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We develop a theory of strong anisotropy of the
energy spectra in the thermally driven turbulent
counterflow of superfluid 4He. The key ingredients
of the theory are the three-dimensional differential
closure for the vector of the energy flux and the
anisotropy of the mutual friction force. We suggest
an approximate analytic solution of the resulting
energy-rate equation, which is fully supported by
our numerical solution. The two-dimensional energy
spectrum is strongly confined in the direction of
the counterflow velocity. In agreement with the
experiments, the energy spectra in the direction
orthogonal to the counterflow exhibit two scaling
ranges: a near-classical non-universal cascade
dominated range and a universal critical regime
at large wavenumbers. The theory predicts the
dependence of various details of the spectra and the
transition to the universal critical regime on the flow
parameters.

This article is part of the theme issue ‘Scaling the
turbulence edifice (part 2)’.

1. Introduction
Most universal properties of turbulence are only revealed
in flows with very high Reynolds number. Typically, such
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conditions are found in atmospheric turbulence or in very large wind tunnels. Liquid helium
has very low kinematic viscosity and, therefore, becomes an ideal test-bed for high-Reynolds
number turbulence even in a relatively small experimental facility. The liquid helium viscosity
decreases with temperature and below the Bose–Einstein condensation temperature Tλ ≈ 2.17 K
4He becomes superfluid. In this state, it can be described as a two-component fluid in which a
viscous normal-fluid and an inviscid superfluid components interact via a mutual friction force
[1–10].

Various ways of turbulence generation in superfluid He produce flows with very different
properties. Mechanically driven superfluid He with two components flowing in the same
direction and coupled by the mutual friction almost at all scales has long been considered similar
[7–9] to the classical flows [11]. The similarity included the behaviour of the structure functions
and scaling of the turbulent energy spectra close to k−5/3 [9,12–18].

The two-fluid nature of the superfluid 4He allows generation of turbulence by thermal
gradient [2,5,8,19–22]. In such a flow that has no classical analogy, the two fluid components
flow in opposite directions: the normal fluid carries the heat flux away from the heat source
with the mean velocity Un, while the superfluid flows towards the heater with the mean
velocity Us. The mutual friction force that couples the components leads to both the energy
exchange and additional dissipation by mutual friction that are scale-dependent [23,24]. Since
all relevant fluid parameters [25] are strongly temperature-dependent, the statistical properties
of such a counterflow are not universal. Instead, the statistics of the counterflow depends on
the temperature and on the relative velocity Uns = Un − Us [24,26–30]. Recent flow visualization
experiments [27,28,31–33] stimulated theoretical and numerical investigations of the energy
spectra of the counterflow turbulence. It was shown [23,24,30,34,35] that besides the dependence
on flow parameters, the energy spectra are sensitive to the angle with respect to the direction
of the counterflow velocity. As a result, the energy spectra in the counterflow turbulence are
anisotropic and strongly suppressed in the direction of Uns.

Although such a spectral anisotropy was predicted theoretically and confirmed numerically
[29,30], the experimental investigations of the energy spectra for the time being are limited to
the plane, orthogonal to the direction of the counterflow velocity [28,33], while the theory of
counterflow turbulence [24] was developed assuming spectral isotropy. In this paper, we relax
this assumption and offer a theoretical description of the spectral anisotropy of the energy spectra
of the counterflow turbulence in superfluid 4He.

The paper is organized as follows. In §2, we develop the theory of anisotropic turbulence.
Similar to our previous studies of superfluid turbulence [14,23,24,36,37], we describe the large-
scale turbulence in superfluid 4He by the coarse-grained Navier–Stokes equation (2.1) coupled
by the mutual friction force. These equations are detailed in §2a. In §2b, we introduce various
statistical characteristics of anisotropic turbulence, used in our paper. In the focal §2c, we
suggest the energy rate equation (2.10) for the axially symmetric counterflow turbulence. The
key element [§2(c,ii)] in the resulting energy rate equation (2.10) is the coupling function D(k||),
which depends only on k||, according to equation (2.6b). In §1(c,iii), we introduce a vector energy
flux ε(k) = {ε||(k), ε⊥(k)}, which depends on the position in the plane k = {k||, k⊥}, formed by the
components k|| and k⊥ of the wavevector k, parallel and orthogonal to the counterflow velocity
Uns, respectively. We analyse the resulting energy rate equation analytically in §3 and numerically
in §4. Finally, in §5, we summarize our findings.

2. A theory of anisotropic counterflow turbulence
The superfluid phase of liquid He is characterized by quantized vorticity that is constrained to
vortex-line singularities of core radius a0 ≈ 10−8 cm and fixed circulation κ = h/M, where h is
Planck’s constant and M is the mass of the 4He atom [3]. The superfluid turbulence is manifested
as a complex tangle of these vortex lines with a typical inter-vortex distance [5] � ∼ 10−4−10−2 cm.

