Why study an exotic animal? Or what can we learn from barn owls about neuroscience?

The Technion, Haifa, Israel

Which model system?

Animals that lend themselves to combined behavioral and neurophysiological work.

Specialist or Generalist?

Roger Payne

Barn owls as model system for sound localization

Facial ruff serves as a sound amplifier

Barn owls as model system for sound localization

- Facial ruff serves as a sound amplifier
- Asymmetric ears allow for an increased spatial resolution in the vertical plane

artist: Susan Mauersberg

Barn owls as model system for sound localization

- Facial ruff serves as a sound amplifier
- Asymmetric ears allow for an increased spatial resolution in the vertical plane
- Comb-like structures at the leading edge of the wing reduce noise during flight

Barn owls as model system for sound localization

- Facial ruff serves as a sound amplifier
- Asymmetric ears allow for an increased spatial resolution in the vertical plane
- Comb-like structures at the leading edge of the wing reduce noise during flight
- Brain structures involved in the analysis of sound are enlarged

Performing a psychoacoustic experiment with an owl

Sound-localization with free-field stimuli

The auditory localization cues:

ITD - horizontal

ILD - vertical

Action potential

Postsynaptic potentials

These signals are the "language" of neural processing.

Durations of events

- Typical duration of action potential: 1ms
- Typical duration of post-synaptic py
 - post-synaptic potentials: 5-10 ms
- Precision of sound localization by interaural time difference:

 $6-10 \mu s$

What has to be explained is

Factor of 500-1000

The principle of phase locking as a means to conserve time

Sinusoidal signal

Presumed resulting postsynaptic potential

Registered signal in computer

Note that in this example the response always occurs at a phase of 180 degrees.

Phase locking in the barn owl

Phase locking can be measured by plotting spike arrival times with respect to the period of the stimulus tone.

Precision of phase locking is 35 µs at 5 kHz (Koeppl (1997)).

Jefferess model (1948)

Coincident detector neurons

Jefferess model (1948)

Delay lines

Does the brain computes ITDs as Jefferess suggested?

Nucleus Laminaris / Medial Superior Olive - sites of binaural convergence

Anatomical evidence for Jeffress model

ITD curves in Inferior colliculus

SOUND LOCALIZATION

GAZE CONTROL

ITD (µs)

Visual and auditory maps in the OT

Computational map

Computational maps The matching problem

Computational maps The matching problem

Knudsen and Knudsen J Neurosci (1989)

Effect of prism experience on auditory tuning

Effect of prism experience on auditory tuning

Quantification of learning

1. Behavioral test

2. Physiological test

Decline in learning with age

Knudsen, E. I. Science. (1998)

Increased capacity for learning in adults that have had appropriate experience as juveniles

⁶ Knudsen, E. I. *Science*.(1998)

Effects of juvenile experience on adult learning

⁶ Knudsen, E. I. *Science*.(1998)

Incremental learning

Incremental learning

Linkenhoker and Knudsen (2002) Nature

Rich and lively experiences increase learning capacity in adults

Summary

- Decline in learning with age
- Increased capacity for learning in adults that have had appropriate experience as juveniles
- Incremental training improves learning
- Rich and lively experiences increase learning capacity in adults

Where is the site of plasticity?

Horizontal section through the tectal lobe

Site of plasticity in the ICX

After prism learning

The instructive signal

- Operates in the ICX

- Visually based

Where is the instructive signal coming from?

BDA injection site in ICX

Topography of the OT-ICX projection

Restricted lesion of the optic tectum

How can a visually based instructive signal act in an auditory structure?

Horizontal section through the tectal lobe

Light responses in the ICX

Visual Receptive Fields in the ICX

Properties of visual responses in ICX

- Arrive from the OT
- Display spatially restricted visual receptive fields
- Form a map of space
- Align with auditory spatial representation

Bimodal Stimulus

Visual and auditory interactions in the ICX

Bimodal stimulus

Normal

Visual input

Bimodal stimulus

Normal With prisms

Bimodal stimulus

Normal With prisms

<u>Summary</u>

 An inhibitory gate controls the flow of visual information into the auditory system

 The visual signals are appropriate to serve as the instructive signal for auditory plasticity

Final Summary

 Studies in barn owls provided important insights on sound localization.

 Auditory map plasticity in barn owls is the first solved vertebrate example of experience-dependent plasticity.

Eric Knudsen Daniel Feldman Michael Brainard Will Debello Peter Hyde Brie Linkenhoker Joe Bergan

Hermann Wagner - AACHEN University

Thanks

Shai Netzer Shay Ohaion Amit Reches Adi Oged Arkadeb Dutta Yonatan Kra Yael Nae Yael Hazan Yael Zahar Ella Gebert Inna Yarin Dante Wasmuht Tidhar Lev-Ari Julius Orlowski Hadar Beeri Elhanan Ben-Yishai Ksenya Krivoruchko **Arpit Agarwal** Shaden Zuabi Shaked Ron Mor Ben-Tov

Alon Wolf
Hermann Wagner
Ohad Ben-Shahar
Jose L. Pena
Nachum Ulanovsky
Dori Derdikman
Shai Berlin

https://yoramg.technion.ac.il/