Introduction to Neuroscience – Behavioral Neuroscience

Sexual dimorphism in brain and behavior: Hormonal and genetic regulation

Sexual Dimorphism

Sexual dimorphism is the difference in form between male and female members of the same species

Sexual dimorphism in body characteristics

Social behavior in mammalian species

- Most striking categories of sexually dimorphic behaviors
- Innate (genetically-predetermined) behaviors
- Controlled by simple sensory signals (e.g. pheromones)

Courtship behavior

Sexual behavior

Aggressive behavior (territoriality)

Parental behavior

The role of hormones in regulation of sexual dimorphism in behavior

Behavioral Neuroendocrinology

Arnold A. Berthold (1803–1861) German physiologist and zoologist

In 1849, Berthold conducted one of the first experiments in behavioral endocrinology

Research question tested: Are the effects of prepubertal castration in males, dependent on neural connections to the testes?

<u>Hypothesis</u>: Intact testes are necessary for the development of male-typical characteristics

Animal model:

Castration

Castration +
Transplantation
in the same body

Castration +
Transplantation
in another body

Berthold's experiment- summary

Findings:

- -Males that were castrated as juveniles later showed deficits as adults, in male-typical body characteristics and in behaviors such as aggression, mating and crowing.
- -All of these effects could be reversed if the subject's testes, or the testes of another male, were implanted into the body cavity.

Conclusion:

Testes influence the development of male-typical morphology, and male-typical behavior, NOT through nerves, but by secreting a substance into the bloodstream (i.e. hormones).

Ernest Henry Starling (1866-1922), English physiologist

The first to use the term hormone. "Hormones" from Greek " to excite"

"These chemical messengers, however, or <hormones> (from $oqu\acute{a}\omega=I$ excite or arouse), as we might call them, have to be carried from the organ where they are produced to the organ which they affect by means of the blood stream and the continually recurring physiological needs of the organism must determine their repeated production and circulation through the body".

Starling (1905); Lancet

<u>Hormone:</u> "A substance, usually a peptide or steroid, produced by one tissue and conveyed by the bloodstream to another to effect physiological activity"

ORGANIZING ACTION OF PRENATALLY ADMINISTERED TESTOSTERONE PROPIONATE ON THE TISSUES MEDIATING MATING BEHAVIOR IN THE FEMALE GUINEA PIG¹

CHARLES H. PHOENIX, ROBERT W. GOY, ARNOLD A. GERALL AND WILLIAM C. YOUNG

Department of Anatomy, University of Kansas, Lawrence, Kansas

Endocrinology, 1959, 65:369-382

William C. Young (1899-1965)

<u>Findings:</u> female guinea pigs prenatally exposed to testosterone did not show any female-typical behavior when given estradiol and progesterone during adulthood

The organization/activation hypothesize

- Sex hormones act during the prenatal stage to irreversibly organize the nervous system in a sex-specific manner
- •During adult life, the same hormones possess activation effects, causing it to function in a sex-typical manner

The classic model of brain sexual differentiation

McCarthy 2020 J comp Physiol

Genetic manipulation of SRY in mice

Genetic females expressing SRY gene are gonadally males

XX Sry (XXM)

TH neurons in the AVPV in adult mice/rats

Dimorphic vasopressin fibers in the LS

Arnold et al 2004, Endocrinology

Evidence for the affect of Y-linked genes on brain sexual dimorphism

The *Sry* gene and other genes on the sex chromosomes regulate sexual dimorphism in social behaviors

Aggressive behavior

Maternal behavior

Effect of sex chromosomes on nociception

Direct regulation of the adult brain by SRY

Downregulation of SRY in the SN leads to decreased TH expression and deficient sensorimotor behavior

The Klinefelter syndrome, also known as the XXY genetic disorder

symptoms include:

- 1. Reduced fertility or full infertility
- 2. Female-typical body characteristics

Sex difference in brain and behavior in Zebra finches

Gynadromorphic Finch

ZZ (male) ZW (female)

A gene expressed on the W chromosome

ZZ (male) ZW (female)

A gene expressed on the Z chromosome

AR expression in the song nucleus HVC (larger in males)

Typical song of a male

The classic model of brain sexual differentiation

The Sex Hormones

"Male" (androgenic) sex hormone

-Also secreted by the adrenal gland

"Female" (estrogenic) sex hormone

* Both are steroid hormones and secreted in both sexes

Testosterone, Estradiol or DHT masculinizes the brain?

