. Indeed, analysis of large neuronal populations has
shown that large groups can be strongly correlated (see
below) and the potential importance and benefits of these
correlations have been extensively discussed [5,9-13].

The design of the code of large populations of neurons in
terms of correlation structures, connectivity, and sparse-
ness have been explored theoretically (see e.g. [14-16]),
but the ability to record simultaneously from large popu-
lations of cells makes it possible to study population codes
directly [17-24]. Importantly, neuronal variability or noise
means that in studying these codes we need to use
probability distributions over the vast space of combina-
torial coding patterns. Thus, we will not be able to
exhaustively map the code of large populations by direct
sampling, and would need to find simplifying principles
that govern the organization of the codebook and its
functional role [25,26°,27,28].

Correlation structures of population codes

In many neural systems, the correlation between pairs of
neurons is typically weak. This is the case for the corre-
lation between cells averaged over stimuli (sometimes
called signal correlations): denoting the spiking patterns
of cells 7 and 7 with x; and x;, P(x;, x;) is typically close to
P(x;)P(x;) [11,25,29]. Similarly, the pairwise correlations in
responses to repeated presentation of the same stimulus,
s, are weak: P(x;, x/|s) is typically not far from P(x;|s)P(x/|s)
[5,30,31], and so averaging over stimuli, cell pairs have
been reported to have low ‘noise correlations’ (a some-
what misleading name as the difference between these
two distributions measures stimulus dependent coding
correlations). Moreover, the information that pairs carry
about their stimuli is typically weakly redundant: /(x;
x;58) is usually a little lower than [(x;;s) + I(x;55)
[30,32,33], where I(x;y) is the mutual information be-
tween x and y. All these seem consistent with the idea of
redundancy reduction.

However, groups of a few tens of cells can be strongly
correlated, even when their typical pairwise correlations
are weak [25,34,35,36,37°,38%,39]. These group correla-
tions — quantified by the difference between P(xq, x5, . . .,
x,) and P(x{)P(x;) - - - P(xy) — mean that the ‘vocabulary’
of the neural population is more structured and less
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diverse than it would have been if the cells were inde-
pendent, given the coding properties of single cells.
Similarly, the stimulus-dependent distribution of neural
responses P(xq, Xz, . . ., X,|$) can be far from the condition-
ally independent one P(x[s)P(x,|s) - - - P(xyls), for partic-
ular stimulus s, showing that while noise correlations may
be weak on average, they can be strong for interesting
stimuli and play a role in coding [40,41°,42°].

Models of population activity reveal sparse
high-order organization of the neural code
To understand and quantify the nature and origin of
the correlated structure of population codes, several fam-
ilies of models have been commonly used. Generalized
linear models (GLMs) extend the Linear-nonlinear
Poisson rate models of single cells to predict the
instantaneous rate of neuron 7, given by A;(7) =
explk;s + h;-x; + Zjl,j-x/ + u;) where s is the stimulus,
x;is the spiking history of cell 7 at time 7, u; is the log of the
cell’s baseline firing rate, %; is a spatio-temporal filter
describing the cell’s response to the stimulus, Z; is the
incoming coupling of cell j to 7, and A; is a temporal filter
on the cell’s own history; the last three are fit to maximize
the likelihood of the data under this model. These models
surpass conditionally independent models in predicting
the activity of single cells and low-order correlations
between cells [43,44], give a causal interpretation of
the temporal patterns of cells, and have been successfully
used in stimulus decoding [45°,46,47,48,49]. The maxi-
mum entropy (ME) framework offers the mathematically
minimal probabilistic model of population activity that
satisfies a set of desired constraints without making arbi-
trary assumptions [50]. For example, if we denote the
activity of cell 7 in a small time bin by «x; = 0 for silence,
and x; = 1 for spiking, then the most random and unique
model that obeys the firing rates and pairwise correlations
between _ cells, is given by _ P(xy,x2,...,x,) =
(I/Z)exp{ziozix; + (1/2)Zi¢/,31-/-xixj}, where the set of
a;’s and B;7’s are chosen to obey the constraints, and Z is a
normalization factor (or partition function). Such pairwise
models capture with high accuracy the probability of
individual spatial spiking patterns of tens of cells in
different systems at the level of individual combinatorial
patterns [25,34,35,39,51,52,53°,54]. Restricted Boltzmann
Machines offer a natural extension for capturing high-
order relations between cells [55°]. Figure 1 presents an
example of the accuracy of pairwise ME models in
capturing population activity patterns at the resolution
of individual population patterns.

