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Aims and Goals ...
Laser Control of Chemical Reactions

» Question: Can we use optical pulse characteristics and environmental
conditions to manipulate or control reaction dynamics in complex
(condensed phase) environments?

» Approach:
v Vary the environmental conditions — solvent, temperature, etc.
v Use ultrafast methods to monitor excited state dynamics

v Sculpt optical pulses using an acousto-optic modulator (AOM) or
liquid crystal spatial light modulator (LC-SLM)

» Molecular Systems: Electrocyclic ring-opening, optical switches and
. CyCIOhexadiene biological Chromophores_
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Cyclohexadiene Photochemistry - Gas
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Cyclohexadiene ring opening observed with 13 fs resolution: coherent
oscillations confirm the reaction path

K. Kosma, S. A. Trushin, W. Fuli* and W. E. Schmid . . . . . .
Multiphoton ionization provides detection of the molecule
Received 14th August 2008, Aceepted 13th October 2008

First published as an Advance Article on the web 6th November 2008 along the reaction path .

DOT: 10.1039/b814201g
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O ®
The initially prepared excited state population decays in approximately 21 fs accompanied by C=C
bond elongation and twisting, internal conversion to the dark state occurs in approximately 35 fs
accompanied by stretching of the C-C bond. The decay of the 2'A state is ca. 80 fs accompanied
by a much larger distortion from the near planarity of the initial chromophore. The reaction is
described as “more or less ballistic” with negligible barriers along the reaction path.



Ultrafast X-Ray Probe of Ring-Opening
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- LCLS pump probe experiment at 60 Hz

- Molecular beam (200mbar He, ~14 mbar
CHD)

- UV: 266 nm, ~50fs, 50 uJ, 120 pm

VMI - X-rays: 850 eV, ~70 fs, 30pmx50um
detector \ Y

UV+X-rays

- Weak focusing for x-rays
Image credit: J. Bozek, LCLS - Used post-processing
- Time resolution ~300 fs

- Time resolution principal limitation
High-Field Physics Chamber at AMO Endstation



Average ion kinetic energy release increases
upon UV excitation

~16.5
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- X-ray fragmentation occurs in the weak-field regime, no resonances
- IR fragmentation: strong field, resonances



Production of H* ion fragments increases upon

UV excitation
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Early time-resolved x-ray fragmentation
experiments are promising

» lon count and ion kinetic energy change
upon photoexcitation.

| » Experiment is limited by time-resolution
- 1 (and low statistics), but the technique has
SO SN EER  a potential for probing much shorter

‘IPkl 255A &a 4068 A EX-R-)' 095m) Aypy 13333
21.8degS @, 37.7 degs; gy 4:1,1de3¥:..lfh“ 3TMY N ca15 tlmesca|eS (~5 fS)

B e oy el > More detailfed calculgtions of the evolution
of core-excited species are needed.

Petrovic, V. S.; Siano, M.; White, J. L.; Berrah, N.; Bostedt, C.; Bozek, J. D.;
Broege, D.; Chalfin, M.; Coffee, R. N.; Cryan, J.; Fang, L.; Farrell, J. P.; Frasinski,
L. J.; Glownia, J. M.; Guhr, M.; Hoener, M.; Holland, D.; Kim, J.; Martinez, T.;
McFarland, B. K.; Marangos, J. P.; Minns, R. S.; Miyabe, S.; Schorb, S.; Sension,
R. J.; Spector, L. S.; Squibb, R.; Tao, H.; Underwood, J. G.; Bucksbaum, P. H.,
Transient x-ray fragmentation: Probing a prototypical photoinduced ring
opening., Phys. Rev. Lett., 108, 253006, 2012.
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Cyclohexadiene Photochemistry - Solution

Anderson, N.A., Pullen, S.H., Walker II, L.A., Shiang, J.J., and Sension, R.J., 1998, J. Phys. Chem. A, 102, 10588-10598
Pullen, S.H., Anderson, N.A., Walker Il, L.A., and Sension, R.J., 1998, J. Chem. Phys. 108, 556-563.

