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“Remote triggering” refers to the inducement of earthquakes by weak perturbations that emanate from faraway
sources, typically intense earthquakes that happen at much larger distances than their nearby aftershocks,
sometimes even around the globe. Here, we propose a mechanism for this phenomenon; the proposed mechanism
is generic, resulting from the breaking of Hamiltonian symmetry due to the existence of friction. We allow
a transition from static to dynamic friction. Linearly stable stressed systems display giant sensitivity to small
perturbations of arbitrary frequency (without a need for resonance), which trigger an instability with exponential
oscillatory growth. Once nonlinear effects kick in, the blow up in mean-square displacements can reach 15–20
orders of magnitude. Analytic and numerical results of the proposed model are presented and discussed.
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I. INTRODUCTION

It was said that when the magnitude 7.3 Landers earth-
quake struck in 1992 in the desert north of Palm Springs, the
earthquake map of the state of California lit up like a Christ-
mas tree [1]. Since the early 1990s there accumulated growing
evidence that remote earthquakes can trigger subsequent large
earthquakes with epicenters far away from the original one,
occasionally even far around the world [2]. While it is obvious
that seismic waves propagate in the earth crust, intense ones
are typically highly damped, and only long wavelength pertur-
bations, which are relatively weak, can reach long distances.
It is then natural to ask, what might be the mechanism for
the amplification of weak perturbations that could be behind
this so called “remote triggering” [3–6]. In seeking such a
mechanism, one must bear in mind a few basic requirements.
First, one needs to think about a system that is already under
the action of strain and stress, but which is linearly stable, i.e.,
it does not occur in the absence of an external perturbation.
Second, the system has to be sensitive to weak perturbations,
since, as said, only weak, long wavelength perturbations are
playing a role in remote triggering. Third, the frequency of
the weak perturbation should not have any particular rela-
tion to the natural frequencies of the perturbed system - a
generic mechanism should allow a giant response to arbitrary
frequencies of the incoming perturbing wave. In other words,
we are not looking for a resonance effect. Finally, the mech-
anism should be reasonably generic in the sense that it would
not depend on very special characteristics of the perturbed
system.

In this paper we propose a model that satisfies all these
requirements. To be precise, we do not claim that it is the
only possible model for remote triggering, but we would like
to offer it as a reasonable candidate for further examina-
tion and testing. We argue that the wanted properties result
from the breaking of Hamiltonian symmetry, bringing about
instabilities that are not present in systems whose dynamics

is derivable from a Hamiltonian. Of course, one can break
Hamiltonian symmetry in many ways, and here we stress the
role of friction.

The structure of this paper is as follows: the model is
described in detail in Sec. II. The instabilities of this model
and the giant sensitivity to weak perturbations are discussed
in details in Sec. III. In Sec. IV, we offer a critique of the
model and what might destroy its relevance to seismic appli-
cations. Section V offers a summary of the paper and some
conclusions.

II. THE MODEL

A. The setup

A very popular model for the onset of earthquakes is the
Burridge-Knopoff spring-block model [7]. This model em-
ploys many blocks interconnected by elastic springs with a
spring stiffness coefficient. The blocks are also elastically
coupled with a spring stiffness coefficient to a rigid plate
moving at a constant velocity, and pulled over a rough surface
described by some friction law. The interface between the
blocks and the rough surface can be considered an analog for
a one-dimensional earthquake fault [8]. For our purposes this
model is not ideal, since we want to understand what initiates
the fast relative movements of the fault plates. We are looking
for a mechanism that induces the beginning of motion in sys-
tems that are linearly stable while being under strain. In other
words, we are interested in a mechanically stable situation that
gets destabilized by weak perturbations, leading to a major
event. Moreover, we respect the fact that faults are usually
filled up with a gouge which is not faithfully represented by
blocks and springs. We therefore propose the model shown
in Fig. 1. The model consists of N disks of mass m in a box
of size L2, having two different radii R1 = 0.5 or R2 = 0.7,
respectively. This is done to avoid forming a periodic array,
keeping an amorphous structure at all times. Two disks exert
forces on each other only when they overlap. There are two
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FIG. 1. The model: an amorphous array of N disks of two sizes
[here, N = 100], compressed between a flat horizontal wall, here
shown in red color line, and an upper boundary made of disks shown
in yellow. The lower wall is fixed and the upper wall is movable. In
the lateral direction we employ periodic boundary conditions. The
entire system is under the action of constant external force in −y
direction Fy, while the disks forming the upper wall are acted upon
by an additional force in x direction Fx .

kinds of interaction forces between disks. The first is a normal
Hertzian force which depends upon the overlap between two
disks when they come into contact. This always pushes disks
apart. The Hertzian force exerted by disk j at r j on a disk i at
ri is given as

F(n)
i j = knδ

3/2
i j r̂i j, (1)

where kn is an elastic constant that depends upon the material
properties, and

δi j = (Ri + Rj ) − ri j,

ri j = ri − r j, r̂i j ≡ ri j/ri j . (2)

The second force is a tangential force F (t )
i j which depends

on the tangential displacement ti j of two disks when they
overlap. This is due to friction, always opposing the motion in
tangential directions. The determination of the ti j is dynami-
cal, and cannot be read from a given snapshot, although the
tangential forces can be determined in principle, cf. Ref. [9].
The tangential forces depend on the angular dynamics of the
disks, adding a degree of freedom θi for each disk, where by
convention θi = θ j = 0 when the disks i and j form contact
for the first time. The calculation of the tangential displace-
ments is detailed in Appendix A.