The accuracy of these models reflect the low-dimensional
nature of population codes. For example, the accurate
pairwise ME model relies on #(# + 1)/2 parameters, com-
pared with the 2” that would be needed for the distribu-
tion of binary activity patterns of # cells in the general
case, and the # parameters needed for the independent
model. Even these pairwise model may be further

reduced while retaining accuracy by taking local structure
or discretized interaction values into account [52].

For larger populations, an accurate model of the vocabu-
lary of activity patterns may require models that go
beyond pairs, in particular for spatio-temporal patterns
[36,39,53°,54,55°,56]. Adding a small number of high-
order terms such as the distribution of synchrony values
of the population or a selected set of high-order terms are
sufficient for ~100 cells responding to natural stimuli
[53°,54,57]. These high-order dependencies may arise
from the nature of the stimulus, the internal structure
of larger populations, or the activity of unseen (hidden)
neurons [53°,55°,58,59].

Extending this approach to the dynamics of population
responses to stimuli, the stimulus-dependent maximum
entropy models (SDME) of population encoding capture
population responses significantly better than condition-
ally independent models (Figure 2A). Moreover, the
importance of including correlations in population encod-
ing models becomes more apparent with population size
[40,41°,42°] (see e.g. Figure 2b).

Mapping the semantic space of population
codes, and a neural metric on stimulus space
The correlated activity of neuronal populations suggests
that we should revise the classic view of the receptive field
of a neuron with that of the collective response properties of
populations [27,28,60°]. T'o understand information repre-
sentation and computation in large populations, we must go
beyond detailed analysis of combinatorial coding patterns
[61-63] to characterize the ‘semantic organization’ of the
spaces of stimuli and responses. Characterizing the noisy
nature of mapping between stimuli and responses would
enable deciphering the meaning of novel patterns that we
have not seen before, and decode new stimuli that have
been presented before. But how can we learn such neural
dictionaries by generalizing from unavoidably severely
undersampled set of observations of stimuli and responses,
without making arbitrary assumptions?

Quantifying the similarity of population activity patterns {x;}
and {x;} by their semantic overlap, namely, how similar are
the stimuli these patterns are used to encode by comparing
P(s|{x;}) and P(s|{x/-}) — gives an assumption-free way to map
the organization of the neural codebook (Figure 3a). In the
vertebrate retina this revealed that the neural codebook of
groups of 20 cells is organized in a relatively small number of
semantic clusters that capture almost all the information
carried by the population (Figure 3b and c). Importantly,
metrics like Hamming distance, edit-distance, or other
linear or bi-linear metrics fail to capture this organization
of the space of population patterns [42°].

On the decoding side, mean-squared-error (MSE) has
been commonly used to measure how well sensory stimuli
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Figure 1
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Example of the high accuracy of a pairwise maximum entropy models for spatial activity patterns of a large network responding to natural stimuli,
and signs of higher order interactions. (a) A segment of the simultaneous action potential sequences of 99 ganglion cells in the salamander retina
responding to a natural movie clip. Each line corresponds to a single neuron, each tick represents a single spike. (b) The probability of occurrence
of each simultaneous (spatial) population activity pattern that appeared in the experiment as predicted if all cells were independent (P, grey), or
by the 2nd order maximum entropy model, which takes into account pairwise correlations (P®, red), are plotted against the measured rate. Note
that while most rare patterns fall within the confidence region (not shown), frequently observed patterns are misestimated by the pairwise model.
Adding a small number of high-order dependencies in this case gives a nearly perfect fit (not shown). (c) Probability distribution of synchronous
spiking events in the 99 cell population in response to a long natural movie (black). The distribution of synchronous events for the same 99 cells
predicted by the independent model (grey, P"), and the synchrony distribution predicted from the 2nd order maximum entropy model P® (red)
are shown (d). Probability distribution of synchronous spiking events in the 99 cell population in response to artificial white noise stimuli (black).
2nd order model, and independent model, built as described in (c). Unlike the responses to natural movies, the pairwise model provides a very
good fit to responses to white noise stimuli, reflecting a negligible role for higher order interactions in the population activity evoked by such

