Introduction to Neuroscience: Behavioral Neuroscience

Sensory Ecology

Nachum Ulanovsky

Weizmann Institute of Science

2021-2022, 2nd semester
Umwelt ("surrounding world") is The organism’s model of the world: The perceived things in the world, the signals emitted by both the subject and things, and the actions that are performed by each species.

Q: What are some of the differences in the Umwelt of the following animals – in terms of their “sensory world”?

- Mouse and Rat
- Primate
- Honeybee
- Bat

→ It is crucial that we understand the Umwelt of the organism that we are studying!

In other words:

Umwelt = the sensory world and the behavioral world of each species – *from the perspective of the species.*

NOTE: The Umwelt of different species can differ A LOT.
Umwelt (Uexküll 1920)

Two modern terms related to the classical concept of Umwelt:

- "Natural behaviors"
- "Sensory Ecology"

Umwelt = "Surrounding world": the sensory world and the behavioral world of each species – from the perspective of the species
<table>
<thead>
<tr>
<th></th>
<th>Natural</th>
<th>Artificial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learned</td>
<td>• Tool use in Crows & Chimpanzees (and other animals)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Vocal learning in songbirds</td>
<td></td>
</tr>
<tr>
<td>Innate</td>
<td>• Sexual behaviors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Imprinting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fixed Action Patterns</td>
<td></td>
</tr>
</tbody>
</table>
Vocal learning in songbirds

Adult zebra finch song (*Movie*)

Adult zebrafinch song is complex, consisting of *syllables* and *motifs*

Song of adult birds differs from the “babbles” of juveniles (*Movie*)

Juvenile birds that are isolated and do not have a chance to learn singing from a tutor (= adult male) will *not* develop a full adult song, but will remain “babbling”
Vocal learning in songbirds

- Vocal learning in songbirds has two components, an innate component and a learned component: The tendency to “babble” is an innate behavior – but the full learning of a complex song is a learned behavior.

- The study of the neural basis of vocal learning in songbirds has become popular in Behavioral Neuroscience, because:
 - It is a natural behavior – and it is complex, yet very reproducible.
 - A model animal that shares many aspects with vocal learning in humans (i.e. language).
 - Has many additional interesting features: Clear critical periods; first discovery of adult neurogenesis in vertebrates...

- *Liora Las & Yarden Cohen will talk later in the course about the bird song system.*
If you are interested in studying the neural basis of Motor Coordination in elephants, this particular behavior is probably not the best choice to focus on – because it is artificial.
<table>
<thead>
<tr>
<th></th>
<th>Natural</th>
<th>Artificial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learned</td>
<td>• Tool use in Crows & Chimpanzees</td>
<td>• Juggling Elephants</td>
</tr>
<tr>
<td></td>
<td>• Vocal learning in songbirds</td>
<td></td>
</tr>
<tr>
<td>Innate</td>
<td>• Sexual behaviors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Imprinting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fixed Action Patterns</td>
<td></td>
</tr>
</tbody>
</table>
Innate/Learned vs. Natural/Artificial behaviors

<table>
<thead>
<tr>
<th></th>
<th>Vocal learning in songbirds</th>
<th>Juggling elephants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Innate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learned</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Artificial</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Innate vs. Learned = Fuzzy border:

“Innate” = if develops in all animals when reared in isolation. BUT, some innate behaviors are also followed by learning, whereby the animal improves with practice.
The Natural/Artificial distinction is not simple to make

What about this example?

Reaching movements in humans are a natural (and important) behavior – but the setup with the manipulandum and the chin strap is artificial.
Innate/Learned vs. Natural/Artificial behaviors

Vocal learning in songbirds

Reaching movements with a manipulandum

Juggling elephants

Continuum

<table>
<thead>
<tr>
<th>Learned</th>
<th>Natural</th>
<th>Artificial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vocal learning in songbirds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reaching movements with a manipulandum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juggling elephants</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Innate

- X
Innate/Learned vs. Natural/Artificial behaviors

<table>
<thead>
<tr>
<th></th>
<th>Natural</th>
<th>Artificial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learned</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Innate</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Vocal learning in songbirds

Similar Q’s arise also when training an animal (e.g. a bat) on an artificial task

? ? ?