The tangential force is assumed to be bounded by the
Coulomb law,

F (t )
i j � μ(v)F (n)

i j , (3)

where μ(v) is a friction coefficient. As long as the relative
velocities between grains do not exceed a given threshold,
μ(v) is a static coefficient μ0. Once such velocities appear, a
dynamic friction coefficient replaces the static one in Eq. (3).
The velocity dependence of the dynamic friction coefficient
is discussed in the next subsection. In our model, the forces
are smooth functions of the displacements, with a smooth
first derivative; in light of the bound Eq. (3) we represent the

tangential interaction as a Mindlin force exerted by disk j at
r j on a disk i at ri:

F(t )
i j =−ktδ

1/2
i j

[
1 + ti j

t∗
i j

−
(

ti j

t∗
i j

)2]
ti j t̂i j, t∗

i j ≡ μ
kn

kt
δi j, (4)

with kt being a material parameter and t̂i j being the unit vector
in the tangential direction. We note that the tangential force
depends on the square-root of the normal overlap δi j . This is
physical, since the frictional force should increase with the
increased contact between the disk. The chosen form of the
tangential force Eq. (4) guarantees that it reaches the Coulomb
limit with smooth first and second derivatives. In this work we
use units of mass, length and time m, 2R1 and

√
m(2R1)1/2k−1

n ,
respectively.

Besides the fact that we smooth out the derivatives of the
tangential forces at the Coulomb limit, the model forces are
quite traditional, following the frequently used Cundall-Strack
model of frictional disks [10]. For our purposes, the important
property of this model is that the forces are not derivable from
a Hamiltonian. The fact that the normal force does not depend
on the tangential one, but the latter does depend on the former,
precludes any model Hamiltonian from which these can be
derived. This broken Hamiltonian symmetry is all-important
for our discussion. Otherwise, the precise form of the model
forces is less important.

The assembly of 100 disks is compressed between two
boundaries, the lower one being a flat wall and the upper
one being a line of disks. In the lateral direction we employ
periodic boundary conditions. A uniform (and constant) force
−Fyŷ is applied on all the upper wall disks in the downward
direction. In addition, we apply a force Fxx̂ in the positive x
direction on the disks of the upper layer. This force will be
used as a control parameter. The forces between the bound-
aries and the disks in contact with them are the same normal
and tangential forces as between the disks themselves. Due
to the fact that the lower boundary is fixed in position and
the upper boundary is forced downwards, the system remains
confined between these boundaries at all times.

B. Dynamic friction coefficient

The dependence of the dynamic friction coefficient on
the relative velocity of bodies in contact is a complex issue
that is not fully understood [11–15]. A short review of some
of the experimental knowledge about this issue is presented
in Appendix B. In general, it is stated that once the rela-
tive velocity exceeds some threshold value v0, the dynamical
friction coefficient is expected to become smaller than the
static one, reflecting the fact that the creation of contacts is
a plastic process that takes time, time that is not available
when the bodies are in motion [12]. At some larger velocity
vss, a steady-slide motion is reached with μss < μ0, and see
Appendix B for details. In our simulations, we use a simple
model-law for the dependence of the friction coefficient on
the velocity of the upper layer. The justification of this simple
form is provided in the said Appendix B. Here we provide
the velocity dependence of the dynamic friction coefficient as
used in the simulations

μ(ṽ) = μ0(Be−w(ṽ−ṽ0 ) + μss), (5)
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FIG. 2. The velocity dependence of the friction coefficient ap-
pearing in Eq. (3). When the velocity of the upper layer is smaller
than a predefined threshold value v0, the friction coefficient is con-
stant. For v > v0, μ(v) gradually decreases toward its steady-slide
value.

where ṽ = v/vss and B and w are fitting parameters, discussed
in Appendix B. The form of this law is shown in Fig. 2.

In our simulations we use the parameters B = 0.2, w =
0.4, μ0 = 1, μss = 0.8 and the threshold values ṽ0 are defined
by the undamped Newtonian dynamics of the stable configu-
ration.

III. INSTABILITIES AND GIANT SENSITIVITY
TO WEAK PERTURBATIONS

A. Dynamics

To take into account the angular and positional dynamics
we employ an extended set of coordinates qi = {ri, θi}. Their
equations of motion are Newtonian, i.e.,

mi
d2ri

dt2
= F i(q1, q2, · · · , qN ), (6)

Ii
d2θi

dt2
= T i(q1, q2, · · · , qN ), (7)

where mi are masses for the coordinates, Ii’s are moments of
inertia for the angles. F i’s are resultant forces (sum of all
normal and tangential binary forces on each disk), and T i’s
are torque. Using the smoothed out forces Eq. (4), this allows
to define the stability matrix J which is an operator obtained
from the derivatives of the force F i and the torque T i on each
particle with respect to the coordinates. In other words,

Jαξ
i j ≡ ∂F̃α

i

∂qξ
j

, F̃ i ≡
∑

j

F̃ i j, (8)

where q j stands for either a spatial position or a tangential
coordinate, and F̃ i stands for either a force or a torque. Since
in the usual case F i = −∂U/∂ri we see that the operator J is
an analog of the Hessian even when a Hamiltonian description
is lacking. But with a huge difference: J is not a symmetric
operator. Being real, it can possess pairs of complex eigenval-
ues. The solution of the linearized stability problem is exp iωt
where the frequency ω is related to the eigenvalue λ of J

according to

ω = ±
√

λ. (9)

Thus, when the eigenvalue becomes complex, with real and
imaginary parts, λ = λR ± iλIm, there are four frequencies
that are complex as well. When these appear, the system will
exhibit oscillatory instabilities, since one of each complex
pair will cause an oscillatory exponential divergence of any
perturbation, and the other an oscillatory exponential decay.
For the parameters of the simulations discussed below the
typical frequency associated with the oscillatory instability
near onset is of the order of ω ≈ 10−5.