Large-scale hydrodynamics of such a system is usually described by a two-fluid model,
interpreting 4He as a mixture of two coupled fluid components: an inviscid superfluid and a
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viscous normal fluid. The temperature-dependent densities of the normal-fluid and superfluid
components ρs, ρn : ρs + ρn = ρ define their contributions to the mixture. Here, ρ is the density of
4He. The fluid components are coupled by the mutual friction force, mediated by the tangle of
quantum vortexes [1,5,6,9,19–22].

(a) Coarse-grained equations for counterflow He-4 turbulence
Similar to [30], our approach to the problems of counterflow turbulence with the scales
much larger than the intervortex distance [23,24,36] is based on the coarse-grained equations
[14,24,36,37] of the incompressible superfluid turbulence. These equations, often called Hall–
Vinen–Bekarevich–Khalatnikov equations (HVBK) [38,39], have a form of two Navier–Stokes
equations (NSE) for the turbulent velocity fluctuations of the normal fluid and superfluid
components un(r, t) and us(r, t) in the presence of space-homogeneous mean normal and
superfluid velocities Un and Us

∂us

∂t
+ [(us + Us) · ∇]us − 1

ρs
∇ps = νs	us + f ns, f ns � Ωs(un − us) (2.1a)

and
∂un

∂t
+ [(un + Un) · ∇]un − 1

ρn
∇pn = νn	un − ρs

ρn
f ns, Ωs = α(T)κL, (2.1b)

coupled by the mutual friction force f ns in the form (2.1a) and complemented by the
incompressibility conditions

∇ · un = 0 and ∇ · un = 0. (2.1c)

The mutual friction force involves the temperature dependent dimensionless dissipative mutual
friction parameter α(T) and the superfluid vorticity κL. Here, L is the vortex line density (VLD).
Furthermore, the partial densities of the normal and superfluid components are ρn and ρs, the
pressure of the normal and the superfluid components are

pn = ρn

ρ

[
p + ρs

2
|Uns + un − us|2

]
and ps = ρs

ρ

[
p − ρn

2
|Uns + un − us|2

]
. (2.1d)

The kinematic viscosity of normal fluid component νn = η/ρn with η being the dynamical viscosity
[25] of normal 4He component and the Vinen’s effective superfluid viscosity [5] νs, which accounts
[36] for the energy dissipation at the intervortex scale � due to vortex reconnections, the energy
transfer to Kelvin waves and other dissipation mechanisms.

We consider here the planar heat source, typically used in the channel counterflow.

(b) Statistical characteristics of anisotropic turbulence
The general description of the homogeneous superfluid 4He turbulence at the level of the second-
order statistics can be done in terms of the three-dimensional correlation functions of the normal-
fluid and superfluid turbulent velocity fluctuations in the k-representation

(2π )3δ3(k − k′)Fαβ

ij (k) =
〈
vα

i (k) · v
∗β

j (k′)
〉

, Fij(k) ≡
∑

α=x,y,z
Fαα

ij (k). (2.2)

Here, Fαβ

j (k) =Fαβ

jj (k), δ3(k − k′) is three-dimensional Dirac’s delta function and

vj(k) =
∫

uj(r) exp(ik · r)dr and uj(r) =
∫

vj(k) exp(−ik · r)
dk

(2π )3 . (2.3)

The subscripts i,j in Eq (2.2) denote the normal (i, j = n) or the superfluid (i, j = s) fluid components
and ∗ stands for complex conjugation. The three-dimensional correlation function Fij(k) and the
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Fourier transform (2.3) are defined such that the kinetic energy density per unit mass Ej (with the
dimension [E] = cm2 s−2) reads

Ej = 1
2

〈
|uj(r)|2

〉
= 1

2

∫
Fjj(k)

d3k
(2π )3 .

Due to the presence of the preferred direction, defined by the counterflow velocity Uns, the
counterflow turbulence has an axial symmetry around that direction. In this case, Fαβ

ij (k) depends

only on two projections k|| and k⊥ of the wave-vector k: k|| ≡ Uns(k · Uns)/U2
ns and k⊥ = (k − k||),

being independent of the angle ϕ in the ⊥-plane, orthogonal to Uns: Eαβ

ij (k) ⇒ Eαβ

ij (k||, k⊥).

