
Non-Equilibrium Continuum Physics TA session #2

TA: Michael Aldam 28.04.2019

Index Gymnastics: Gauss’ Theorem, Isotropic Tensors, NS Equations

The purpose of today’s TA session is to mess a bit with tensors and indices, which are
a necessary tool for continuum theories and in particular for Solid Mechanics. We’ll see
some simple examples and try to become comfortable with these mathematical tools. If
time permits we’ll discuss the subject of dimensional analysis which, although very basic,
is sometimes not understood well enough.

1 Isotropic tensors

A tensor is called isotropic if its coordinate representation is independent under coordi-
nate rotation. Let’s look at all the possible forms of isotropic tensors of low ranks.

1.0 0th rank tensors

A 0th rank tensor, a.k.a a scalar, does not change under rotations, therefore all scalars
are isotropic (surprise!).

1.1 1st rank tensors

A vector ~v is isotropic if for every rotation matrix Rij we have

Rij vj = vi . (1)

You can easily show that this condition is satisfied for arbitrary R only if ~v = 0. So the
zero vector is the only isotropic vector (surprise #2!!).

1.2 2nd rank tensors

Let’s hope we’re gonna get something a bit more interesting. A matrix A is isotropic if
for every rotation matrix R we have Aij = RikRjlAkl, or in matrix notation:

RART = A . (2)

Let’s choose a specific rotation matrix, say a rotation of angle α around ẑ,

Rz(α) ≡

 cosα sinα 0
− sinα cosα 0

0 0 1

 . (3)

The invariance equation now takes the form

A(0) = A(α) ≡ Rz(α)ARz(α)T =

 cosα sinα 0
− sinα cosα 0

0 0 1

A

 cosα − sinα 0
sinα cosα 0

0 0 1

 . (4)
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This is a complicated equation, with cosines and sines all mixed up in a very unpleas-
ant manner. Luckily, we can find an equivalent condition that is significantly simpler.
Differentiating with respect to α and plugging α = 0 gives

0 =
∂A(0)

∂α
=
∂A(α)

∂α

∣∣∣∣
α=0

=
∂Rz(α)

∂α

∣∣∣∣
α=0

ARz(0) + Rz(0)A
∂Rz(α)T

∂α

∣∣∣∣
α=0

, (5)

but since Rz(0) is the identity matrix, this reduces to the simple equation 0 1 0
−1 0 0
0 0 0


︸ ︷︷ ︸

≡Lz

A + A

 0 −1 0
1 0 0
0 0 0

 = 0 . (6)

Lz = ∂αR|α=0 is sometimes called “the generator of rotations around the z axis”, because
Rz(α) = eαL

z
. We see that equation A(0) = A(α) is equivalent to the much easier

equation (notice the sign change)

A(0) = A(α) ⇐⇒ [A,Lz] = 0 . (7)

Explicitly calculating [A,Lz] gives

[A,Lz] =

 −A12 − A21 A11 − A22 −A23

A11 − A22 A12 + A21 A13

−A32 A31 0

 . (8)

We see that commutation with Lz requires (a) A13 = A31 = A23 = A32 = 0 and (b)
A11 = A22. Obviously, the choice of ẑ is arbitrary and isotropy means that A should also
commute with Lx and Ly. If we repeat the above procedure for the other L’s, the analog
of (a) will be that all off-diagonal elements must vanish, and the analog of (b) will be
that all diagonal elements must be equal. That is,

Aij ∝ δij . (9)

I stress that this is true only in dimensions ≥ 3. In the HW you’ll see that in 2D
there are isotropic tensors that are not proportional to the identity (can you already see
how the above argument fails in 2D?).

1.3 3rd rank tensors

Here we can use the same trick. A 3rd rank tensor A is isotropic iff for every rotation
matrix Rij we have

RiαRjβ RkγAαβγ = Aijk . (10)

You can imagine the mess that comes out of this if you plug in a real rotation matrix with
sines and cosines and whatnot, and then start using trig identities. Phew, no thanks!

So like before, we choose R = Rz(α), differentiate, and set α = 0. This gives

0 =
(
Lziα δjβ δkγ + δiα L

z
jβ δkγ + δiα δjβ L

z
kγ

)
Aαβγ

= LziαAαjk + Lzjβ Aiβk + Lzkγ Aijγ .
(11)
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To see what kind of equation we got, let’s choose i = 1, j = 3, k = 3. Since the only
non-zero elements of Lz are Lz12 and Lz21, we get

0 =Lz1αAα33 + Lz3β A1β3 + Lz3γ A13γ = A233 . (12)

Similarly, by choosing different combinations of i, j, k and/or different L’s, you get that
Aijk = 0 whenever i, j, k are not all different, that is, if (ijk) is not a permutation of
(123).