The actual calculation of the operator J is somewhat
cumbersome but conceptually straightforward. A detailed cal-
culation for the present model is presented in Appendix C.

B. Protocol of simulations

To initiate the simulations, we start with loosely packed
disks in a square box and let them settle under the influence
of the contact forces and the constant force −Fyŷ, until the
maximum force between the disks drops below a small prede-
fined value of fmin = 10−15. The volume fraction of this stable
system is about φ = 0.8171, see Fig. 1.

We then apply to all disks of the upper layer a constant
horizontal force Fx pointing toward the positive x direction.
This force is increased by small increments δFx = 0.0001 and
the system is allowed to reach a new equilibrium state with
all contact forces smaller than fmin. For each such equilibrium
state, we calculate the operator J and its eigenvalues. At a
certain value Fx, a pair of complex eigenvalues bifurcates,
indicating that the system becomes unstable to external per-
turbations.

The simulations are carried out using the discrete element
method developed by Cundall and Strack [10], as imple-
mented in LAMMPS with modifications to include Eq. (4).
The equilibrium state is obtained using over-damped dy-
namics, while in the analysis of the instabilities the viscous
damping is turned off.

To study the influence of the friction coefficient μ on the
system’s stability, the above protocol was repeated for differ-
ent values of μ. As illustrated in Fig. 3, for smaller μ, the birth
of the complex eigenvalues occurs at smaller values of Fx.

C. Instabilities

1. Oscillatory instability

The appearance of the oscillatory instability of interest
can be observed by following the eigenvalues of the Jacobian
matrix as a function of Fx. At small values of Fx all the eigen-
values are real and positive. At a critical value of Fx = F c

x
two real eigenvalues coalesce, cf. Fig. 3(a). The critical value
depends of course on the friction coefficient μ, decreasing as
μ decreases. Simultaneous with the coalescence of the real
parts of the eigenvalues, a pair of imaginary parts bifurcates,
cf. Fig. 3(b). As explained above, the appearance of imagi-
nary eigenvalues inevitably leads to an oscillatory instability.
Once we are in the unstable domain Fx > F c

x , the system
will spontaneously magnify any infinitesimal perturbation,
in the present case even numerical noise. The development
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FIG. 3. (a) A pair of real eigenvalues coalesces upon increasing
the horizontal force Fx to the value F c

x . (b) At the critical value
F c

x , a pair of imaginary parts bifurcates. These bifurcations occur
at smaller critical values for smaller friction coefficient μ. The real
and imaginary components of the eigenvalues are shown for μ = 0.8
(blue lines) and μ = 1 (red lines with dots). The inset in panel
(b) magnifies the region near the onset of bifurcation for μ = 1. The
vertical black line corresponds to Fx = 0.0091. The parameters of
this simulation are kn = 2 × 105, kt = 2kn/7, Fy = 3.

of the instability can be monitored by following the mean-
square-displacement (MSD) from the state of mechanical
equilibrium. Denoting the MSD as D(t ) we compute

D(t ) ≡ 1

N

N∑
i

[

x2

i (t ) + 
y2
i (t )

]
. (10)

The time dependence of this quantity for μ = 1 and Fx =
0.012 is shown in Fig. 4. We see that D(t ) increases (starting
from just numerical noise) by some 15 orders of magnitude,
signaling a very violent response of the system to a very small
increase in Fx.

2. Sensitivity to small perturbations

Having demonstrated the instability for Fx > F c
x , we are

interested now in a linearly stable system at Fx < F c
x which

is subjected to a small perturbation. It is important to realize
that the type of instability discussed here renders the linearly
stable system highly sensitive to minute perturbations. The
theory behind this important feature was discussed in detail
in Ref. [16]. Here we summarize the essential observations.
Choosing appropriate units of time, the normal form for our

10 4 10 6 10 8

10 -20

10 -10

FIG. 4. The time dependence of the MSD in the linearly unstable
regime. The unstable dynamics increase the numerical noise by some
15 orders of magnitude, where nonlinear effects dominate.

instability can be written as

∂2
t

(
x
y

)
= −J

(
x
y

)
= −

(
1 − δ η

−η 1 + δ

)(
x
y

)
, (11)

with 1 > δ.
Substituting (x, y) = (X,Y )eiωt with constant X,Y we find

that the eigenfrequencies are obtained as ωi = ±√
λi with λi

being the eigenvalues of the Jacobian matrix J:

λ1,2 = 1 ∓ δ
√

1 − ν2, (12)

where ν = η

δ
. Clearly the system develops a complex pair of

eigenvalues for η > 1. We now take ε = 1 − ν = 1 − η

δ
and,

in order for the system to be critical, assume that ε � 1 and
positive. Using Eq. (12), the associated frequencies are to
leading order

ω1,2 ≈ 1 ∓ δ
√

ε/2. (13)

The eigenvectors ṽ1,2 = (X,Y ) are obtained as

ṽ1,2 =
(

1 ± √
1 − ν2

ν

)
. (14)

In the limit ν → 1 the two critical eigenvectors coincide and
become (1,1). The two eigenvectors Eq. (14) then become,
after normalizing such that v1,2 ≡ ṽ1,2/|ṽ1,2| = 1 + O(

√
ε),

v1,2 = 1√
2

(
1 ± √

ε/2

1 ∓ √
ε/2

)
. (15)

