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PRELIMINARIES

Quantum control is a powerful tool for controlling the dynamics of phys-
ical processes on the atomic and molecular scale. A fundamental issue
in quantum control which is currently attracting great interest is the anal-
ysis of quantum control landscapes. Given an objective functional J(ε)
that depends on a control field ε, the dynamical landscape is defined by
the properties of the Hessian δ2J/δε2 at the critical points δJ/δε = 0.
We discuss an important discovery in quantum control landscape of spe-
cial trapping critical points—second-order traps—which can slow down
the search for globally optimal controls.

FORMULATION

Formulation of a quantum control problem includes defining the
following objects:

•Evolution equation: (for n-level quantum system)

dU ε
t

dt
= −i[H0 + V ε(t)]U ε

t

Here H0 and V are Hermitian n× n matrices.

•Control space U : A function space of all admissible controls, for
example L2([0, T ]), L∞([0, T ]) (T > 0 is the final time), etc.

•Objective functional J : For a wide variety of problems,

J(ε) = Tr[U ε
Tρ0U

ε†
T O]→ max

where O is a target operator and ρ0 is the initial density matrix.

CONTROL LANDSCAPES AND TRAPS

The objective J(ε) as a functional of the control ε(t) defines the dy-
namical control landscape, the graph of J(ε), whose structure deter-
mines the complexity of the underlying control problem. Important
points on the landscape are:

•Optimal controls: Global maxima of J(ε).
•Traps: Local maxima of J(ε).
•Second-order traps: Controls εwhere gradient of J is zero,∇Jε =
0, Hessian Hε := δ2J/δε2 is negative semidefinite, Hε ≤ 0, and
J(ε) < Jmax := max

ε∈U
J(ε).

Traps may significantly hinder the search for globally optimal con-
trols with local algorithms. This circumstance motivates the impor-
tance of the analysis of traps for quantum control problems.

Definition: Landscape lifting is the mapping J(ε)→ Ĵ(U) := Tr[Uρ0U
†O]

of the functional J(ε) to a function on U(n). The graph of Ĵ(U) is called
the kinematic landscape.

Definition: A control ε∗ is regular if the differential of the map f : U →
U(n), f (ε) = U ε

T is surjective at ε = ε∗.

Theorem: A regular control ε is a trap for J(ε) if and only if U := U ε
T is

a trap for Ĵ(U).

LANDSCAPES FOR CLOSED SYSTEMS

The analysis of traps for kinematic landscapes for closed quantum sys-
tems can be traced back to the analysis of trace functions f (U) :=

Tr[UAU †B], where A, B are symmetric matrices with all distinct eigen-
values. Such functions were shown to have exactly one maximum and
one minimum value, with all other stationary points being saddles over
the sets of unitary and orthogonal matrices U by, respectively, J. von
Neumann in Tomsk Univ. Rev. 1, 286 (1937), and R. Brockett in Lin.
Alg. Appl. 122/123/124, 761 (1989). This result was generalized to
non-symmetric A,B by S.J. Glaser et al. in Science 280, 421 (1998).

REGULAR CONTROLS: NO TRAPS

In full generality, the properties of kinematic landscapes for closed quan-
tum systems can be formulated as the following theorem.

Theorem [H. Rabitz, M. Hsieh, C. Rosenthal, Science 303, 1998
(2004) and subsequent works]: The kinematic landscape of Ĵ(U) =

Tr[Uρ0U
†O] on the unitary group U(n) has as critical points only global

maxima/minima and saddles (all are found).
Conclusion: Regular controls are not traps for J(ε).

However, non-regular controls are known to exist, and therefore the
problem of presence or absence of traps remained open.

NON-REGULAR CONTROLS: SECOND-ORDER TRAPS

The question of ultimate interest is whether non-regular controls can be
traps for dynamic landscapes. Recently, P. de Fouquieres and S.G. Schirmer
in preprint arXiv:1004.3492 constructed an example of a second-order
trap and numerically found a trap for a special case. We find that non-
regular controls are second-order traps under rather general assumptions
on H0, V , ρ0, and O, as opposed to previous expectations. This result in
the simplest form is explicitly formulated as the following theorem.

Theorem: If Vij = 0 for some i 6= j in the eigenbasis |i〉 ofH0, then there
exists an initial density matrix ρ0 and infinitely many target operators O
for which zero control ε(t) ≡ 0 is a second-order trap [theorem admits
a generalization to any constant controls].1

The assumption in the theorem is consistent with controllability of the
system; hence this result implies the existence of second-order traps for
controllable systems. The theorem implies that local optimization meth-
ods will have low efficiency when starting from controls with small in-
tensity of arbitrary temporal profile.2 The difficulties may arise even for
generally strong fields of intensities as high as I ≈ 1012 − 1013 W/cm2.3

Figure 1: Percentage of failed runs of GRAPE and BFGS for various intensities of the initial control.
For some realistic system parameters, A = 0.1− 0.2 corresponds to intensity I ≈ 1012 − 1013 W/cm2.
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LANDSCAPES FOR OPEN SYSTEMS

Often atomic and molecular controlled systems are open—they interact
with their environment. Their evolution is completely positive instead of
unitary and may be represented in the form

ρ0→ ρT =

λ(=n2)∑
i=1

Kiρ0K
†
i ,

λ∑
i=1

K†iKi = In ,

where matrices Ki = Ki(T, ε) depend on time and on the control. The
condition

∑
K†iKi = In implies that the set of matrices {Ki} can be

identified with a point S = (K1; . . . ;Kλ) (S†S = In) of the Stiefel man-
ifold Sn(Cλn). Hence the landscape lifting for an open quantum system
is a function over the Stiefel manifold:

J(ε) = Tr[ρεTO] −→ Ĵ(S) = Tr
[
SρS†(In2 ⊗O)

]
Theorem: The kinematic landscape of Ĵ(S) on the Stiefel manifold
Sn(Cλn) has as critical points only global maxima/minima and saddles
(all are found).4,5
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