In the case of axial symmetry, a two-dimensional object Eαβ

ij (k||, k⊥) still contains all
the information about second-order statistics of the counterflow turbulence: Ej(k||, k⊥) ≡
(k⊥/4π2)Fj(k||, k⊥). Now the total kinetic energy density per unit mass can be found as Ej =∫∫∞

0 dk|| dk⊥Ej(k||, k⊥). In the fully isotropic case, Ej(k||, k⊥) depends only on k =
√

k2
|| + k2

⊥ and we
can introduce traditional one-dimensional energy spectrum

Ẽj(k) = 2πkEj(k||, k⊥). (2.4)

(c) Energy rate equations for counterflow turbulence
(i) General form of the energy rate equation in axial symmetry

A theory of space-homogeneous counterflow turbulence [24], developed under simplifying
assumption of the spectral isotropy of the flow, is based on the stationary balance equations for
the one-dimensional energy spectra Ẽj(k), (2.4). Here, we relax the assumption of the isotropy,
and derive an energy rate equation for the two-dimensional energy spectra Ej(k||, k⊥) of the
counterflow turbulence with axial symmetry around k||. To this end, we, following [24], eliminate
the pressure terms using the incompressibility conditions, Fourier transform and multiply them
by the complex conjugates of the corresponding velocities. After ensemble averaging, we get the
equations for the three-dimensional spectra Fj(k), defined by (2.2), and average them only over
the azimuth angle ϕ in the plane orthogonal to k||. Finally, we get

∂Ej(k, t)

∂t
+ divk[εj(k)] = Ωj

[
Ens(k) − Ej(k)

] − 2νjk
2Ej(k), Ωn = Ωsρs

ρn
. (2.5)

Here, k = {k||, k⊥} is a two-dimensional wavevector, εj(k) = {ε||
j , (k), ε⊥

j (k)} is the vector of the
energy flux. The cross-correlation function Ens is discussed in the next section and the derivation
of the vector energy flux is detailed in §2c(iii).

(ii) Cross-correlation function in counterflow turbulence

In our analysis, we use the model of the anisotropic cross-correlation function Ens(k||, k⊥),
introduced by equation (13) of [23]:

Ens(k) = A(k)Ωns

Ω2
ns + (k||Uns)2

, A(k) = ΩsEn(k) + ΩnEs(k), Ωns = Ωn + Ωs. (2.6a)

Further simplifications [24] allow one to rewrite (2.6a) for Ens(k) in the following form:

Ens(k) = Ej(k)D(k||), D(k||) = k2×(
k2× + k2

||
) , k×=Ωns

Uns
. (2.6b)

Note that while substituting Ens(k) into the rate (2.5), we should take in (2.6b) j = n in the equation
for the normal component, and j = s for the superfluid component.

The physical meaning of the two-dimensional coupling function D(k||) in (2.6b) is the same as
in the spherical case: it describes the level of decorrelation of the normal-fluid and superfluid
velocity components by the counterflow velocity. For k|| � k×, normal-fluid and superfluid
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velocities are almost fully coupled. In this case, the mutual friction only in Eq (2.2) weakly
affects the energy balance. The energy spectrum in the inertial interval of scales is determined by
the step-by-step cascade energy transfer. Accordingly, this range of wavenumbers can be called
‘cascade-dominated’ [24]. For large k||, D(k||) � 1 and the velocities of fluid components are almost
decoupled. In this ‘mutual-friction dominated range’, the energy dissipation by mutual friction
strongly suppresses the energy spectra.

(iii) The energy transfer term

The energy transfer term divk[εj(k)] in (2.5) originates from the nonlinear terms in the coupled
NSE equation (2.1) and has the same form [40–42] as in the classical turbulence

divk[εj(k)] ≡ dεj(k)

dk
= 2 Re

{ ∫
Vξβγ (k, q, p)Eξβγ

j (k, q, p)δ(k + q + p)
d3q d3p
(2π )6

}

and Vξβγ (k, q, p) = i
(
δξξ ′ − kξ kξ ′

k2

)(
kβδξ ′γ + kγ δξ ′β

)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.7)

Here, Eξβγ

j (k, q, p) is the simultaneous triple-correlation function of turbulent (normal or
superfluid) velocity fluctuations in the k-representation, that we will not specify here and
Vξβγ (k, q, p) is the interaction vertex in the NSE. Importantly, the right-hand side of (2.7) conserves
the total turbulent kinetic energy (i.e. the integral of Ej(k) over entire k-space) and therefore can
be written in the divergent form as divk[εj(k)].

A simple algebraic closure approximation for the energy flux ε̃(k) in isotropic turbulence
follows from the dimensional reasoning in the framework of the Kolmogorov 1941 (K41)
hypothesis [11]

ε̃(k) = C̃k5/2Ẽ3/2(k). (2.8a)

Here, C̃ is a dimensionless constant of the order of unity and ε̃ is the energy flux in the inertial
interval of scales. Equation (2.8a) immediately gives the celebrated 5