From Eq. (15) we can observe that near the critical point,
the two eigenvectors become parallel. As a result, an initial
condition (x0, y0) orthogonal to v∗ = (1, 1)/

√
2 will result in

oscillations whose amplitude diverges as ε−1/2.
The effect of an external oscillatory perturbation with an

arbitrary frequency ω is then studied by adding such a term to
the normal form,

∂2
t

(
x
y

)
= −

(
1 − δ η

−η 1 + δ

)(
x
y

)
+ f cos ωt, (16)

with f = F (1,−1)/
√

2 chosen so that f⊥v∗.
The divergence is seen in the homogenous solution to

Eq. (16) with xhom(0) = (1,−1)/
√

2. In Ref. [16], it was
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shown that

xhom,⊥ ≈ 1√
ε

(
1
1

)
sin (t ) sin

(
δε1/2

√
2

t

)

+ 1√
2

(
1

−1

)
cos (t ) cos

(
δε1/2

√
2

t

)
. (17)

The important conclusions to be drawn for the present study
is that the amplitude A of the homogeneous solution goes as

A ∼ ε−1/2. (18)

The reader should note that when this normal form is em-
bedded in a nonlinear system, the increase in oscillations can
easily ignite the nonlinear terms and drive the system further
from equilibrium. Thus, one may not see the linear blow-up in
its entirety because nonlinearities will become dominant. An
example is shown in the next subsection.

3. The effect of dynamical friction

To show that the dynamic friction can trigger the instability
in otherwise stable system, we choose a value of Fx = 0.0091
that corresponds to a linearly stable configuration for μ0 =
1, see inset in Fig. 3. Indeed, direct simulations without any
damping confirm the stability, cf. the blue line in Fig. 5. The
mean-square displacement remains at the level of 10−20.

Next, we add a periodic perturbation f (t ) = a cos ωt with
a small amplitude a = 10−12 and a frequency far from reso-
nance ω = 0.01. As said above, near onset the typical natural
frequency of the oscillatory instability is of the order of 10−5.
The perturbation has a much slower time scale, but it triggers
periodic oscillations in the MSD, with magnitude still not
exceeding 10−17, cf. the green line in Fig. 5.

But when we allow the friction coefficient to depend on the
mean velocity of the upper layer, the oscillatory instability is
greatly enhanced, with the MSD increasing by more than 12
orders of magnitude as is shown with the red line in Fig. 5.

In Fig. 5(b), we present the actual simulated values of μ(v).
Note that the velocity increases by seven orders of magnitude.
In Fig. 5(c) we present the lateral displacement and the veloc-
ity (inset) of the upper boundary. One observes a jump in both
quantities of about six orders of magnitude as a result of the
instability. After the jump the lateral displacement stabilizes
again.

IV. THE EFFECTS OF VISCOUS DAMPING

In assessing the applicability of the present model to real
earthquake dynamics, one needs to state that so far we did
not take into account any mechanism of damping. Damping
can arise due to a variety of causes, not the least being the
presence of water mixed with the gouge in the fault. It is thus
important to investigate the consequences of damping on the
normal form that we studied above and on the giant sensitivity
to small perturbations.

Let us then consider the case in which a damping force

f damp = − 1

τ
∂t

(
x
y

)
(19)

is added to Eq. (16).
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FIG. 5. (a) Dynamic response D(t ) for the stable system with
Fx = 0.0091 and μ0 = 1. If no perturbation is applied (blue line),
then the system is stable. A minute off-resonance perturbation leads
to oscillatory motion (green line), but the system still does not run.
Turning on the velocity dependence of μ(v) (red line) enhances the
instability resulting in a giant increase of D(t ). (b) The actual μ(v)
dependence. Note the logarithmic scale of the velocity v that changes
over more than 7 orders of magnitude. (c) Lateral displacement of the
top boundary as a function of time. The instability results in about
six orders of magnitude jump in displacement before re-stabilization.
Inset: the velocity of the top boundary.

For the homogeneous solution Eq. (17), we note that v1,2

from Eq. (15) are still the eigenvectors of the system near
criticality. A homogeneous solution of the form (X,Y )eiωt will
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now solve[
−
(

ω2 − iω/τ 0
0 ω2 − iω/τ

)
+

(
1 − δ η

−η 1 + δ

)](
X
Y

)
=0,

(20)

so that v1,2 is still obtained from Eq. (15). In the case of a
small damping (1/τ � 1), Eq. (17) becomes (cf. Ref. [16])

xhom ≈ 1√
ε

(
1
1

)
sin (t ) sin

(
δε1/2

√
2

t

)
e− t

τ

+ 1√
2

(
1

−1

)
cos (t ) cos

(
δε1/2

√
2

t

)
e− t

τ . (21)

The maximal amplitude is obtained as

A ∼ max
t

[
1√
ε

sin (t/τd )e− t
τ

]
, (22)

with τd ∼ 1
δ
√

ε
.

At this point it becomes clear that there is a competition
between the damping time scale τ and the closeness to criti-
cality as measured by τd . If τd � τ , then the damping is not
strongly effective and we expect to recover Eq. (18). However,
in the opposite limit, τd � τ , we expect to lose much of
the effect of the giant sensitivity, and seek an explanation
for remote triggering, if indeed occurring in this limit, with
another mechanism.