- Testosterone treatment in neonatal rats is blocked by prior administration of specific estrogen receptor antagonist
- DHT does not mimic the effect of testosterone
- Radio-labeled testosterone is recovered from the brain as radio-labeled estradiol
- Aromatase inhibitors counteract the effect of testosterone administration

Estradiol masculinizes the brain

- Testosterone treatment in neonatal rats is blocked by prior administration of specific estrogen receptor antagonist
- DHT does not mimic the effect of testosterone
- Radio-labeled testosterone is recovered from the brain as radio-labeled estradiol
- · Aromatase inhibitors counteract the effect of testosterone administration

Why isn't the female brain masculinized by estrogen?

- Estradiol production by the fetal ovaries is minimal
- High levels of circulating a-fetoprotein (AFP) in embryos

AFP = Fetal plasma protein that binds estrogens with high affinity and prevents it's passage through the placenta.

Role of Alpha-fetoprotein (AFP) in female brain development

Expression of the Tyrosine Hydroxylase (TH) gene in the hypothalamus (AVPV)

ATD=
Aromatase inhibitor

Arnold and McCarthy, 2016

Hormonal regulation of social behavior during adulthood

Aggressive behavior

Sexual behavior

Maternal behavior

Maternal behavior in postpartum female rats

Terkel and Rosenblatt (1968)

Joseph Terkel

Blood was transfused from a parturient female (one that had given birth within 30 min prior to the onset of the transfusion) into a virgin female.

Hormonal factors underlying maternal behavior

Maternal behavior of virgin females toward newborn (unfamiliar) pups is facilitated following blood transfusion from maternal females (lactating)

Prolactin in serum and maternal care in rats

• Removal of litters from mother rats resulted in a rapid decline of serum prolactin levels, reaching pregnancy levels 3 hr later

Amenomori et al 1970; Endocrinology

Prolactin is released from the pituitary gland

Ventral view

Optic nerve (II)

Median eminence

Pituitary gland

It was shown that hypophysectomy (removing the pituitary gland) delayed the onset of maternal behavior in estrogen-treated females

Medulla Spinal cord

Prolactin injection with a pituitary gland implanted in the kidney capsule induced maternal care

The Hypothalamus-Pituitary-Gonadal Axis

The Hypothalamus-Pituitary-Gonadal Axis

Effects of castration & testosterone treatment on males

- •In all rodents, gonadectomy decreases (abolishes) male courtship and sexual behavior
- •Testosterone replacement reinstates sexual behavior in males

The Hypothalamus-Pituitary-Gonadal Axis and estrous cycle of female rats

Estrous cycle begins with secretion of gonadotropins from the hypothalamus, which stimulate the growth of ovarian follicles, and ovulation; the ruptured ovarian follicle becomes a corpus luteum and produces estradiol and progesterone

Hormonal activation of female-typical sexual behavior

0 hours	42 hours	Lordosis?1
Oil	Oil	No
Estradiol (low dose)	Oil	Usually low
Oil	Progesterone	No
Estradiol	Progesterone	High

- •In all rodents, gonadectomy decreases (abolishes) female sexual receptivity
- ·Estrogen and progesterone replacement reinstates sexual behavior of females

The classic model of brain sexual differentiation

How can the female and male brains explain why females and males are so different?

Are the male and female brains wired differently?

Dimorphic brain functions/structures

Dimorphic social behaviors?

Sexually dimorphic brain nuclei in rodents

Bed Nucleus of the Stria Terminalis (BNST)
Sexually Dimorphic-Nucleus of Preoptic Area (SDN-POA)
Posterodorsal Medial Amygdala (MePD)

Larger in male

Anteroventral Periventricular Nucleus (AVPV) Larger in Female

Sexual dimorphism: Morphology

[Dogion	Volume
Region	larger in
AOB	Male
MeA	Male
PMv	Male
Posterior BNST	Male
Anterior BNST	Female
Central nucleus	Male
SDN-POA	Male
AVPV	Female
SON	Male
SCN	Male
VMN	Male
Locus Ceroleus	Female
SNB	Male
POA	Male
MePD	Male

Adapted from, Wilson & Davis, *Reproduction* 2007; Forger et al. 2015

Forger et al 2004, PNAS

SDN-POA (M>F)

Gorski et al 1978, Brain Res.