3 -law: ẼK41(k) = CK41Ω̃
2/3k−5/3

with CK41 = C̃−2/3. The experimental value [43] of the constant CK41 � 0.5. In the two-dimensional
case with axial symmetry along the counterflow direction, the situation is more involved. Now,
the two-dimensional vector ε with the dimensions [ε] = (cm s−1)3 is the flux of two-dimensional-
energy density E(k) per unit mass per square of unit k with the dimensions [E] = cm4 s−2. The
dimensional reasoning, similar to that leading to (2.8a) gives

|ε(k)| ≈ Ck3E3/2
j (k), k = {k||, k⊥}, (2.8b)

with C = C̃/
√

2π � 1.1.
Unfortunately, the dimensional reasoning does not allow us to reconstruct the direction of

the vector ε. It is natural to assume that ε is oriented in the direction of the steepest descent of
the three-dimensional energy spectrum, i.e. along ∇k[E(k)/k] or, if this gradient is zero, ε = 0.
Note that this allows us to satisfy an additional physical requirement that the energy flux
vanishes in the thermodynamic equilibrium with equipartition of energy, when E(k) ∝ k [44,45].
Thus, requiring the Kolmogorov-type scaling properties, we choose the energy flux in the form
ε ∝ ∇k[E(k)/k]3/2. Reconstructing the prefactor according to (2.8b), one finds

ε(k) = −C1k11/2∇k

[E(k)
k

]3/2
, ∇k ≡ d

dk
, (2.9a)

with some new dimensionless coefficient C1 ≈ 2C/11 � 0.2. The numerical factor is chosen
such that closures (2.8b) and (2.9a) coincide for K41 spectrum E(k) ∝ k−8/3. In the isotropic
two-dimensional case, ε(k) ∝ 1/k. This gives E(k) ∝ k−8/3, as required.

It was shown previously [24,27–30,33] that the energy spectra in the counterflow do not have a
simple power-law form in the inertial interval. To account for that it was proposed [24] to replace
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C1 by a function C1(k) that depends on the local slope of the spectrum. Here, we use the same
approach and introduce the coefficient

C1(k) = 4C1

3[4 − m(k)]
, m(k) = −k · ∇k ln E(k), (2.9b)

that depends self-consistently on the local slope m(k) of the energy spectra in the steepest descent
direction. The function C1(k) increases when m approaches the critical value m = 4, at which the
energy transfer over scales looses its locality and, formally, ε → ∞.

For m > 4, the energy flux in a range from some k̃ to k � k̃ becomes non-local (similar to 3He)
and requires a more sophisticated closure [37].

(iv) Final form of the energy rate equation

Combining equation (2.5) with equations (2.6b), (2.9a) and (2.9b) and neglecting the viscosity
term, in the stationary case we finally have

�
�

��∂Ej(k, t)

∂t
− ∇k ·

{
C1j(k) k11/2∇k

[Ej(k)

k

]3/2} = −
ΩjEj(k) k2

||
k2
|| + k2×

, k = {k||, k⊥}. (2.10)

Recall that Ωs = ακL, Ωn = Ωsρs/ρn and Ωns = Ωsρ/ρn. The crossed term with time derivative
is preserved here (and in some equations below) to stress that this is a continuity equation for
the energy spectrum. In theoretical analysis, we will use only the stationary version of this (and
similar) equations, while numerically we consider its full version and look for its stationary
solutions by numerically integrating continuity equation from appropriate initial conditions.

To simplify the appearance of the energy rate equation (2.10) and to open a way to its numerical
solution, we introduce a new function Ψj(q, t) instead of Ej(k, t)

E(k) = E(k0)Ψ 2(q)q−8/3, q ≡ k/k0, (2.11)

such that the fast K41 dependence of E(k) is explicitly accounted for: with K41 scaling Ψ (q) =
const. Here, E(k0) is the energy spectrum at some k = k0 (i.e. for q = 1) in the energy containing
interval.

Now, equations (2.10) and (2.11) give

�
��∂Ψ 2

∂τ
+ C(q)q8/3

[ 11
2q2 (q · ∇q)Ψ 3 − |∇q|2Ψ 3

]
= −

Ω̃Ψ 2q2
||

q2
|| + q2×

, ∇q ≡ d
dq

and C(q) = 2C1

2 + 3(q · ∇q)Ψ
, Ω̃ = Ω√

k3
0E(k0)

, τ = t√
k3

0E(k0)
, |∇q|2 ≡ d

dq
· d

dq
,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.12)

where q× = Ωns/(k0Uns) and we neglected the q-derivative of slow function C(q) and took into
account that in two-dimensional ∇q · (q/q2) = 0. Here, for the brevity we skip the index j, keeping
in mind that this equation is valid for both the superfluid (with j = s) and for the normal-fluid
component (with j = n). After explicit differentiation and division of the resulting equation by Ψ

we get

�
��2

∂Ψ

∂τ
+ 3C(q)q8/3

[11Ψ

2q2 (q · ∇q)Ψ − Ψ |∇q|2Ψ − 2|∇qΨ |2
]
= −

Ω̃Ψ q2
||

q2
|| + q2×

. (2.13)

We see that the gradient of function Ψ (q) is present in each term in the square brackets in the
left-hand side of (2.13). Therefore, for zero right-hand side (RHS), this equation admits a solution
Ψ (q) = const.