V. SUMMARY AND CONCLUSIONS

In this paper we offered a possible mechanism for remote
triggering, paying attention to the requirements described in
the introduction: (i) linear stability under stress, (ii) giant
sensitivity to small perturbations, (iii) the small perturbations
can have an arbitrary frequency, and (iv) genericity. All these
requirements are satisfied by the proposed mechanics which
rests on the breaking of Hamiltonian symmetry due to fric-
tion. The weak point of our scenario is that strong dissipative
effects can destroy the giant sensitivity. It therefore remains to
examine actual cases of remote triggering to assess whether in
real units the magnitude and nature of the dissipative effects
leave the present proposed mechanism relevant to earthquakes
in the field. This certainly appears as a worthwhile research
objective.
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APPENDIX A: TANGENTIAL DISPLACEMENTS

The normal force laws were described in detail in the main
text. Here we spell out the calculation of the tangential forces.
The tangential displacements can be divided into two parts:
(1) disk-disk interaction and (2) disk-wall interaction.

Disk-disk pair

The tangential velocity which is the derivative of the tan-
gential displacement ti j of a pair of interacting disks i and j is
given by

vt
i j = dti j

dt
= vi j − vn

i j + r̂i j × (Riωi + Rjω j ), (A1)

where vi j = vi − v j is the relative velocity of the pair—i and
j. vn

i j is the projection of the vi j along the direction r̂i j . ωi and
ω j are the angular velocities of the disks i and j, respectively,

given by ωi j = dθi j

dt , here, dθi j is the angular displacement of
disk i with respect to disk j. The above equation can be written
in differential form as follows:

dti j = dri j − drn
i j + r̂i j × (Ridθi + Rjdθ j ). (A2)

For a quasi-two-dimensional system as is in our studies, ωi

and θi will have only one component in ẑ direction perpen-
dicular to the xy plane, therefore, r̂i j × Ridθi = Ridθi(yi j x̂ −
xi j ŷ)/ri j . Hence, Eq. (A2) can be written in tensorial form as
follows:

dtα
i j = drα

i j − (dri j · r̂i j )
rα

i j

ri j
+ (−1)α (Ridθi + Rjdθ j )

rβ
i j

ri j
,

(A3)

where α and β correspond to x and y components,
respectively. The tangential displacements due to disk-wall
interaction are similar to the above expressions, however we
differentiate with respect to the disk coordinates only.

APPENDIX B: DYNAMIC FRICTION

When a system of blocks or disks subjected to a normal
force Fy, is pulled with a constant velocity (or a constant
force) in the x direction, at first no sliding occur. Once the
pulling velocity become larger than some threshold v0, the
system starts to slide. At small velocities, a nonsteady stick-
slip motion is taking place. At larger velocities, the sliding
become steady. The friction coefficient μ(v) depends on the
pulling velocity and decreases from the static value μ0 to the
value corresponding to the steady sliding. Both friction coef-
ficients μ0 and μ(v) are not fully determined by the material
constants, they depend also on the protocol, e.g., the time that
the surfaces spent in static contact, the pulling velocity and,
in the experiments involving a change of the pulling velocity,
the ratio of the initial and final velocities. This variability is
attributed to the changes in the structure of the real contact
area between two surfaces.

In natural conditions, the surfaces in contact are formed by
grains of various sizes. The sliding motion involve thousands
of grains and both the grain displacement and slide veloci-
ties may vary by many order of magnitude [11–15]. A good
idea of the velocity-dependence of the friction coefficient at
small driving velocities is provided by experiments with large
spherical glass particles [12]. The driving velocity is applied
to a cover glass, while the role of the normal force is played
by the gravity force Fg. The friction force Ff is uniquely
defined by the driving velocity and the friction coefficient (or
the normalized instantaneous frictional force) μ(t ) = Ff /Fg,
measured together with the deflection rate of the cover glass.
At slow driving velocities, the motion of the cover glass is
unsteady, with fast slip events followed by almost stationary
“stick” periods.

Although the particular dependence of the instantaneous
friction coefficient on the instantaneous velocity is influ-
enced by material parameters and driving velocity, the shape
μ(v) appears almost universal, when plotted in a dimension-
less form μ(v)/μ0 versus v/vss, where μ0 is the friction
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FIG. 6. The velocity dependence of the friction coefficient for
experiments in Ref. [12]. Open and filled circles denote the data
of measurement for two driving velocities as indicated in the fig-
ure. The solid lines are fits with the functional form Eq. (5). The
fit parameters B = 0.22, w = 4, ṽ0 = 0.05. The steady-slide friction
coefficeint μss = 0.74 for filled circles and μss = 0.78 for open cir-
cles. The experimental data are reproduced from Fig. 13 in Ref. [12].

coefficient measured before any sliding occur, and vss is the
largest velocity measured during slip event. This shape, given
by Eq. (5), fits well with almost identical fitting parameters
the results measured for two very different driving velocities,
as illustrated in Fig. 6.

APPENDIX C: STRUCTURE OF JACOBIAN

The evaluation of the J operator is described in two section
here. We first provide the calculations for the disk-disk pair
which is followed by the disk-wall interaction.

1. Disk-disk pair

Derivative of the tangential force [Eq. (A3)] with respect
to rα

i :

∂F(t )
i j

β

∂rα
j

= −kt
∂

∂rα
i

[
δ

1/2
i j

(
tβ
i j + t̃ tβ

i j − t̃2tβ
i j

)]

= 1

2
δ−1

i j

rα
i j

ri j
F(t )

i j
β − ktδ

1/2
i j

[
(1 + t̃ − t̃2)

∂tβ
i j

∂rα
i

+ (t̃β − 2t̃ t̃β )
∂ti j

∂rα
i

+ (−t̃ t̃β + 2t̃2t̃β )
∂t�

i j

∂rα
i

]
. (C1)

Here, t̃ = ti j

t�
i j

and t̃β = tβ
i j

t�
i j

. Expressions for all the three partial

differentiation in Eq. (C1) are shown in Ref. [16].
Similarly, the derivative of tangential force with respect to

θ j (using the same notation as above) can be found as

∂F (t )
i j

β

∂θ j
= −ktδ

1
2

[
(1 + t̃ − t̃2)

∂tβ
i j

∂θ j
+ (t̃β − 2t̃ t̃β )

∂ti j

∂θ j

]
.