Continuum

Juggling elephants
Innate/Learned vs. Natural/Artificial behaviors

<table>
<thead>
<tr>
<th></th>
<th>Natural</th>
<th>Artificial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learned</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Innate</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Neuroethological approach

(“more natural” experiments)

Neuropsychological approach

(“better controlled” experiments)

Continuum
Umwelt (Uexküll 1920)

Two modern terms related to the classical concept of Umwelt:

- “Natural behaviors”
- “Sensory Ecology”

Umwelt = “Surrounding world”: the sensory world and the behavioral world of each species – *from the perspective of the species*
Ecology is the study of the interactions between an organism and its environment.

“Environment”:
- The physical environment
- Other organisms

Sensory Ecology is the study of how the physical environment affects the information available to the organism’s sensory systems.
Sensory Ecology – outline of today’s lecture

• **Rationale:** Why should Neuroscientists care about Ecology?

Three aspects of Sensory Ecology:

• **The physics of the environment:** How it affects the sensory information available to the organism

• **Natural stimulus statistics:** A modern (and currently popular) look at the concept of “Umwelt”

• **Direct Perception** (“The ecological approach to visual perception” – Gibson): the surprisingly rich cues and clues that the Umwelt of humans supplies our visual system
Sensory Ecology – outline of today’s lecture

Based (primarily) on the books:

• Sensory Ecology (Dusenbery, 1992)
• The ecological approach to visual perception (Gibson, 1986)

And a variety of more recent articles.
Sensory Ecology – outline of today’s lecture

• **Rationale:** Why should Neuroscientists care about Ecology?

Three aspects of Sensory Ecology:

• **The physics of the environment:** How it affects the sensory information available to the organism

• **Natural stimulus statistics:** A modern (and currently popular) look at the concept of “Umwelt”

• **Direct Perception** (“The ecological approach to visual perception” – Gibson): the surprisingly rich cues and clues that the Umwelt of humans supplies our visual system
Why should neuroscientists care about ecology?

• **The evolutionary argument:** Because brains in general, and sensory systems in particular, have evolved so as to maximize the animal’s fitness in the face of *natural* stimuli, in the *natural* world.

• There are many examples suggesting that ecology matters.
Example 1: Moth hearing and bat echolocation

Co-evolution of the auditory system of moths and the echolocation calls of bats: The Umwelt of moths (which prominently includes echolocation calls of bats) strongly affected the evolution of moths’ auditory system.

- Audiograms of 8 moth species: note that bats with echolocation freq ~20–50 kHz eat less moths; these are also the frequencies of moths’ best hearing.

- Moth hearing matches the local population of bats: may differ for the same moth/bat species in different locations (graph not shown).

... we will talk more about bat echolocation later in the course.
Example 2: Natural stimulus statistics and neural activity

Neurons respond differently to ensembles of natural stimuli compared to artificial stimuli: example from the auditory system

Spectro-temporal receptive fields of 3 auditory neurons (Theunissen et al. 2000)

→ This means that using artificial sounds to study the auditory system – as has been done for the last half century – has a limited utility if we want to understand how the auditory system processes real-world, natural sounds.

... we will talk more about Natural Stimulus Statistics later today.
Sensory Ecology – outline of today’s lecture

• **Rationale:** Why should Neuroscientists care about Ecology?