Using this knowledge, we can choose now i = 1, j = 1, k = 3, and we get

A113 = 0 = Lz1αAα13 + Lz1β A1β3 + Lz3γ A11γ = A213 + A123 ,

or put differently, A213 = −A123. Similarly, we can show that every time we flip two
indices we get a minus sign. Therefore, we conclude that the only isotropic 3rd rank
tensor is equal, up to a multiplicative constant, to E ,

Eijk =

{
0 (ijk) is not a permutation of (123)

sign of permutation otherwise
. (13)

As you probably know, E is called the Levi-Civita completely anti-symmetric tensor1.

1.4 4th rank tensors

Seriously? No. We’re not going to redo the algebra. But can we guess the form of some
isotropic 4th rank tensors? We can easily build them from lower rank isotropic tensors.
Here are a few examples that come to mind:

Aijkl = δij δkl , (14)

Aijkl = δil δjk , (15)

Aijkl = δik δjl , (16)

Aijkl = Eijα Eαkl . (17)

We did a really good job there, because it turns out that these are the only options.
In fact, this list is even redundant, because each of the lines can be written as a linear
combination of the other three (can you find it?). You may want to prove at home that
there really are no other options - it’s a nice exercise that can be easily automatized on
Mathematica, and we’re going to use this result in the course.

2 Navier-Stokes equation

We are now going to use the heavy arsenal developed above, and derive the Navier-
Stokes (NS) equation solely from symmetry considerations. We want to find a dynamical

1 This is true only in flat spaces. Those of you familiar with differential geometry might insist on
calling it a “Tensor density”. Since we are (thankfully) only considering flat space here, we’ll disregard
this subtelty.
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equation for ∂t~v as a function of ~v and its spatial derivatives. We take a perturbative
approach, and expand ∂tv to second order in ~v and in its gradients:

∂tvi = Aij vj +Bijk ∂jvk +Dijkl vj∂kvl + Eijkl ∂j∂kvl + Fijk vj vk . (18)

Since ~v is a physical quantity (specifically, a 1st rank tensor), the dynamical equation for
∂t~v should be covariant under symmetries of the physical system in question. We’ll see
what these symmetries impose on the form of the various tensors A,B,C,D,F .

We begin with a Galilean transformation:

yi = xi − cit , (19)

τ = t . (20)

Under this transformation, the velocity field now takes the form ~w = ~v − ~c. Also, by the
chain rule:

∂xi =
∂yj
∂xi

∂yj +
∂τ

∂xi
∂τ = ∂yi , (21)

∂t =
∂τ

∂t
∂τ +

∂yj
∂t
∂yj = ∂τ − cj∂yj . (22)

Applying this to Eq. (18) gives

∂twi − cj∂jwi = Aij(wj + cj) +Bijk∂jwk +Dijkl(wj + cj)∂kwl

+ Eijkl∂j∂kwl + Fijk(wj + cj)(wk + ck) .
(23)

If we want the NS equation to be covariant, we need to impose that Eq. (23) will be
equal, term by term, to Eq. (18), i.e.

Aijcj = 0 , (24)

−cj∂jwi = Dijkl cj∂kwl, (25)

Fijk(wj + cj)(wk + ck) = Fijkwjwk . (26)

All these should hold for arbitrary ~c, ~w. The first constraint clearly means A=0. For the
third one, choose for example ~w=−~c, and get that Fijkwjwk = 0 for arbitrary ~w. Note
that this is exactly the last term in Eq. (18), so we see that it vanishes identically. The
constraint Eq. (25) may be written as

−δilδjk cj∂kwl = Dijkl cj∂kwl .

Since ~c, ~w are arbitrary, Dijkl = −δilδkj, and Eq. (18) can be written as

∂tvi + vj∂jvi = Bijk∂jvk + Eijkl∂j∂kvl . (27)

You have to admit that this is a very big improvement...
Now let’s look at rotations yj = Rijxj. Demanding Eq. (27) to be invariant means

that the tensors B,E are isotropic.
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We’ve just seen that the only 3rd rank isotropic tensor is the Levi-Civita tensor, so
the B term is proportional to ~∇× ~v and thus is forbidden by reflection symmetry. It’s
too bad that we know already that the A and F terms are gone, because they would also
be forbidden by rotational symmetry. For example, the F term must be proportional to
~v × ~v and therefore vanishes identically (note that we didn’t show that F = 0, but only
that it gives zero when it acts on the same vector in its two slots).