stimuli.
Adapted from [53°].

or movements are reconstructed from neural activity. The
similarity between two stimuli 5; and s;, can be quantified
by the overlap of the neural responses they elicit, P({x}]s;)
and P({x}|s/») — again, without the need of arbitrary
assumptions of similarity. For the vertebrate retina this
showed that similarity as judged by the retina was very
different than what we would expect from Euclidean
metrics, and MSE in particular [40,41°] (Figure 2c¢).

Thus, the brain’s ‘metrics’ on stimulus space and on
neural space are very different than our intuitive notion
of similarity, and the clustered semantic organization of
the space of neural activity patterns cannot be inferred
from simple intuitive notions of what would constitute
spiking similarities (see [42°]). Extending these ideas
beyond sensory circuits and linking the brain metrics
on stimuli and neural activity patterns would be necessary
for our understanding of the code of high brain areas.

Neural population codes of larger populations
and cognitive processing

Cognitive processing relies on computational architec-
tures that are far more complicated than those of sensory
circuits. Higher brain areas are usually built of many more
cells, display a myriad of recurrent connections, and no
apparent simple correlation structures. These imply in-
tricate spatio-temporal processing that still empowers fast
classification, decisions, and actions.

Experimental advances that would enable accurate record-
ings from thousands, millions, or all the neurons in an
animal’s brain at single spike resolution [18,22,64], would
still suffer from the inability to quantify directly the full
nature of correlations in large populations because of sam-
pling issues. In many cases no specific population activity
pattern would repeat itself over any experimental time
window [53°]. Can smaller networks reveal simplifying
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Stimulus dependent ME model captures noise correlations between cells, and allow for learning a metric on stimulus space, based on the neural
population. (a) Pairwise SDME model predicts population activity patterns for N = 100 retinal ganglion cells responding to Gaussian white noise
stimulus much better than conditionally independent model. The log-likelihood ratio of the population firing patterns under the SDME model and
under the conditional independent model, shown as a function of time (red dots, scale at left) for an example stimulus repeat (models fitted on
train data; example shown is for test data). For reference, the average time dependent population firing rate is shown in grey (scale at right). (b)
The performance of the SDME model relative to conditionally independent LN models. The average log likelihood ratio between the SDME and the
conditional independent models evaluated on the test set, as a function of the population size, N (error bars = std over 10 randomly chosen
groups of neurons at that N). (c) An example of learning a metric on stimulus space from population neural responses: Stimulus segment with two
400 ms stimulus clips s; (red), s, (blue). Bottom: For every pair of time bins in the experiment, the Euclidean distance D, between the
corresponding stimulus clips is shown in the upper diagonal part of the matrix, and the retinal neurons’ distance D, in the lower part.

Adapted from [40,41°].

principles for large networks? The organization of the
code of a few hundred cells in sensory systems already
diverges from the view at the level of tens of cells — in
terms of higher-order interactions [53°,54,65°], and the
spatial decay of functional dependencies [52]— suggest-
ing that there may be a typical functional module size. A
promising direction has been given by an example of
learning the codebook of a large population by combin-
ing many models of small overlapping subnetworks,
suggesting a hierarchical organization of learnable
high-order codes [53°,66].