Three aspects of Sensory Ecology:

• **The physics of the environment:** How it affects the sensory information available to the organism

• **Natural stimulus statistics:** A modern (and currently popular) look at the concept of “Umwelt”

• **Direct Perception** (“The ecological approach to visual perception” – Gibson): the surprisingly rich cues and clues that the Umwelt of humans supplies our visual system
Stimulus transmission

Sensory information is transmitted over long distances by one of 3 mechanisms ("long distance" does not include touch):

- **1. Propagation:** Light and Sound
- **2. Diffusion:** Heat and Chemicals (olfactory and gustatory)
- **3. Flow:** Heat and Chemicals (olfactory and gustatory)
1. Wave propagation (light and sound)

Several physical properties of waves:

- Geometric spreading
- Absorption
- Scattering
- Reflection
- Refraction
- * diffraction
1. Wave propagation (light and sound)

Several physical properties of waves:

- **Geometric spreading**
 - For point source in three dimensions (3-D), intensity (I) decreases as \(1/R^2 \), where R is the distance from the source: \(I \sim 1/R^2 \). For point source & for a spread that is limited to 2-D \(I \sim 1/R \) (examples soon).

- **Absorption**
- **Scattering**

\(\text{\{} \) \(\text{Attenuation} \) \(\text{\}} \)

- **Reflection**
- **Refraction**
- **diffraction**

We will talk in detail about Geometric Spreading and about Attenuation when we will discuss Echolocation in Bats later in the course.
Example: Implication of **Reflection** & **scattering** in the ocean’s midwater. Scattering in the midwater (depth > ~ 100 m) is uniform in azimuth (around the vertical axis) – allowing usage of **Mirror Camouflage** by silvery fish.
1. Wave propagation (light and sound)

Example: Implication of **Reflection** & **scattering** in the ocean’s midwater. Scattering in the midwater (depth $> \sim 100$ m) is uniform in azimuth (around the vertical axis) – allowing usage of **Mirror Camouflage** by silvery fish.

This is why fishes such as sardines and piper have silvery sides.
1. Wave propagation (light and sound)

Refraction

Snell’s Law:

\[
\frac{\sin \theta_1}{v_1} = \frac{\sin \theta_2}{v_2} = \frac{n_2}{n_1}
\]
1. Wave propagation (light and sound)

Refraction — Implications for the hunting behavior of the Archerfish
1. Wave propagation (light and sound)

Refraction — Deep Sea Sound Channel creates a ~ 2-D acoustic waveguide at a certain depth where sound velocity in the ocean is minimal.
1. Wave propagation (light and sound)

Refraction — Deep Sea Sound Channel creates a ~ 2-D acoustic waveguide at a certain depth where sound velocity in the ocean is minimal.
1. Wave propagation (light and sound)

Refraction — Deep Sea Sound Channel creates a ~ 2-D acoustic waveguide at a certain depth where sound velocity in the ocean is minimal, and thus allows sound to spread for thousands of kilometers through the combined actions of **refraction** and ~1/R **geometric spreading** (remember that for 2-D, waves spread as ~1/R instead of the usual ~1/R^2 geometric spreading).

At high latitudes the depth of the sound channel is quite shallow, and it is thought to be important for **acoustic communication of whales**.

Another, sound channel is the **surface sound channel**, at the sea surface; it acts through the combined actions of **refraction** and **reflection** from the sea surface. It’s also thought to be important for acoustic communication, but is less efficient due to **scattering** from the rough sea surface.
1. Wave propagation (light and sound)

Refraction — Deep Sea Sound Channel creates a ~ 2-D acoustic waveguide at a certain depth where sound velocity in the ocean is minimal.

- **Surface channel:** Refraction + reflection + scattering + $1/R$ spreading
- **Deep sea channel:** Refraction + $1/R$ spreading

Diagram Notes:
- Sound Velocity
 - Region I
 - Region II
 - Region III
- Sound Channel
- Shadow Zone
- Limiting Ray
- Sea-Surface

Scale:
- 100 km
1. Wave propagation (light and sound)

Refraction — “Sound window” @ 200 – 500 Hz in the rainforest is caused by **refraction** from the sun-heated air layer at the upper canopy – in combination with **scattering** and **diffraction** from trees and branches.