Harris, D.A., Orozco, M.B., and Sension R. J., 2006, J. Phys. Chem. A, 110, 9325-9333
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Cyclohexadiene Photochemistry - Solution
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Cyclohexadiene Photochemistry - Solution
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AA (mOD)
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Strength (nm) Energy (kJ/mol)
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Cyclohexadiene Photochemistry
— in 7-dehydrocholesterol

K.-C. Tang, A. Rury, M. B. Orozco, J. Egendorf, K. G. Spears and R. J. Sension, J. Chem. Phys. 2011, 134, 104503.
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Fuss, W., Hofer, T., Hering, P., Kompa, K. L., Lochbrunner, S., Schikarski, T., Schmid, W. E. J. Phys. Chem. 1996, 100, 921-927.
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Cyclohexadiene Photochemistry
— in 7-dehydrocholesterol

¢ )
K.-C. Tang, A. Rury, M. B. Orozco, J. Egendorf, K. G. Spears and R. J. Sension, J. Chem. Phys. 2011, 134, 104503.
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The Decay of the Excited State Absorption is
Biexponential

¢ D
K.-C. Tang, A. Rury, M. B. Orozco, J. Egendorf, K. G. Spears and R. J. Sension, J. Chem. Phys. 2011, 134, 104503.
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The lifetimes of the fast and slow component are constant across the visible region with similar
spectral profiles.

In 2-butanol the decay of the total integrated intensity is biexponential with time constants of
0.56 ps (56%) and 1.8 ps (44%).



The Decay of the Excited State Absorption is
Biexponential
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K.-C. Tang, A. Rury, M. B. Orozco, J. Egendorf, K. G. Spears and R. J. Sension, J. Chem. Phys. 2011, 134, 104503.

o , Alkkanes ___ ‘Fast In alkanes the slow component is blue-shifted
° about 4 nm. In alcohols it is blue-shifted about
= 13 nm.
3
é Fast: 0.4 ps — 0.6 ps
g Slow: 1.1 — 1.8 ps at~29C
©
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In 2-butanol the decay of the total integrated
intensity is biexponential with time constants of
0.56 ps (56%) and 1.89 ps (44%).

In heptane the integrated intensity decays with
time constants of 0.61 ps (66%) and 1.32 ps
(34%).
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DHC Excited State Decay
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K.-C. Tang, A. Rury, M. B. Orozco, J. Egendorf, K. G. Spears and R. J. Sension, J. Chem. Phys. 2011, 134, 104503.
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DHC Excited State Calculations

E. Tapavicza, A. M. Meyer and F. Furche, 2011, Phys. Chem. Chem. Phys. 13, 20986.

Unravelling the details of vitamin D photosynthesis by non-adiabatic molecular dynamics

simulations
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Example trajectory of provitamin D
excited state dynamics. Black: ground
state, blue: S, green: S,, red dots
indicate the current state for which
nuclear forces are calculated.




DHC Excited State Calculations

E. Tapavicza, A. M. Meyer and F. Furche, 2011, Phys. Chem. Chem. Phys. 13, 20986.

Unravelling the details of vitamin D photosynthesis by non-adiabatic molecular dynamics
simulations
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700 400 B00  BOD 1000 1200 1400 1800 1800
Time {fs)

A set of 50 trajectories of the excited state dynamics of Pro. Black: ground state, blue: S,
green: S,, red dots indicate the current state for which nuclear forces are calculated.



DHC Excited State Calculations

E. Tapavicza, A. M. Meyer and F. Furche, 2011, Phys. Chem. Chem. Phys. 13, 20986.

Unravelling the details of vitamin D photosynthesis by non-adiabatic molecular dynamics
simulations
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trajectories: yellow). The logarithm of the S, populations is plotted in solid lines. The linear
fit of the curves is plotted in dashed lines.



DHC Excited State Calculations

E. Tapavicza, A. M. Meyer and F. Furche, 2011, Phys. Chem. Chem. Phys. 13, 20986.

Unravelling the details of vitamin D photosynthesis by non-adiabatic molecular dynamics
simulations
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Experimental Setup for UV Excitation -
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- the AOPDF UV pulse shaper and transient absorption detection
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Systematic Variation of Linear Chirp

D)
Tang, K.-C., and Sension, R. J., 2011, Faraday Discussion, 153, 117-129. TL - ~2x101° W cm-2
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DHC — Manipulating Channels?

)
Tang, K.-C., and Sension, R. J., 2011, Faraday Discussion, 153, 117-129.
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» The amplitude of the slow component

decreases.

» Positive chirp increases excited state population? (not clear)

» Positive chirp modifies the branching between two pathways — perhaps between reactive
and non-reactive trajectories.



Photoproduct Formation

Provitamin D5 in 2-butanol solvent

Time Delay (ps)

E/hc (cm'1)
35 30 25 20 15 (x1000)

- *

400 nm focused into CaF, provides a continuum
extending to 270 nm.

UV region shows strong two-photon absorption when
pump and probe overlap, followed by weak excited
state absorption, bleach of the ground state, and
relaxation of the previtamin D5 photoproduct.
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Steady State Photolysis of DHC

7-Dehydrocholesterol cZc-previtamin Dy
provitamin D

cZt-previtamin Dy

n-heptane

Intensity (Arb. Scale)

Difference

-0.5

L] L l L) ﬂ
320 340

] ] | T
250 300 350 400 450 220 240 260 280 300
Wavelength (nm) Wavelength (nm)

» Steady state photolysis experiments using the unfiltered output of a mercury arc lamp and
a UV-VIS spectrometer. For excitation times longer than 10-15 s secondary products begin
to appear.