Sexual dimorphism: Gene expression

Androgen receptor

Juntti et al 2010, Neuron

Vasopressin fibers

(Curtesy Geert de Vries)

Progesterone receptor

Yang et al 2013, Cell

Kisspeptin

Clarkson & Herbison 2006, Endocrinology

Estrogen receptor α

Simerly et al 1997, PNAS

Tyrosine Hydroxylase

Scott et al 2015, Nature

Sex differences in esrtogen-receptor-beta in the AVPV of rats can be altered by hormonal manipulation

Control of female sexual behavior by Cckar

Control of maternal behaviors by Irs4

Sexual dimorphism can NOT be explained just by organization affects of sex hormones

Imprinting genes

Definition:

A gene or chromosome region that is expressed when inherited from one (maternal or paternal) parent. But not when inherited from the other parent (i.e. parent-specific inactivation of a gene).

Imprinting genes

Mechanism:

Imprinting is determined by allele-specific DNA methylation at critical sites (e.g. promoter region) which represses the expression of the gene.

Imprinting genes

Biological function:

"The battle of the sexes theory" or "parental conflict theory"

- •The father is more "interested" in the growth of the offspring, at the expense of the mother.
- •The mother's interests are to conserve resources for her survival and provide sufficient nutrition to her offspring.
- ·Paternal imprinting genes are selected to extract resources from the mother for the fetus, while maternal imprinting genes are selected to inhibit this transfer of resources

Maternal imprinting genes will repress growth of pups and paternal imprinting genes will enhance growth.

Paternally-imprinted genes

Intact Peg1 enhance maternal care

Peg1 mutant females exhibit deficiency in maternal behaviors

Paternally-imprinted genes (Peg3)

Lefebvre et al 1998; Nature Genetics Keverne et al 1999; Science

Imprinting genes and human disease

Effects of exposure to different levels of testosterone in uterus on female/male behavior

Rayan and Vandernbergh 2002; Neuroscience and Biobehavioral Reviews

Effects of exposure to testosterone in uterus on female behavior

Sex	0м	2M	
Physiolo gy			
9	Lower fetal testosterone levels	Higher fetal testosterone levels	
Ŷ	Earlier vaginal opening	Later vaginal opening	Ovaries Males
Ŷ	Less male offspring	More male offspring 2M— (2)	(3)—0M
О О О	Mate and impregnated earlier	Mate and impregnated later	(8)
Ŷ	More sensitive to bisphenol-A	Less sensitive to bisphenol-A ™	Uterine Horns O
0, % 5	Less sensitive to testosterone	More sensitive to testosterone	9 9 6 3 2M
Morphology			Vagina
φ	Shorter AGD	Longer AGD	
O'	Lower 5α-reductase levels	Higher 5α-reductase levels	
Behavior			
Q	Less likely to mount other females	More likely to mount other females	
ď	Less parental behavior	More parental behavior	
♂&♀	Smaller home range	Larger home range	
0 & 9	Less aggressive	More aggressive	

Rayan and Vandernbergh 2002; Neuroscience and Biobehavioral Reviews

Effect of prenatal stress on sexual dimorphism in the rat brain

	Control	Environmental	Nutritional
Litter size	11.3 ± 1.4	10.3 ± 1.3	9.2 ± 1.8
Neonatal weight (g)			
Males	6.93 ± 0.13	$*5.03 \pm 0.13$	*5.36 ± 0.27
Females	6.52 ± 0.08	**.*5.76 ± 0.07	$*5.35 \pm 0.07$

SDN measurements

Treatment	Days postnatally		
	Birth	20 Days	60 Days
Males	,		
Control	0.259 ± 0.015	**0.858 ± 0.083	**0.643 ± 0.035
ES	$^{\circ}0.471 \pm 0.034$	*0.419 ± 0.049	*0.345 ± 0.034
NS	$*0.447 \pm 0.027$	*0.553 = 0.086	$*0.278 \pm 0.039$
Females			
Control	0.261 ± 0.021	0.369 ± 0.027	0.378 ± 0.025
ES	0.324 ± 0.034	0.440 ± 0.076	0.258 ± 0.023
NS	0.363 ± 0.033	0.502 ± 0.066	0.339 ± 0.036

ES: Environment stress (change in lighting/ temperature) NS: nutritional stress (50% of total food of control males)

Sex-Specific Programming of Offspring Emotionality after Stress Early in Pregnancy

Bridget R. Mueller and Tracy L. Bale

C: control; Prenatal stress during (E) early, (M) mid or (L) late gestation

What are pheromones?