The dimensionless parameters Ω̃ and q× quantify the mutual friction force. In typical
laboratory experiments [28,33], q× belongs to the interval q× ∈ [1, 8], while Ω̃n ∈ [3, 12]. In DNS
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[29,30], q× ≈ 1.3, Ω̃n � 3. Having in mind comparison of these results with ours we will analyse
(2.13) in the following range of parameters:

q× ∈ [1, 25], Ω̃n ∈ [2, 15], C1 ∈ [0.1, 0.5]. (2.14)

For T ≈ 1.87 K, we approach the so-called symmetric case with ρn ≈ ρs. Furthermore, we can
reasonably assume that both components are equally forced, En(k0) = Es(k0). In this case, we can
put j = s = n, considering one equation E(k) = En(k) = Es(k) instead of two equations for En(k) and
Es(k) separately.

3. Qualitative analysis of anisotropic two-dimensional energy rate equation
The presence of the mutual friction term in the RHS of (2.13) leads to decay of the function Ψ .
As a result, E(k) decays even faster than in the K41 regime E(q) ∝ q−8/3, being very far from the
thermodynamic equilibrium with E(k) ∝ k. In this regime, we can use a simpler algebraic closure
for the energy flux (2.8a) instead of the differential closure (2.9a). This is equivalent to neglecting
two last terms in the square brackets of (2.13). After division of the resulting equation by Ψ we
get the simplified version of the energy rate (2.13)

(q · ∇q)Ψ (q) = −
2Ω̃q2

||
33C1q2/3(q2

|| + q2×)
. (3.1)

Here, we took for simplicity C(q) = C1.
For very small q|| � q×, in a zero-order approximation we can neglect the mutual friction term

in the RHS of (3.1). Then Ψ (q||, q⊥) � Ψ (0.0) = const. Note that Ψ (q||, q⊥) is even function of q||
and therefore has an extremum (presumably maximum) for q|| = 0. This allows us to hope that
Ψ (q||, q⊥) can be roughly factorized as Ψ (0, q⊥) ≡ Ψ||(0)Ψ⊥(q⊥) with Ψ||(0) = 1. In a more extended
region, say, up to q|| � q×, the mutual friction term becomes important and Ψ||(q||) decays fast with
increasing q||. As we show below, a significant (or complete) decay of E(q||, q⊥) takes place in a
narrow, compared to q⊥, range of q||. Therefore, in this case, we can interpret this phenomenon as
a one-dimensional problem along q||, in which q⊥ and Ψ⊥(q⊥) can be considered as parameters.
From the formal viewpoint, it means that we can accept (as a reasonable approximation) a
factorization

Ψ (q||, q⊥) ≈ Ψ||(q||)Ψ⊥(q⊥), (3.2)

neglect q⊥-derivative and approximate q as q⊥. All these simplify (3.1) as follows:

dΨ||(q||)
dq||

= − 2Ω̃q||
33C1Ψ⊥(q⊥)q2/3

⊥
(
q2
|| + q2×

) . (3.3)

To specify the boundary conditions, we introduce some q∗ in the beginning of the inertial interval
(not necessarily equal to unity). Then, the solution of (3.3) with Ψ||(q∗) = 1 is

Ψ||(q||) = 1 −
2Ω̃ ln

[
(q2× + q2

||)
/

(q2∗ + q2×)
]

33C1Ψ⊥(q⊥)q2/3
⊥

. (3.4)

We see that both Ψ||(q||) and E(q) ∝ Ψ||(q||) vanish for some q|| = qcr, for which 2Ω̃ ln[1 +
(qcr/q×)2] = 33C1Ψ⊥(q⊥)q2/3

⊥ and the RHS of (3.4) vanishes. This regime corresponds to so-called
‘super-critical regime’, first predicted in [46], studied in more details in [47] and numerically
discovered in 3He in [37]. It was shown that the super-critical regime appears for small q× and
very large Ω̃ . In this range of parameters, the mutual friction dominates over step-by-step cascade
and the energy transfer loses its locality. This means that the energy flows directly from the small-
wavenumber range into all larger q and is dissipated by the mutual friction at the same q. In
this regime, the simple algebraic closure (2.8a) and its differential self-consistent improvement
(2.9a) and (2.9b) become invalid even qualitatively and should be replaced, for example, by the
non-local closure, suggested in [37]. DNS of superfluid turbulence in 3He, [37] and in 4He [14]
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shows that the energy spectrum in the super-critical regime remains scale-invariant but with the
exponent m > 4 (up to m � 10).