» The previtamin D, spectrum can be estimated by adding DHC back to the difference until
the vibronic structure is minimized.



Kinetics of Product Formation

E. Tapavicza, A. M. Meyer and F. Furche, 2011, Phys. Chem. Chem. Phys. 13, 20986.

Unravelling the details of vitamin D photosynthesis by non-adiabatic molecular dynamics simulations
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Kinetics of Product Formation

E. Tapavicza, A. M. Meyer and F. Furche, 2011, Phys. Chem. Chem. Phys. 13, 20986.

Unravelling the details of vitamin D photosynthesis by non-adiabatic molecular dynamics simulations
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Kinetics of Product Formation

7-Dehydrocholesterol cZc-previtamin Dy
provitamin D5 R
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Solvent (In)Dependence

7-Dehydrocholesterol cZc-previtamin Dy
provitamin D5 R

Solvent n (mPas) 74 (PS) T, (PS)
0.387 1.1 .45 514+ .45
1.34 1.4+ .45 8.5+ .45
0.544 115+ .60 5.4 + .60
2-Butanol 3.096 1.8+.25 6.2 +.25

The fast decay component is in good agreement
with the decay of the visible ESA.

The slow decay component is assigned to the
cZc — cZt isomerization of the hot product.

A small nonequilibrium population may be trapped
and isomerize on a longer time scale.
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Estimated Pre & DHC

/".\ 2.5ps

Methanol

220 240 260 280 300

Wavelength (nm)

320 340



o-terpinene ) —— >—<} >—<_>:

B. Arruda, J. Peng, B. Smith, K. G. Spears, and R. J. Sension “Photochemical Ring-Opening and Ground State Relaxation
in a-Terpinene with Comparison to Provitamin D3” Submitted to J. Phys. Chem. B

Like DHC, a-terpinene is weakly fluorescent. The QY is ~ an order of magnitude
smaller than for DHC.

=~2%x10-5 Steady state photolysis

—
(é)]
1

60s

)
— —Heptane 8
£ . . 1.0 2
o} ——a-Terpinene g // \
8 . = / \\ Fluorescence
2 Absorption =
c 0.54 ~
%‘ Fluorescence £ Sa
c - Tl
eNnno o/ I oONn. e T
£ 0.5
3
________ i c
I I I I 1 g O 9
200 250 300 350 400 450 500 %
Wavelength (nm)
0.5

I 1 1
250 300 350 400
Wavelength (nm)

Sharp peak is Raman scattering from the solvent.

Slight variation in excitation wavelength allows separation of fluorescence and Raman.



o-terpinene ) —— >—<_>L >—<_>:

E/hc (cm™1)
35 30 25 20 (x1000)

- —— Eaae——_

Excited state absorption following
excitation of a-terpinene at 266 nm.

20
propanol 0.16 ps —
butanol 30 2 -
5 < ©
Q 1ps © S
E101 P 20 = 8!
< () .
< ° o
®
~{10 £ <
0 ol = <
O_
300 400 500 600 -1 0 1 2
Wavelength (nm) Time Delay (ps)
30
hexane 40
20- 0.16 ps
=y 1ps 30
E.101 10
< 20
B 0
-1 ps [m)
10 O
10 £
01 =
300 400 500 600 -1 0 1 2 g B, #
Wavelength (nm) Time Delay (ps)
: : 260 290 320 350
T~ 0.12 ps in n-hexane, 0.16 ps in 1-butanol

Wavelength (nm)



a-terpinene K ) —— >—<} >—<_>:

Solvent n (mPas) T, (PS)
Hexane 0.300 6.7+ .25
0.838 7.3+.25
1.34 i1+ 0 290
275
3.03 5.5+ .25 o
0.894 7.4 + 50
0.544 5.9+ .35
1.95 6.0 £.25 ?---;---ﬂ---i --------------
g [t =t
1-Butanol 2.54 6.3 + .27 £ I
£
. — . s 111 ° !
The relaxation of the signal in the UV is SR B S i y Tkt
similar to that observed for provitamin D;. -
There is only a small solvent dependence. 1 : .
0 1 2 3

Solvent Shear Viscosity (mPa s)



o-terpinene > ) — O )0

Oscillator Singlet Transition Ground State TDDFT Calculation, 6-311*G(d,p) basis

Strength Energy (kJ/mol) set and the B3LYP density functional
0.22 0
0.12 100
The data are well modeled
e e by narrowing (thermal
0.25 99 cooling) and isomerization.
0.84 62

Absorption (Arb. Scale)

260 290 320 350
Wavelength (nm)

Difference

50 and 100 ps spectra resemble steady

225 250 275 300 325 350 state cZt spectrum.
Wavelength (nm)




Cyclohexadiene Photochemistry
— In a-phellandrene

hv = /— =
L% pa
— \
cZt

c/c t/t

—

o

R
J

. - = = solvent

. —Eﬁ::ss"on The absorption (red) and
Pifference fluorescence (blue) in heptane.