(C2)

From the above two equations, it is then understood that if
ri j and ti j are known, the differential equations can be solved
[16]. When t̃β is negligible for all β, then t̃ ≈ 0, which then

translates to
∂F (t )

i j

∂θ j
= −ktδ

1
2

∂tβ
i j

∂θ j
= −(−1)β Riδ

1
2
i j

rα
i j

ri j
, with α �=

β, implying that even in the case of zero tangential displace-
ment [hence, zero tangential force], the above derivative can
be finite.

The derivative of the normal force with respect to rα
j fol-

lows

∂F (n)
i j

β

∂rα
j

= kn
∂

∂rα
j

[
δ

3
2
i j

rα
i j

ri j

]

= knδ
1
2
i j

[
− 
αβ

δi j

ri j
+ 3

2

rα
i j r

β
i j

r2
i j

+
(

δi j

ri j

)
rα

i j r
β
i j

r2
i j

]
,

(C3)

where 
αβ is the Kronecker delta. Therefore, the derivative of
the total force is written as follows:

∂Fβ
i j

∂rα
j

= ∂F (n)β
i j

∂rα
j

+ ∂F (t )β
i j

∂rα
j

, (C4)

∂Fβ
i j

∂θ j
= ∂F (t )β

i j

∂θ j
. (C5)

The torque of a disk j due to tangential force F(t )
i j is T j =

−Rj (r̂i j × F(t )
i j ) ≡ RjT̃i j . In two-dimensional systems, T̃i j has

only z component:

T̃ z
i j = −

[(
xi j

ri j

)
F (t )

i j
y −

(
yi j

ri j

)
F (t )

i j
x

]
. (C6)

Therefore, the derivative of T̃ z
i j with respect to translational

coordinates rα
i then becomes

∂T̃ z
i j

∂rα
j

=
(


αx

ri j
− xi jxα

i j

r3
i j

)
F (t )

i j
y −

(
xi j

ri j

)
∂F (t )

i j
y

∂rα
j

−
(


αy

ri j
− yi jxα

i j

r3
i j

)
F (t )

i j
x +

(
yi j

ri j

)
∂F (t )

i j
x

∂rα
j

, (C7)

where 
αx and, 
αy is the Kronecker δ, i.e., 
xx = 
yy = 1
and zero otherwise. The derivative of the torque with respect
to the θi would be

∂T̃ z
i j

∂θ j
= −

[(
xi j

ri j

)
∂F y

i j

∂θ j
−

(
yi j

ri j

)
∂F x

i j

∂θ j

]
. (C8)

The above two differential equations can be solved using
Eqs. (C1) and (C2). If the tangential displacement tβ

i j is negli-

gible compared to the threshold t�
i j , i.e., t̃β

i j ≈ 0 for all β, then

this provides us with t̃ ≈ 0. Therefore,
∂T̃ z

i j

∂θi
= kt Riδ

1
2
i j , which

means that even in the case of negligible/zero tangential dis-
placement hence zero tangential force, the derivative of the
torque is nonzero.
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2. Disk-wall interaction

Following Eq. (C1) for the disk-disk pair, we can write the
derivative of the tangential force with respect rα

i for the disk-
wall pair as

∂F (t )
iw

β

∂rα
i

= −kt
∂

∂rα
i

[
δ

1/2
iw

(
tβ
iw + t̃wtβ

iw − t̃2
wtβ

iw

)]

= −1

2
δ−1

iw

rα
iw

riw
F (t )

iw
β − ktδ

1/2
iw

[(
1 + t̃w − t̃2

w

)∂tβ
iw

∂rα
i

+ (
t̃β
w − 2t̃w t̃β

w

)∂tiw
∂rα

i

+ ( − t̃w t̃β
w + 2t̃2

w t̃β
w

)∂t�
iw

∂rα
i

]
.

(C9)

Here, t̃w = tiw
t�
iw

and t̃β
w = tβ

iw
t�
iw

.
Similarly, the derivative of tangential force with respect to

θi (using the same notation as above) can be found as

∂F (t )
iw

∂θi
= −ktδ

1
2

[(
1 + t̃w − t̃2

w

)∂tβ
iw

∂θi
+ (

t̃β
w − 2t̃w t̃β

w

)∂tiw
∂θi

]
.

(C10)

The derivative of the normal Hertzian force would be

∂F (n)
iw

β

∂rα
i

= kn
∂

∂rα
i

[
δ

3
2
iw

rα
iw

riw

]

= knδ
1
2
iw

[

αβ

δiw

riw
− 3

2

rα
iwrβ

i j

r2
i j

−
(δiw

riw

) rα
iwrβ

iw

r2
iw

]
,

(C11)

where 
αβ is the Kronecker δ. In the above equation, one
should note that if F nx

iw = 0 (which is true in the current

studies) then ∂F n
iw

β

∂rα
i

= 0.

