Critical Thinking in Neuroscience: a Guided Reading Seminar

Organizers: Dr. Nachum Ulanovsky, Dr. Rony Paz

Aim: This seminar is guided by the premise that the ability to read and analyze research papers is critical to the development of a researcher in neuroscience. The purpose of the seminar is to develop these skills by critically reading, presenting and discussing classics and recent influential papers in neuroscience. To do so, we will focus on several different topics. This semester, we chose the following 4 topics:

  1. Reactivation of brain activity and its relation to memory consolidation
  2. Coding for positive (reward) vs. negative (aversive) reinforcement
  3. The role of brain oscillations
  4. Working memory and its representation in the brain

The role of methodological as well as conceptual developments will be explored and emphasized.

Each meeting, two or three papers will be presented by students and discussed by the group. All students MUST read all the papers (2-3 papers per week).

Location: Small seminar room of the Department of Neurobiology (Benoyzio room #113)

Time: Sundays, 14:00 – 16:00

Date Paper Presenter
TOPIC 1:  Reactivation of brain activity and its relation to memory consolidation  (Nachum Ulanovsky)
28/10/2007 Classics:
Wilson MA & McNaughton BL,  Reactivation of hippocampal ensemble memories during sleep, Science (1994) 265, 676-9.
Skaggs WE & McNaughton BL, Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience, Science (1996) 271, 1870-3.
Orit Furman
Reactivation of sequences:
Lee AK & Wilson MA, Memory of sequential experience in the hippocampus during slow wave sleep, Neuron (2002) 36, 1183-94.
Yonatan Katz
04/11/2007 “The devil is in the details” – methodological considerations:
Tatsuno M, Lipa P & McNaughton BL. Methodological considerations on the use of template matching to study long-lasting memory trace replay, J. Neurosci. (2006)  26, 10727-42.
Oren Forkosh
Reverse replay versus forward replay:
Foster DJ & Wilson MA, Reverse replay of behavioural sequences in hippocampal place cells during the awake state, Nature (2006) 440, 680-3.
Diba K & Buzsaki G, Forward and reverse hippocampal place-cell sequences during ripples. Nat. Neurosci (2007) 10, 1241-2.  [A very short paper – 2 pages]
Nachum Ulanovsky
18/11/2007 Example of reactivation outside the hippocampus – in visual cortex:
Ji D & Wilson MA, Coordinated memory replay in the visual cortex and hippocampus during sleep, Nat. Neurosci. (2007) 10, 100-7.
Yaron Penn
Another example of reactivation outside the hippocampus – in the amygdala – using molecular techniques:
Reijmers LG, Perkins BL, Matsuo N & Mayford M. Localization of a stable neural correlate of associative memory, Science (2007)  317, 1230-3.
Dana Galili
TOPIC 2:  Coding for positive (reward) vs. negative (aversive) reinforcement  (Rony  Paz)
02/12/2007 Waelti P, Dickinson A, Schultz W. Dopamine responses comply with basic assumptions of formal learning theory  Nature (2001) Jul 5;412(6842):43-8. Arseny Finkelstein
O'Doherty JP, Dayan P, Friston K, Critchley H, Dolan RJ. Temporal difference models and reward-related learning in the human brain. Neuron. (2003) Apr 24;38(2):329-37.
Seymour B, O'Doherty JP, Dayan P, Koltzenburg M, Jones AK, Dolan RJ, Friston KJ, Frackowiak RS. Temporal difference models describe higher-order learning in humans. Nature (2004) Jun 10;429(6992):664-7.
Efrat Furst
16/12/2007 Fiorillo CD, Tobler PN, Schultz W. Discrete coding of reward probability and uncertainty by dopamine neurons. Science (2003) Mar 21;299(5614):1898-902.
Morris G, Arkadir D, Nevet A, Vaadia E, Bergman H. Coincident but distinct messages of midbrain dopamine and striatal tonically active neurons. Neuron (2004) Jul 8;43(1):133-43.
Sharona Sedghani-Cohen
Yacubian J, Gläscher J, Schroeder K, Sommer T, Braus DF, Büchel C. Dissociable systems for gain- and loss-related value predictions and errors of prediction in the human brain. J Neurosci. (2006) Sep 13;26(37):9530-7.
Seymour B, O'Doherty JP, Koltzenburg M, Wiech K, Frackowiak R, Friston K, Dolan R. Opponent appetitive-aversive neural processes underlie predictive learning of pain relief. Nat Neurosci. (2005) Sep;8(9):1234-40.
Avi Mendelsohn
23/12/2007 Paton JJ, Belova MA, Morrison SE, Salzman CD. The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature (2006) Feb 16;439(7078):865-70. Inbar Saraf-Sinik
Herry C, Bach DR, Esposito F, Di Salle F, Perrig WJ, Scheffler K, Lüthi A, Seifritz E. Processing of temporal unpredictability in human and animal amygdala. J Neurosci. (2007) May 30;27(22):5958-66. Eyal Cohen
TOPIC 3:  The role of brain oscillations  (Nachum Ulanovsky)
30/12/2007 Oscillations and sensory processing:
Gray CM, König P, Engel AK, Singer W. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature (1989) 23, 334-337.
Avi Mendelsohn
Perez-Orive J, Mazor O, Turner GC, Cassenaer S, Wilson RI, Laurent G. Oscillations and sparsening of odor representations in the mushroom body. Science (2002) 19, 359-365. Yonatan Katz
06/01/2008 Oscillations, rate coding, and temporal coding:
Mehta MR, Lee AK, Wilson MA. Role of experience and oscillations in transforming a rate code into a temporal code. Nature (2002) 13, 741-746.
Dragoi G, Buzsáki G. Temporal encoding of place sequences by hippocampal cell assemblies. Neuron (2006) 50, 145-157. Moosh
13/01/2008 From oscillations in time to oscillations in space:
Burgess N, Barry C, O'Keefe J. An oscillatory interference model of grid cell firing. Hippocampus (2007) 17, 801-812.
Omri Barak
Giocomo LM, Zilli EA, Fransén E, Hasselmo ME. Temporal frequency of subthreshold oscillations scales with entorhinal grid cell field spacing. Science (2007) 315, 1719-1722 . Eyal Cohen
TOPIC 4:  Working memory and its representation in the brain  (Rony  Paz)
20/01/2008 Romo R, Brody CD, Hernández A, Lemus L.Neuronal correlates of parametric working memory in the prefrontal cortex. Nature (1999) Jun 3;399(6735):470-3.  
Rao SC, Rainer G, Miller EK.Integration of what and where in the primate prefrontal cortex.
Science (1997) May 2;276(5313):821-4.
Omri Barak
Machens CK, Romo R, Brody CD. Flexible control of mutual inhibition: a neural model of two-interval discrimination. Science (2005) Feb 18;307(5712):1121-4. Lior Fisch
27/01/2008 Egorov AV, Hamam BN, Fransén E, Hasselmo ME, Alonso AA. Graded persistent activity in entorhinal cortex neurons. Nature (2002) Nov 14;420(6912):173-8. Hagar Gelbard-Sagiv
Vijayraghavan S, Wang M, Birnbaum SG, Williams GV, Arnsten AF. Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nat Neurosci. (2007) Mar;10(3):376-84. Epub 2007 Feb 4. Inbar Saraf-Sinik
General Discussion
03/0211/2008 Summing up: Common types of errors in experimental work in neuroscience – and what can we do to avoid doing these errors ourselves.
Click here for Nachum's summary.