Probably, the most straightforward way to understand the behaviour of Ψ⊥(q⊥) is to return
back to (2.10) and to integrate it over k|| for fixed k⊥. Then, the flux term in k|| direction ∝
∂[. . . ]/∂k||, responsible for the energy redistribution over k|| vanishes and we get the rate equation
for ⊥E(k⊥) ≡ ∫

E(k||, k⊥)dk||

�����∂ ⊥E(k⊥, t)
∂t

− d
dk⊥

∫ {
. . .

}
dk⊥=−ωdis

⊥E(k⊥, t), (3.5a)

with the same expression in {. . . } as in (2.10). The choice of the effective frequency ωdis,
responsible for the dissipation by mutual friction of the energy ⊥E(k⊥, t) in the RHS of (3.5a),
is very delicate. If we assume that the loss of the energy ⊥E(k⊥, t) at some given k⊥ is due to the
mutual friction at the same k⊥ and all k||, then

ωdis = ω̃dis, ω̃dis ≡
Ω̃

∫
Ψ 2

|| (q||)q2
|| dq||/(q2

|| + q2×)∫
Ψ 2

|| (q||)dq||
. (3.5b)

However, the main part of the energy ⊥E(k⊥, t) is localized in the range of relatively small k||
and the energy outflux from this region is suppressed in our model by the symmetry, because
∇k · · · = 0 for k = {0, k⊥} and small for small k||. It is then reasonable to assume that 0.5 <

ωdis/ω̃dis < 1. In its turn, the ratio ω̃dis/Ω̃ in the range of parameters (2.14) is close to unity.
Therefore, considering ωdis as a phenomenological parameter, we expect that 0.5 < (ωdis/Ω̃) < 1.

Analysing equation (3.5) in the same manner as we did for (2.10), we arrive at the following
equations for Ψ⊥(q⊥), similar to (3.3) for Ψ||(q||):

dΨ⊥(q⊥)
dq⊥

= − 2ωdis

33C1q5/3
⊥

. (3.6a)

Its solution with the boundary condition Ψ⊥(q∗) = 1 is

Ψ⊥(q⊥) = 1 − 4ωdis
(
q−2/3
∗ − q−2/3

⊥
)

99C1
. (3.6b)

This equation, together with equations (2.11), (3.2) and (3.4), results in the semi-quantitative
representation of the anisotropic two-dimensional energy spectrum of the unbounded
counterflow turbulence with the axial symmetry:

E(q||, q⊥) � E(q∗)
q8/3

[
1 −

2Ω̃ ln
[
(q2∗ + q2

||)
/

(q2× + q2
||)

]
33C1Ψ⊥(q⊥)q2/3

⊥

]2[
1 − 4ωdis

(
q−2/3
∗ − q−2/3

⊥
)

99C1

]2
. (3.7)

The explicit form (3.7) for the anisotropic energy spectra of counterflow turbulence is the main
analytical result of our paper.

To explore the form of the two-dimensional-energy spectrum (3.7), we plot in figure 1 the cross-
sections of the K41-compensated spectra in direction of the counterflow, k8/3

|| E(k||, 0) = Ψ 2
|| (q||)

((3.4), dashed lines) and in the orthogonal direction k8/3
⊥ E(0, k⊥) = Ψ 2

⊥(q⊥) ((3.6b), solid lines). The
log-linear scales in figure 1a expose the details of k8/3

⊥ E(0, k⊥), while the log-logs scale in figure 1b

emphasize the strongly suppressed k8/3
|| E(k||, 0). We see that the spectra in the counterflow

direction experience fast decay and sharp cut-off, corresponding to the super-critical regime in
the approximation of the algebraic closure (2.8). On the other hand, the spectra in the orthogonal
direction decay much slower, corresponding to the so-called ‘sub-critical regime’ [37,46,47] with
the local (step-by-step cascade) energy transfer over scales. It consists of two K41 scaling laws:
in the range of small q it has the energy flux ε0 equal to the rate of the energy pumping, while
for large q it has smaller energy flux ε∞ < ε0. The difference ε0 − ε∞ is dissipated on the way to
large q due to mutual friction. At larger q, the dissipation by mutual friction is no longer efficient
because scale-independent large-q asymptotic of the mutual friction frequency Ω̃ becomes finally
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Figure 1. The K41-compensated spectra in direction of the counterflow (3.4), q8/3|| E (k||, 0)= Ψ 2
||(q||) (dashed lines) and in the

orthogonal direction, (3.6b), q8/3⊥ E (0, k⊥)= Ψ 2
⊥(q⊥) (solid lines). The parameters of the spectra q× = 20,ωdis = 0.7Ω̃

and q∗ = 4. Three sets of lines from top to bottom correspond to Ω̃ = 2 (blue lines), Ω̃ = 5 (red lines) and Ω̃ = 10 (green
lines). Note the log-linear scales in (a) and the log-log scales in (b). Vertical black dot-dashed line denotes the q× = 20. (Online
version in colour.)