Therefore, the derivative of the total force is written as
follows:

∂Fβ
iw

∂rα
i

= ∂F (n)β
iw

∂rα
i

+ ∂F (t )β
iw

∂rα
i

, (C12)

∂Fβ
iw

∂θi
= ∂F (t )β

iw

∂θi
. (C13)

The torque of a disk i due to tangential force F(t )
iw is

Ti = −Ri(r̂iw × Ft
iw ) ≡ RiT̃iw. In two-dimensional systems,

T̃iw has only z component:

T̃ z
iw = −

[(
xiw

riw

)
F (t )

iw
y −

(
yiw

riw

)
F (t )

iw
x

]
. (C14)

Therefore, the derivative of T̃ z
iw with respect to translational

coordinates rα
i then becomes

∂T̃ z
iw

∂rα
i

= −
(


αx

riw
− xiwxα

iw

r3
iw

)
Ft

iw
y −

(
xiw

riw

)
∂Ft

iw
y

∂rα
iw

+
(


αy

riw
− yiwxα

iw

r3
iw

)
Ft

iw
x +

(
yiw

riw

)
∂Ft

iw
x

∂rα
iw

, (C15)

where 
αx and, 
αy are the Kronecker δ, i.e., 
xx = 
yy = 1
and zero otherwise. The derivative of the torque with respect
to the θi would be

∂T̃ z
iw

∂θi
= −

[(
xiw

riw

)
∂F y

iw

∂θi
−

(
yiw

riw

)
∂F x

iw

∂θi

]
. (C16)

3. Expressions for the different parts of the Jacobian

The dimension of Jacobian operator J is force over length.
To be consistent with the dimension, we redefine the torque T
and rotational coordinate θi as

T̃i = Ti

Ri
and θ̃i = Riθi. (C17)

In addition, the dynamical matrix has a contribution from
the moment of inertia Ii = I0miR2

i since 
ωi = Ti
Ii
t . In our

calculation, we assume that mass mi and I0 both are one.
The remaining contribution of Ii, i.e., R2

i , is taken care of by
rescaling the torque and angular displacement as T̃i and θ̃i. For
Ii �= 1, the contribution of Ii can be correctly anticipated if we
rewrite Eq. (A1) as follows:

dti j

dt
= vi j − vn

i j + 1

I0
r̂i j × Ri(ωi + ω j ). (C18)

The Jacobian operator J = || ∂Fi
∂Q j

||Q0
can be divided into

four parts: (i) derivative of the force Fβ
i with respect to

translational coordinates rα
j , (ii) derivative of the force Fβ

i
with respect to angular displacements θ j , (iii) derivative of
the torque T β

i with respect to translational coordinates rα
j ,

and (iv) derivative of the torque Fβ
i with respect to angular

displacements θ j . Total force on disk i is given by

Fi =
N∑

j=1,i �= j

Fi j + Fiw + Fy
i + Fx

i , (C19)

where:
(1)

∑N
j Fi j = total force on the disk due to other disk in

contact,
(2) Fiw = total force on the disk due to wall,
(3) Fy

i = constant force on the upper layer disks pushing
the disks down (−ŷ direction),

(4) Fx
i = constant force on all the disks of the upper layer,

pushing the disks in the horizontal (+x̂ direction).
Differentiating both sides with respect to r j ,

∂Fi

∂r j
= ∂

∂r j

N∑
j=1, j �=i

Fi j + ∂

∂r j
Fiw,

∂Fi

∂r j
= ∂

∂r j

N∑
j=1, j �=i

Fi j + ∂

∂r j
Fiw. (C20)

Using tensor notations, we get

∂Fβ
i

∂rα
j

= ∂

∂rα
j

N∑
j=1, j �=i

Fβ
i j + ∂Fβ

iw

∂rα
j

. (C21)
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First part: Derivative of forces with respect to positions of
particles:

Jαβ
i j = ∂Fβ

i j

∂rα
j

, for j �= i, (C22)

∂Fβ
i

∂rα
i

= −
N∑

j=1, j �=i

∂Fβ
i j

∂rα
j

+ ∂Fβ
iw

∂rα
i

, for j = i, (C23)

which then gives us

Jαβ
i j = ∂Fβ

i j

∂rα
j

, Jαβ
ii = −

N∑
j=1, j �=i

∂Fβ
i j

∂rα
j

+ ∂Fβ
iw

∂rα
i

. (C24)

Second part: Derivative of forces with respect to rotational
coordinates of particles:

Jβ
i j = ∂Fβ

i j

∂θ j
, for j �= i, (C25)

∂Fβ
i

∂θi
=

N∑
j=1, j �=i

∂Fβ
i j

∂θ j
+ ∂Fβ

iw

∂θi
, for j = i, (C26)

which gives

Jβ
i j = ∂Fβ

i j

∂θ j
, Jβ

ii =
N∑

j=1, j �=i

∂Fβ
i j

∂θ j
+ ∂Fβ

iw

∂θi
. (C27)

Third part: Derivative of torques with respect to positions of
particles:

Jα
i j = ∂T z

i j

∂rα
j

, for j �= i, (C28)

∂T z
i

∂rα
i

= −
N∑

j=1, j �=i

∂T z
i j

∂rα
j

+ ∂T z
iw

∂rα
i

, for j = i, (C29)

which gives

Jα
i j = ∂T z

i j

∂rα
j

, Jα
ii = −

N∑
j=1, j �=i

∂T z
i j

∂rα
j

+ ∂T z
iw

∂rα
i

. (C30)

Fourth part: Derivative of torques with respect to rotational
coordinates of particles

Ji j = ∂T z
i j

∂θ j
, for j �= i, (C31)

∂T z
i

∂θi
=

N∑
j=1, j �=i

∂T z
i j

∂θ j
+ ∂T z

iw

∂θi
, for j = i, (C32)

which gives

Ji j = ∂T z
i j

∂θ j
, Jii =

N∑
j=1, j �=i

∂T z
i j

∂θ j
+ ∂T z

iw

∂θi
. (C33)

4. An example of the Jacobian matrix for a two-disk system

For each disk the total degrees of freedom are 3, i.e., two
in x and y and the third one is the θ rotation. Hence, the
dimension of the Jacobian matrix is (d + 1)N × (d + 1)N .
Here we show the arrangement of the elements of the Jacobian
matrix for a two disks system.