Chemical (odor) signals that are emitted by animals to communicate information to their own species

Pheromone signals are largely involved in the regulation of social and reproductive behaviors in most animals (including in human)

Attracting mate partner

Pup recognition

Male territoriality

The olfactory systems

Detection of chemosensory signals in mice

TRPC2 expression in the VNO

Typical male-female reproductive behaviors

Sexual behavior of TRPC2-KO lab females

TRPC2 mutant female (brown) with normal male (black)

Male-typical sexual behavior in TRPC2-KO females

☐ TRPC2^{-/-} mutant (light) + ☐ Sexually experienced intruder (dark)

Maternal behavior

	TRPC2+/-	TRPC2-/-	P value
Weight of animals (grams)			
Males (n=15)	25.67 ± 0.66	25.96 ± 0.68	NS
Females (n=26)	21.41 ± 0.69	22.43 ± 0.56	NS
Duration of estrous cycle (days)			
Females (n=10)	5.20 ± 0.25	5.40 ± 0.26	NS
Steroid hormone level in blood			
Total testosterone (ng/ml)			
Males (n=5)	3.10 ± 0.30	4.50 ± 0.60	NS
Females (n=6)	<0.1	<0.1	
Free testosterone (pg/ml)			
Males (n=5)	14.10 ± 1.30	15.30 ± 1.50	NS
Females (n=6)	0.19 ± 0.07	0.41 ± 0.03	<0.05
17-β estradiol (pg/ml)			
Males (n=5)	21.31 ± 3.20	20.58 ±2.80	NS
Females (n=6)	14.29 ± 2.10	14.91 ± 1.50	NS

Behavioral phenotype of TRPC2-KO females

Male-typical sexual behavior (courtship and mounting behaviors)

Female mutant

Normal male

Failure to discriminate between male and female

Female-typical behavior (maternal behavior)

Behavioral phenotype of TrpC2^{-/-} males

Stowers et al 2002; Science

2 control (WT) males

4 mutant males

Old model

New model

Model: Pheromonal inputs repress neuronal circuits for female-typical behavior in males

Behavioral phenotype of TrpC2^{-/-} males

Social and sexual behaviors of male mutant mice

★ Aggressive behavior

Failure to discriminate between male and female

Female-typical behavior (pup caring / nursing behavior)

Normal testosterone basal level

Sex-typical networks exist in both sexes

Kimchi et al. 2007, *Nature* Zilkha et al. 2021, *Curr Opin Neuro*

MeA sensory responses to VNO stimuli

Sexual dimorphism in neural responses of the adult medial amygdala (MeA) to chemosignals

Sexual dimorphism in neural responses of the adult medial amygdala (MeA) to chemosignals

ArKO=aromatase knockout mice

Parental care- evolutionary conserved behavior

Dimorphism of the brain: differentiation and activation

Sex-specific behaviors

Dimorphic brain functions/structures

Dimorphic social behaviors ?

Sexual dimorphism in pup-directed behaviors

Sexual dimorphism in tyrosine hydroxylase-positive neurons in the Anteroventral Periventricular Nucleus (AVPV)

TH-expressing neurons in the AVPV can produce dopamine

Selective manipulations of TH+ AVPV neurons in adult males and females

In females, hypothalamic dopaminergic (TH+ AVPV) neurons promote maternal care

Crouching over the pups

Pup retrieval back to the nest

TH⁺ AVPV neurons are <u>not</u> involved in the regulation of parental behavior in males

TH+ AVPV neurons are involved in suppression of conspecific aggressive behaviors

Dimorphic TH⁺ AVPV neurons control sex-typical behavior in both sexes

Functional identification of an aggression locus in the mouse hypothalamus (VMH)

Functional identification of an aggression locus in the mouse hypothalamus (VMH)

Activation of aggressive behavior using optogenetics in the VMH

Sexual dimorphism in human behavior: Nature versus Nurture

Alexander and Hines, 2002, Evol Hum Behav

Congenital Adrenal Hyperplasia (CAH)- Genetic disease

Elevated exposure to testosterone during development

The boy who was raised as a girl

Bruce's penis was damaged During an unsuccessful surgery for urinary problems

Twins Bruce and Brian Reimer were born in Canada as two perfectly normal boys

Suggested the "ideal" sex change experiment

Dr John Money was a psychologist specializing in sex changes

The boy who was raised as a girl

Dr Money genuinely believed that Bruce had a better chance of living a happy life as a woman than as a man without a penis Suggested the "ideal" sex change treatment

Dr. John Money (Photo by Mike Mitchell)

Bruce raised as Brenda

At the age of ~2 years old Bruce is castrated and treated with female sex hormones

The boy who was raised as a girl

David got married but later became depressed

At the age of 38 David committed suicide (2 years after his brother died from a drug overdose)

At the age of 15 Brenda switched again

To a male named David

http://youtube/MUTcwqR4Q4Y http://www.bbc.co.uk/news/health-11814300