Absorption

Intensity (scaled)

The sharp line in the fluorescence
is @ Raman line from the solvent.

— 2 W s N -] C0ND

o
Y-

200 250 300 350 400 QY ~ 10> (somewhat smaller than
Wavelength (nm) o-terpinene, but measureable)

B. Arruda, E. Najera, B. Smith, K. G. Spears, and R. J. Sension, Manuscript in preparation.



Cyclohexadiene Photochemistry
— In a-phellandrene

Intensity (scaled)

—
NN O o

O = WA ON

=
hv
—> /' \
— =
c/c
- - = = solvent
7] ——— Emission
] Difference
Absorption
200 250 300 350 400
Wavelength (nm)
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D —— 263 nm MeOH
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& - = =258 nm MeOH
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Steady state photolysis of a-phellandrene

Steady state photolysis in heptane

g hv
; — p—

Steady state difference spectrum
tZt - a-phellandrene

Os
Os
-0s
Os

Absorbance

200 250 300 350
Wavelength (nm)

1.4 -
1.2 -
1
§ —t=0s
8 0.8 1 —1t=10's
(@]
§ 06 - —t=20's
—1t=30s
04 -
—1t=40 s
02
0 T I
200 250 300 350

Wavelength (nm)

Within a scale factor the difference
spectrum is constant for the first 40 or
50 seconds.

Secondary products involving cis-trans
double bond isomerization begin to
accumulate at longer times.



Excited state absorption of a-phellandrene

Intensity: -100 fs to 100 fs

—> / N\

c/c

—heptane
—alpha-phellandrenein heptane
,‘ No visible excited state absorption.
390 440 490 540 590

Wavelength (nm)

—hexane

——alpha-terpinene in hexane

Intensity -100 fs to 100 fs

390 440 490 540 590
Wavelength (nm)



Photoproduct Formation - a-phellandrene

Excitation of a-phellandrene in n-heptane

N - /_ N
——> /N _

Steady state =/ S /4<_\_<7
difference spectrum 4<:\_\2
Time (ps) ( cZc cZt
—0.6 189
—1.0
—1.5
—25

4.9
—75
—10.0

15.0
—20.0

—25.0
—50.0

tZt

—_——
=D

—
(S

The product spectrum red-
shifts and converges on the
steady state result within
about 50 ps.

,_
o

D o 1w L oo o

260 280 300 320 340

Wavelength (nm)



Photoproduct Formation - a-phellandrene

Isomer Oscillator Trsal:sgilt?:)n Ground State
Strength Energy (kJ/mol)
(nm)
a-phell 0.09 272 0 - /S~
hv —
cZc 0.17 290 75 /_\ - - =
czt 0.49 283 52 \ =
tZc 0.39 284 49 =
‘ i cZc c/Zt tZt
Time (ps)
l _ —06
s Red-shift larger than
16 calculated, but the — 15
g 17 right trend. —25
g 12 49
_g —1t=20s E 8 —10.0
2 —1t=60 s g 6 15.0
< —1t=100 s 5 4 —200
—1=140 s ; | —9250
S —50.0
0 ‘ S 260 280 300 320 340
200 250 300 350

Wavelength (um)
Wavelength (nm)



Comparison of a-phellandrene and CHD

a-Phellandrene in n-heptane Cyclohexadiene in n-heptane

) Vo \
/ _ B = — B _— T
hv =
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14 vy 5
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~1n | 2
8 Q 10 - —20
E E
Z z — 50
_ 3
= 6 ——100
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Summary

CHD @L

o-phellandrene
gets

o-terpinene

I :
DHC
R
Cé:b §
HO HO

@
A58

—

» No visible excited state absorption
> Fluorescence QY<10-° a-phell; ~10-¢ CHD
» Ground state dynamics diffusive relaxation

» Multiphoton control possible CHD

» Strong visible excited state absorption

> Weak fluorescence, QY~10-° a-terp,
~104 DHC

— > Tesa = TRvor

» Ground state cZc — cZt isomerization
~ 5-8 ps.

» Chirp influences ES dynamics, control?