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂F x
1

∂x1

∂F x
1

∂x2

∂F x
1

∂y1

∂F x
1

∂y2

∂F x
1

∂θ1

∂F x
1

∂θ2

∂F x
2

∂x1

∂F x
2

∂x2

∂F x
2

∂y1

∂F x
2

∂y2

∂F x
2

∂θ1

∂F x
2

∂θ2

∂F y
1

∂x1

∂F y
1

∂x2

∂F y
1

∂y1

∂F y
1

∂y2

∂F y
1

∂θ1

∂F y
1

∂θ2

∂F y
2

∂x1

∂F y
2

∂x2

∂F y
2

∂y1

∂F y
2

∂y2

∂F y
2

∂θ1

∂F y
2

∂θ2

∂T z
1

∂x1

∂T z
1

∂x2

∂T z
1

∂y1

∂T z
1

∂y2

∂T z
1

∂θ1

∂T z
1

∂θ2

∂T z
2

∂x1

∂T z
2

∂x2

∂T z
2

∂y1

∂T z
2

∂y2

∂T z
2

∂θ1

∂T z
2

∂θ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

[1] S. E. Hough, Remotely triggered earthquakes following mod-
erate mainshocks (or, Why California is not falling into the
ocean), Seismol. Res. Lett. 76, 58 (2005).

[2] R. O’Malley, D. Mondal, C. Goldfinger, and M.
Behrenfeld, Evidence of systematic triggering at teleseismic
distances following large earthquakes, Sci. Rep. 8, 11611
(2018).

[3] E. A. Jagla, Realistic spatial and temporal earthquake distribu-
tions in a modified Olami-Feder-Christensen model, Phys. Rev.
E 81, 046117 (2010).

[4] E. A. Jagla, Delayed dynamic triggering of earthquakes: Evi-
dence from a statistical model of seismicity, Europhys. Lett. 93,
19001 (2011).

[5] N. J. van der Elst, H. M. Savage, K. M. Keranen, and
G. A. Abers, Enhanced remote earthquake triggering at fluid-
injection sites in the midwestern united states, Science 341, 164
(2013).

[6] E. A. Jagla, F. P. Landes, and A. Rosso, Viscoelastic Effects
in Avalanche Dynamics: A Key to Earthquake Statistics, Phys.
Rev. Lett. 112, 174301 (2014).

[7] R. Burridge and L. Knopoff, Model and theoretical seismicity,
Bull. Seismol. Soc. Am. 57, 341 (1967).

[8] J. M. Carlson, J. S. Langer, B. E. Shaw, and C. Tang, Intrinsic
properties of a Burridge-Knopoff model of an earthquake fault,
Phys. Rev. A 44, 884 (1991).

[9] O. Gendelman, Y. G. Pollack, and I. Procaccia,
Determining the interparticle force laws in amorphous
solids from a visual image, Phys. Rev. E 93, 060601(R)
(2016).

[10] P. A. Cundall and O. D. L. Strack, A discrete numerical model
for granular assemblies, Géotechnique 29, 47 (1979).

[11] S. Nasuno, A. Kudrolli, and J. P. Gollub, Friction in Granular
Layers: Hysteresis and Precursors, Phys. Rev. Lett. 79, 949
(1997).

044903-9

https://doi.org/10.1785/gssrl.76.1.58
https://doi.org/10.1038/s41598-018-30019-2
https://doi.org/10.1103/PhysRevE.81.046117
https://doi.org/10.1209/0295-5075/93/19001
https://doi.org/10.1126/science.1238948
https://doi.org/10.1103/PhysRevLett.112.174301
https://doi.org/10.1785/BSSA0570030341
https://doi.org/10.1103/PhysRevA.44.884
https://doi.org/10.1103/PhysRevE.93.060601
https://doi.org/10.1680/geot.1979.29.1.47
https://doi.org/10.1103/PhysRevLett.79.949


CHARAN, POMYALOV, AND PROCACCIA PHYSICAL REVIEW E 104, 044903 (2021)

[12] S. Nasuno, A. Kudrolli, A. Bak, and J. P. Gollub, Time-resolved
studies of stick-slip friction in sheared granular layers, Phys.
Rev. E 58, 2161 (1998).

[13] G. Di Toro, D. L. Goldsby, and T. E. Tullis, Friction falls
towards zero in quartz rock as slip velocity approaches seismic
rates, Nature (London) 427, 436 (2004).

[14] J. H. Dieterich, Time-dependent friction and the mechanics of
stick slip, Pure Appl. Geophys. 116, 790 (1978).

[15] E. Aharonov and C. H. Scholz, A physics-based
rock friction constitutive law: Steady-state fric-
tion, J. Geophys. Res.: Solid Earth 123, 1591
(2018).

[16] H. Charan, O. Gendelman, I. Procaccia, and Y.
Sheffer, Giant amplification of small perturbations in
frictional amorphous solids, Phys. Rev. E 101, 062902
(2020).

044903-10

https://doi.org/10.1103/PhysRevE.58.2161
https://doi.org/10.1038/nature02249
https://doi.org/10.1007/BF00876539
https://doi.org/10.1002/2016JB013829
https://doi.org/10.1103/PhysRevE.101.062902