Many of the long-distance monkey vocalizations are @ 200 – 500 Hz, utilizing this sound window.
1. Wave propagation (light and sound)

Refraction – Mirage.
Scattering – creates two interesting effects:

- **Why is the sky blue?** Because scattering $\sim 1/\lambda^4$ ($\lambda = \text{wavelength}$)
- Scattering polarizes the sun’s light – which forms the basis of insect’s **polarization compass** (we’ll discuss this later when talking about Navigation)

Even if only a patch of the sky is visible (e.g. via forest canopy), this may be enough for an insect to compute the direction of the sun = perpendicular to the polarization pattern.

Locusts were shown to have in their brain neurons that are tuned to direction of light polarization: A neural “polarization compass”.
Stimulus transmission

Sensory information is transmitted over long distances by one of 3 mechanisms ("long distance" does not include touch):

1. **Propagation:** Light and Sound
2. **Diffusion:** Heat and Chemicals (olfactory and gustatory)
3. **Flow:** Heat and Chemicals (olfactory and gustatory)
2. Diffusion

Diffusion is a very slow process: not efficient over long distances.
3. Flow

Because diffusion is inefficient, in order to transmit olfactory information over long distances it is crucial to have flow of air (or of water for aquatic animals)

- **Sniffing** = Flow created by the animal (inhaling)
- **Wind**
3. Flow

Sniffing by dogs and humans

3. Flow

Underwater Sniffing by the star-nosed mole – using air bubbles

Movie 1

Movie 2

3. Flow

Wind: The problem with wind is that it creates **turbulent** flow = **intermittent** olfactory input
3. Flow

Wind: The problem with wind is that it creates turbulent flow = intermittent olfactory input.
3. Flow

Wind: The problem with wind is that it creates turbulent flow = intermittent olfactory input

- Nevertheless, moths can detect pheromone odors from > 1 km
- It may be better NOT to use a *chemotaxis* strategy, which tries going up the gradient – as there is no continuous gradient – but to use an *infotaxis* strategy for olfactory search (Vergassola et al., *Nature* 2007)
- When studying the neural basis of olfaction, you need to understand the **natural stimulus statistics** of odors
Sensory Ecology – outline of today’s lecture

- **Rationale:** Why should Neuroscientists care about Ecology?

Three aspects of Sensory Ecology:

- **The physics of the environment:** How it affects the sensory information available to the organism

- **Natural stimulus statistics:** A modern (and currently popular) look at the concept of “Umwelt”

- **Direct Perception** (“The ecological approach to visual perception” – Gibson): the surprisingly rich cues and clues that the Umwelt of humans supplies our visual system
The average prediction success for neuronal responses to natural sounds – using linear models based on standard artificial sounds – is typically ~10% (like in Neuron 2).

Why?
Natural stimulus statistics and neural activity

Neurons respond **differently** to ensembles of natural stimuli compared to artificial stimuli: example from the auditory system

Spectro-temporal receptive fields of 3 auditory neurons (Theunissen et al. 2000)

→ This means that using artificial sounds to study the auditory system – as has been done for the last half century – has limited utility if we want to understand how the auditory system processes real-world, natural sounds.

→ We must understand in-depth the natural stimulus statistics of auditory soundscapes.

→ Similar results were found also for Vision.
Neurons may be tuned to natural stimuli

In b,c: Amplitude Spectra of sounds $\sim 1 / f^\gamma$
Natural stimulus statistics and neural activity

Natural vision has complex statistics – due to the long-range correlations within the images themselves, and the complex scanning movements by the eyes – both of which turn out to have important implications for:

- **Responses** of visual neurons.
- Modeling the development of response properties (receptive fields) of visual neurons.
- Visual system function: The large eye movements (saccades) and microsaccades pose a serious problem for classical theories of vision – while active-sensing theories suggest that vision works through the eye movements.

... you will learn more about Natural Stimulus Statistics and about Active Sensing in the course “Systems Neuroscience”.
Natural *stimulus* statistics is also tightly linked to natural *movement* statistics

Question: When do you ever have, in the natural environment, moving-grating or moving-bar stimuli as were used by Hubel & Wiesel, and as used to this day in most studies of visual neuroscience?

Answer: Almost exclusively due to the animal’s *own* movements. It is only then that the trees, houses and other line-elements in the scenery start moving coherently on the retina.

