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Femtosecond resolved imaging
of torsion in a chiral molecule

Purpose of this part of the talk

Show that it is possible to image
an important normal-vibration

in a complex molecule

on its natural time and length scale

by fixing the molecule in space
and image two molecular moieties
using femtosecond timed
Coulomb explosion
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HOLD & TWIST Why twisting (torsion) ?

(Ultrafast) Molecular switches

Why twisting (torsion) ?
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Why twisting (torsion) ? Why twisting (torsion) ?
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Torsion induced by stimulated
Raman transitions
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Torsion has by far
the largest

Raman

cross section

of all normal mode
vibrations
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Theoretical treatment
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Early studies:
Madsen et al. (PRL 102, 073007, 2009)

Experimental Setup
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Molecular deflection
Rotational state-selection

e
T

22

z<
L L

§5]
T

—_—
T

C* signal (arb. units)
(pv]

10 05 00 05 10 15

Filsinger et al. (JCP 131, 064309, 2009) Y (mm) Holmegaard et al. (PRL 102, 023001, 2009)

0

Imaging Torsional Motion (O - 4 ps)

Blocked Ops 0.33ps 0.67ps 1.00ps 1.33ps

Hansen et al. J. Chem. Phys. 136, 204310 (2012)

Imaging Torsional Motion (O - 4 ps)

Hansen et al. J. Chem. Phys. 136, 204310 (2012)

L
AARHUS
w o e GNANO

Extracting the F* and Br* splits from the images

Peak Analysis
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EXTRACTING THE DIHEDRAL ANGLE

Calculations by
Lars B. Madsen'’s

group
4

Hansen et al. ). Chem. Phys. 136, 204310 (2012)

EXPERIMENTS vs CALCULATIONS
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Long time behaviour (4 - 10 ps)
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Long time behaviour
Dephasing of the phenyl rings
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Long time behaviour
Dephasing of the phenyl rings

Rotational state of _ _,_f;{“,
Each phenyl ring Vi(oi,t) = Z‘-f. \/2—_“ e i
i=FBr 4
Time dependence - 2J; + 1 /
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Dephasing time =~ 2741
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The two rings dephase r= Tet _ JirI”’ . 2JrBr*’ i
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Covariance analysis of
angular correlations in ion images

Covariance analysis of
ion time-of-flight spectra

Science 246, 1029 (1989)

Covariance Mapping: A Correlation Method
Applied to Multiphoton Multiple Ionization

L. J. Frasinski, K. CopLING, P. A. HATHERLY

In some cases there are hidden correlations in a highly fluctuating signal, but these are
lost in a conventional averaging procedure. Covariance mapping allows these correla-
tions to be revealed unambiguously. As an example of the applicability of this
technique, the dynamics of fragmentation of molecules ionized by an intense picosec-
ond laser are analyzed.

Covariance analysis of
ion time-of-flight spectra

CO+Nhy - CO3* +3e
CO* — €% + O*
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Covariance analysis of
angular correlations in ion images

Detector
( CCD Camera

Image Analysis
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Covariance analysis of
angular correlations in ion images
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Enantiomeric resolution?
Is the molecule oriented?

Experimental Setup
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Orientation by a combined
Strong laser field and a weak static electric field

Repeller

Enantiomeric resolution?
Is the molecule oriented

“4180 degrees”
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Laser induced alignment of molecules
dissolved in superfluid He nanodroplets




Laser induced alignment (and orientation)

of isolated molecules

- Works well — because:

e Isolated molecules rotate freely

— Laser pulses can create (broad) coherent superpostions of rotational eigenstates

- Works particularly well when:

e Molecules are cooled to low rotational temperatures or, even better,

few (a single) quantum state is selected

Laser induced alignment
of molecules in a solvent ?

e Molecules in a solvent are not characterized by free rotation
e Even if a rotational wave packet is created collisions would destroy it quickly

o The laser pulse also interacts with the solvent

- Laser induced alignment may be sensitive to the numerous mechanisms
not present in gas phase

- Laser induced alignment may be hindered by the numerous mechanisms
not present in gas phase

Choose a special solvent:

Superfluid liquid helium droplets

Unique properties:
o Superfluid: Molecules can (apparently) rotate freely

e Robust environment

e Dissolved molecules thermalize to the cold environment (0.37 K for “He)

o Wide range of molecules can be embedded

e Bose condensate

IR absorption spectrum of OCS
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Molecules dissolved in
liquid helium nanodroplets
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Experimental setup
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Alignment of isolated molecules
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Alignment of isolated molecules
Methyliodide CH;l

Alignment of isolated molecules

Methyliodide CH;l
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Alignment of isolated molecules Alignment of molecules in He droplets

Early time dynamics CH,
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Theoretical treatments so far

(Not of molecules in He droplets)

PRL 95. 113001 (2005) PHYSICAL REVIEW LETTERS

Intense Laser Alignment in Dissipative Media as a Route to Solvent Dynamics

5. Ramakrishna and Tamar Seideman
Department of Chemisiry, Northwestern University, 2145 Sheridan Road, Evanston, Hlinois 60208-3113, LISA
(Received 27 December 20045 published 7 September 2005)

We extend the concept of alignment by short intense pulses to dissipative environments within a density
matrix formalism and illustrate the application of this method as a probe of the dissipative properties of
dense media. In particular, we propose 2 means of disents g rotational population relaxation from
decoherence effects via strong laser alignment. We illustrate also the possibility of suppressing rotational
relaxation to prolong the al ent lifetime through choice of the field parameters, Implications 1o several
disciplines and a number of potential applications are proposed

THE JOURNAL OF CHEMICAL PHYSICS 136, | 84302 (2012}

Quantum and classical approaches for rotational relaxation and
nonresonant laser alignment of linear molecules: A comparison
for CO; gas in the nonadiabatic regime

J.-M. Hartmann'-*! and C. Boulet®
Letharatoire Tui iversitaire des Svarémes Anmospi
ut Pierre-Simon La

(LISA) CNRS (UMR 7583}, Universitd Paris Est
e i st Creteil,

Hnstitut dles Sciences Melden s 'Orsay (ISMO) CNRS (UME 8214}, Université Paris-Sud, Bt 350,
Orsay F-91405, France

(Received 9 January 2012 sccepted 6 April 2012; published online 9 May 2012)

Theoretical treatments so far

Ramakrishna and Seideman, PRL 2005
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Effect of environment:

Decoherence and 06
population decay '
after the pulse
is switched off

=
=

— Affects the amplitude e
but not the period e
of the revivals é 02
v

- Correlations between
the molecule and
the droplet atoms
are neglected

|
2
t=t/(h/2Be)

Our results are not captured by
the published theoretical work

- The Kkick pulse may not excite the eigenstates
of the molecule-droplet system (instead an entangled state)

- M may not be conserved (as in the gas phase) due to exchange of
angular momentum during the kick pulse

- M-scrambling (during and after the kick pulse) + onset of population decay
— alignment decays towards an isotropic value




Adiabatic alignment
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Outlook

- Molecular frame reactions dynamics of molecules in a solvent

- Use rotational dynamics of molecules to learn about the He droplets
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