An especially intriguing feature of the vocabulary of
neural populations is the distribution of frequencies of
observed activity patterns, which resembles a power-law
[53°,54]. While some of this behavior might be expected
from the nature of collective responses with hidden
elements (be it the stimulus or other neurons)
[53°,59,67,68], it has been suggested to reflect design
rather than epiphenomena of the code (see also [69]).
Interestingly, this structure allows for learning the Reli-
able Interaction model (an approximate non-normalized
ME model), which finds the dominant interactions of any
order based on the frequent population patterns. In the
retina, this model gave a very sparse high-order model
with unparalleled accuracy in predicting the appearance
of individual activity patterns in test data — showing that
the code learnable from examples [53°]. More broadly,

the Zipf-like distribution of population states is reminis-
cent of physical systems near critical behavior, congruent
with the possibility of collective behavior states of the
code of large groups of neurons that allow for a wide
range of distinct responses that would be easily decod-
able [65°,70]. Signatures of such critical behavior and its
possible role as a feature of large networks in coding and
adaptation have been presented in several different
systems [65°,70,71].

Merging these ideas of codebook generalization, sparse
high-order interactions, semantic clusters, and the collec-
tive behavior of large populations, would be fundamental
to our ability to understand the design principles of large
networks and cognitive computations.

What could the nature of spatio-temporal
codes reveal about the cognitive
computations they perform?

The functional interactions between cells that underlie
correlated codes set a form of a prior over population activity
patterns, thus shaping the way stimuli would be perceived
and encoded. Analysis of simple population models suggests
that the interactions between cells that would maximize the
information they carry about their stimuli, are the ones that
would result in spontaneous activity that resembles the
patterns that would be used to encode the stimuli [9,72]

Current Opinion in Neurobiology 2016, 37:133-140
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Figure 3
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Mapping the semantic organization of population codebook, reveals a
small set of semantic clusters. (a) A cartoon of the way the semantic
similarity between neural activity patterns was estimated. For two
neural words, we inferred the distribution over stimuli given the neural
word, using an SDME model for the neural population response. Then

— in accordance with experimental results of spontaneous
(ongoing) cortical activity [37°,51,73,74,75,76°]. Moreover,
rather than encoding specific stimuli, it has been suggested
that neurons may be representing the likelihood of their
inputs — under an internally learned model [77-79]. Hier-
archical population codes may allow for neurons to learn and
encode these likelihoods as biological plausible models
suggest [80-83].

Extending the models we presented here, for the spatio-
temporal dynamics of population activity in high brain
areas, would allow us to explore the computation or
algorithms that these circuits implement. Ultimately,
mapping the way population codes change or adapt on
short time scales [84,85°], and during learning, would
delineate the dynamics of individual cells and of groups
in terms of stimulus features or information they learn to
represent and compute [86,87].

Finally, the ability to map the layout of connections in
large networks [88] and to ‘put numbers’ on these
connections [89,90°], and a model-based description
of population activity patterns of the kind we pre-
sented here, would hopefully allow for understanding
the relations between neural architecture and function
and the development of neural circuits, and allow for
tinkering and engineering of networks and neural
computation.
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the similarity between patterns was estimated using the Jensen—
Shannon divergence between the distributions, d. (b) The neural
codebook of the retina is comprised of distinct clustered responses
with highly similar meaning. Example of the similarity matrix of the
population responses of representative group of 20 neurons to a
natural movie. Each entry in the matrix corresponds to the similarity d
between two population responses (‘words’) observed in the test data.
Matrix rows (and columns) are ordered according to the result of
clustering the words using k-means. On the bottom we show the
population responses corresponding to the entries in the matrix; the
blue lines mark borders between different clusters. (c) A graphical
representation of the organization of the codebook of these cells: The
responses belonging to clusters that contain 30-300 patterns were
embedded in 3D using a dimensionality reduction algorithm (The
Euclidean distance in the plot approximates the similarity measure d).
Each ellipse represents the 1 STD Gaussian fit to all responses
belonging to a single cluster. The coordinates also correspond to the
RGB value of each ellipse, thus nearby clusters share similar colors.
Adapted from [42°].
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