→ Perhaps, then, *motor* signals are represented in V1?
Natural *stimulus* statistics is also tightly linked to natural *movement* statistics

Dissociating visual inputs from movements in a virtual (VR) setup:

.Movie 1 – Mouse behavior in VR
.Movie 2 – Calcium imaging of neural activity

Keller et al., *Neuron* (2012)
Natural *stimulus* statistics is also tightly linked to natural *movement* statistics – and this coupling affects neurons.

Population average response

\[\text{Fluorescence } [\Delta F/F] \]

- Feedback-mismatch onset
- Running onset
- Visual-stimulus onset (stationary mouse)

\[\text{Time [s]} \]

→ Surprisingly, the majority of neurons in mouse V1 did *not* encode purely passive visual stimuli, but responded to either congruence or incongruence (“feedback-mismatch”) between vision and the animal’s own movements.

→ How many of Hubel and Wiesel’s original neurons were in fact Mismatch cells – and *not* pure visual cells?!
Natural *stimulus* statistics is also tightly linked to natural *movement* statistics – and this coupling affects neurons.

Numbers Based on: Saleem et al., *Nature Neurosci.* (2013)
Major motor inputs and other non-visual inputs into mouse V1

- **RSP**: Retrosplenial cortex (ctx)
- **V2L**: Secondary visual ctx, lateral
- **AuD**: Auditory ctx
- **A24b/M2**: Area 24b (w nearby M2)
- **V2MM**: Secondary visual ctx, mediomedial
- **TH**: Thalamic nuclei w/o LGN
- **V2ML**: Secondary visual ctx, mediolateral
- **TeA**: Temporal association ctx
- **Pt**: Parietal association ctx, posterior
- **Ect/PRh**: Ectorhinal/ Perirhinal ctx
- **dLGN**: Lateral geniculate nucleus
- **HPF**: Hippocampal formation
- **SS**: Somatosensory ctx
- **ORB**: Orbital ctx
- **M**: Motor ctx w/o M2 nearby A24b
- **CTXsp**: Cortical subplate
- **MCPO**: Magnocellular preoptic n./ Diagonal band n. (HDB, VDB)
- **HY**: Hypothalamic nuclei w/o MCPO
- **CPU**: Caudate putamen
- **Nt**: Neural tracts

Leinweber et al., *Neuron* (2017)
Sensory Ecology – outline of today’s lecture

• **Rationale:** Why should Neuroscientists care about Ecology?

Three aspects of Sensory Ecology:

• **The physics of the environment:** How it affects the sensory information available to the organism

• **Natural stimulus statistics:** A modern (and currently popular) look at the concept of “Umwelt”

• **Direct Perception** (“The ecological approach to visual perception” – Gibson): the surprisingly rich cues and clues that the Umwelt of humans supplies our visual system
Example #1: **Optic Flow**:

- The zero-point of optic flow allows estimating the **point of collision**, independent of cross-winds.
- Geometric methods for directly estimating **time-to-collision** without complex calculations.
 - Birds use it, behaviorally!
 - Neurons in the bird brain encode time-to-collision.
- Optic flow is the main cue used by:
 - Honeybee odometer (distance meter)
 - Pilots landing on aircraft carriers in rough seas
“The ecological approach to visual perception” – Gibson
The ecological approach to visual perception – Gibson

Example #2: The invariant horizon ratio of terrestrial objects

- The line where the horizon cuts the object is just as high above the ground as your eye. Note that trees 1+2 are “cut” at the same height, and their above:below horizon ratio is ~ 2:1, implying a total height of 6 m. For trees 3+4, we can likewise estimate height of 15 m.

- Can you estimate the trees’ heights?
Take home message

When studying the neural basis of behavior in a certain animal species, it is important to control the animal’s Umwelt (surrounding world) in the laboratory – but it is also very important to fully understand this animal’s Umwelt in its natural environment → because: (1) the natural environment is what the animal’s brain evolved to cope with, and (2) neurons care about this! Hence: we must incorporate these considerations when studying brain function.