smaller than the K41 energy transfer frequency γ (q) � ε
2/3
∞ q2/3. A similar effect of vanishing of the

mutual friction effect at small scales was originally observed in an isotropic system in [46].
We conclude that from the viewpoint of the qualitative analysis of the energy rate (2.13), the

energy spectrum of counterflow turbulence has a pancake form around the counterflow direction
q||. It is strongly confined in the q|| direction due to the special anisotropic form of the mutual
friction force, effective only for k|| �= 0. In the next section, we consider the numerical solution of
the model (2.13) and compare the results with the qualitative predictions.

4. Numerical solution of energy rate equation and discussion
The equation (2.13) (with the replacement q → k) was solved numerically as a time evolution
on the 5002-grid with the self-consistent form of C1(k) given by (2.12). We used the initial
condition Ψ (k, 0) = 1 for all k. To reach the stationary solution, we added a forcing term with small

amplitude f0 = 0.005, acting in first four modes k =
√

k2
|| + k2

⊥ ≤ k∗ = 4 and an artificial exponential
dumping term, acting at the edges of the grid. After a short transient period, a steady-state
solution for Ψ (k||, k⊥) was obtained. We have verified that this solution is insensitive to the details
of forcing and artificial dumping, as long as the stationary solution is reached.

The contour plots of the two-dimensional energy spectra for several sets of parameters of
the problems, Ω̃ and k×, are shown in figure 2. The spectra are clearly confined along k||, more
strongly with increasing Ω̃ and decreasing k×. Indeed, according to (2.12), larger Ω̃ enhances
the mutual friction, while smaller q× increases the range in k-space where the mutual friction is
important.

The cross-sections of the two-dimensional compensated energy spectrum k8/3E(k) = |Ψ (k)|2
are shown in figure 3a,b for k× = 100 and in figure 3c,d for k× = 20. The spectra E(k||, 0) along k||,
are shown by dashed lines and E(0, k⊥) along k⊥, by solid lines. Similar to figure 1, we plot the
spectra both in the log-linear scales to emphasize the details of the orthogonal spectra, and in the
more conventional log-log scales.

We see that spectra along the counterflow direction experience fast decay, while the energy
cross-sections in the orthogonal direction decay much slower. For k× = 100, the orthogonal spectra
have some interval of the cascade-dominated range with near-K41 scaling that is shorter for
larger Ω̃ . The spectra along k|| do not have such an interval for these parameters. For k > k×,
all spectra have similar power-law behaviour, which we discuss below. For k× = 20, the spectra
quickly saturate with increasing Ω̃ and are almost completely in the mutual-friction-dominated
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Figure 2. The K41-compensated two-dimensional energy spectra k8/3E (k). (a,b) The spectra are calculated for k× = 100 and
Ω̃ = 2, 5, respectively. (c,d) The spectra are calculated for k× = 20 and the same values of Ω̃ . Note logarithmic scale of the
colour-bars. The contour levels are spaced by 0.1 in (a,b) and by 0.2 in (c,d). (Online version in colour.)

range. However, due to self-consistent closure for the energy flux, the spectra do not become
super-critical, as in the analytic solution.

An additional result of principle importance is the universality of the scaling exponent xcr = 4
of both longitudinal and transverse cross-sections of the energy spectra, E(k||, 0) ∝ k−xcr

|| , E(0, k⊥) ∝
k−xcr
⊥ shown in figure 3b,d by thick black dashed lines. The exponent xcr = 4 in two-dimensional

energy spectra manifests itself in the so-called critical energy spectra, appearing in the regimes
with strong enough mutual friction. The critical energy spectrum separates the sub-critical and the
super-critical energy spectra with local and non-local energy transfer over scales [37], respectively.
In the critical regime, the fraction of the energy loss due to mutual friction at each scale is about
the fraction of the energy transferred down to smaller scales.

In our theory, the critical regime appears asymptotically in the range of parameters q× and Ω ,
for which the dissipation by mutual friction becomes dominant. To compensate for the increasing
loss of energy at each q, the energy flux (2.9) self-consistently adjusts the effective slope m of
the two-dimensional spectra (2.9b) towards its critical value m = 4, where the energy flux (2.9a)
formally becomes infinite. Consequently, in our theory, the critical regime is reached for k > k×
in the wide range of the flow parameters. This conclusion is supported experimentally: in [33],
the critical regime was observed in 4He counterflow for T = 1.65, 1.85, 2.00 K and T = 2.10 K. In
this paper, the normal-fluid component of the counterflow is probed by He∗

2 molecular tracer-
line tracking technique, allowing to measure one-dimensional plane-averaged energy spectrum
⊥E(k⊥), connected to studied here two-dimensional-spectra E(k||, k⊥) as follows:

⊥E(k⊥) =
∫

E(k||, k⊥)dk||. (4.1)
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Figure 3. Numerical solution of (2.13). The K41-compensated spectra along k8/3|| E (k||, 0) (dashed lines) and normal to the
counterflow direction k8/3⊥ E (0, k⊥) (solid lines). The values of Ω̃ are indicated in the figure. In (a,b) k× = 100, in (c,d)
k× = 20. The reference case Ω̃ = 0 (no mutual friction) is plotted in all panels by a black dotted line. Vertical dot-dashed
lines denote the position of the crossover wavenumber k×. Black thick dashed lines in (b,d) denote E ∝ k−4 and serve to
guide the eye only. Note the log-linear scales in (a,b) and the log-log scales in (c,d). (Online version in colour.)
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⊥E(k⊥)k

5/3
⊥ . (a) The theoretical spectra (4.1), for Ω̃ = 5 and two cross-over wavenumbers. (b) Experimental spectra measured

by molecular-racer velocimetry [33], at T = 2.0K and two heat fluxes. The vertical dot-dashed lines of matching colours in
both panels denote the position of the corresponding k×. Black dashed lines denote critical scaling ⊥E(k⊥)∝ k−3

⊥ . (Online
version in colour.)

To compare our theory and experiment [33], we plotted in figure 4a the K41-compensated spectra
k5/3
⊥

⊥Eth(k⊥), for Ω̃ = 5 and two different k×. In figure 4b, we plotted the experimental spectra
k5/3
⊥

⊥Eexp(k⊥), measured for T = 2.00 K and two heat fluxes. In both theoretical and experimental
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spectra, we clearly see the two regimes with different apparent scalings: (i) in the region of small
k⊥ (roughly below and about k×)—non-universal apparent exponents that depend on the flow
parameters and are close to the K41 scaling (almost horizontal lines for K41 compensated spectra)
and (ii) the universal scaling with exponents, close to the critical value x̃cr = 3 for k⊥ > k×. Note
that one-dimensional exponents differ by unity from their two-dimensional counterparts, e.g. in
one dimension, the K41 scaling exponent ỹK41 = 5/3 and x̃cr = 3, while in two dimensions, yK41 =
8/3 and xcr = 4. We, therefore, infer that our theory reproduces two scaling ranges, previously
found in laboratory experiments [33]: the cascade-dominated range in the range of small k with
scaling ⊥E(k⊥) ∝ k−y

⊥ , close to the K41 exponents y � 5
3 and the mutual-friction dominated range

with the critical scaling ⊥E(k⊥) ∝ k−3
⊥ .

5. Summary
We developed a theory of energy spectra in the thermally driven turbulent counterflow of
superfluid 4He, which generalizes the L’vov–Pomyalov theory of counterflow turbulence [24]
to the strongly anisotropic case. The theory is based on the gradually damped [30] coarse-grained
equation (2.1) of the incompressible superfluid turbulence [14,36,37] and the novel anisotropic,
self-consistent differential closure (2.9) for the vector of the turbulent energy flux ε(k). This closure
combines the Kolmogorov-1941 dimensional reasoning [11], the Leigth-1968 differential form
[44,45] to account for the possibility of the thermodynamic equilibrium and L’vov-Pomyalov-
2018 self-consistent closure for the energy flux [24] that accounts for the dependence of the energy
flux on the local slope of the energy spectrum in the window of its locality. In addition, the
suggested closure prescribes the orientation of the vector of the energy flux ε(k) in the steepest-
decent direction of three-dimensional turbulent energy spectra F(k) towards its thermodynamic
equilibrium: ε(k)||∇kF(k).

Similar to previous theories [23,24], the important element of our theory is the anisotropic
cross-correlation function (2.6) between the superfluid and normal-fluid velocity components.
This function determines the rate of energy dissipation by the mutual friction in the final energy
rate equation (2.10).

Detailed analysis of (2.10) leads to the analytic solution (3.7) for the energy spectrum that
describes its strong suppression with respect to the classical fluid counterpart. The spectra are
non-scale-invariant, and strongly depend on the temperature and the counterflow velocity in the
wide range of these parameters. The resulting energy spectra of the normal-fluid and superfluid
components are strongly confined in the direction of the counterflow velocity. This conclusion
is supported by the numerical solution of the energy-rate (2.10) and by the direct numerical
simulation of the coarse-grained equation (2.1) for the counterflow turbulence [29,30]. Our theory
explains the critical scaling behaviour with the exponent x̃cr = 3 at k > k×, found in the experiment
[33] that is insensitive to the flow parameters.

We, therefore, hope that the suggested theory captures the basic physics of the counterflow
turbulence and describes the dependence of the anisotropic energy spectra on the main flow
parameters.
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