As for E, we know that we have exactly three choices, given in Eqs. (14),(15),(16).
These give, respectively,

δij δkl ∂j∂k vl = ∂i∂j vj = ~∇ (∇ · ~v) = grad (div~v) , (28)

δil δjk ∂j∂k vl = ∂j∂j vi = ∇2~v = div (grad~v) , (29)

δik δjl ∂j∂k vl = ∂i∂j vj = same as Eq. (28) , (30)

so the third option is redundant. Note that if we wanted to use Eq. (17) we’d get

Eijα Eαkl∂j∂k vl = Eijα ∂j
(
~∇× ~v

)
α

= ~∇×
(
~∇× ~v

)
,

which is also redundant because of the vector calculus identity which you all know by
heart: ∇× (∇×A) = ∇(∇ ·A)−∇2A.

To sum up, we see that the only form of ∂t~v which is covariant under rotations,
reflections and Galilean symmetries is(

∂t + ~v · ~∇
)
~v = η∇2~v + µ~∇ (∇ · ~v) , (31)

where η and µ are two scalars. In incompressible flows, (∇ · ~v), there’s only one η, as the
µ term vanishes.

Lastly, note that there’s another term that clearly does not violate any symmetries:
~∇P where P is some scalar function.

2.1 An historical note about the power of symmetries in con-
tinuum theories

Euler’s equation (∂t + vj∂j)vi = ∂iP , regarding inviscid incompressible flows, was derived
sometime around 1750. It took the scientific community almost 80 years (!!) to under-
stand how to incorporate viscosity into the business. Mind you, some of the greatest
minds of the time were devoted to the problem, including Cauchy, Poisson, d’Alembert,
Bernoulli, and of course, Navier and Stokes. Not exactly Elitzur Ra’anana, if you see
what I mean. So what took them so long?

The answer, very very roughly, is that they tried to model viscosity on a molecular
level: to understand the dissipation mechanisms, stress-transfer mechanisms, and what-
not. One of the great strengths of continuum theory is that measly insignificant mortals
like us were able to do here in 45 minutes a derivation that the primordial gods needed
80 years to do. Moreover, we did that without caring even the slightest bit about the
underlying physics.

In fact, this is the crux of the matter – the use of symmetries allows us to state very
powerful statements about the functional form of the viscosity term, without having to
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deal with the microscopic mechanisms. It allows us to develop a predictive theory, where
all the “microscopics” are lumped into a small number of parameters (in our case - µ and
η), which of course must be determined experimentally.

The down side is that we can not say anything quantitative about the parameters.
From our theory we can not give even an order-of-magnitude estimation of η or µ, let
alone their dependence on the fluid’s properties (although thermodynamics easily tells us
that they are positive).

3 Dimensional analysis and π theorem

This is a bit of a detour from the course, but surprisingly many students are not familiar
enough with this subject. Like unhappy families, every unfortunate scientific idea is
unfortunate in its own way. Many of those who have taught dimensional analysis (or
have merely thought about how it should be taught) have realized that it has suffered an
unfortunate fate. In fact, the idea on which dimensional analysis is based is very simple,
and can be understood by everybody: physical laws do not depend on arbitrarily chosen
basic units of measurement. An important conclusion can be drawn from this simple
idea, using a simple argument: the functions that express physical laws must possess a
certain fundamental property, which in mathematics is called generalized homogeneity,
or symmetry. This property allows the number of arguments in these functions to be
reduced, thereby making it simpler to obtain them (by calculating them or determining
them experimentally). This is, in fact, the entire content of dimensional analysis - there
is nothing more to it. Yet, dimensional analysis was cursed and reproached for being
untrustworthy and unfounded, even mystical. Paradoxically, the reason for this lack of
success was that only a few people understood the content and real abilities of dimensional
analysis.

I’ll state the crux of the argument again: Every physical functional relation can be
formulated in terms of dimensionless function of dimensionless variables. This statement
is also called the Buckingham π theorem. Let’s look at the most simple example I know
of. Consider an ideal pendulum of length `, with a mass m hanging at the bottom, in a
gravity field of constant acceleration g. Let’s say someone, maybe Galileo Galilei, told
you that he noticed that for small deflections of the mass from its equilibrium position2,
the period of oscillation τ was independent of the amplitude of deflection. How would
you go about trying to figure out what this amplitude was? Dimensional analysis is the
answer!

If you were to know nothing else about this system, the most general relationship you
should consider is something like

τ = f (m, `, g) , (32)

but, recalling our theorem, we’ll look at what dimensionless parameters we can construct
from our physical quantities {τ,m, `, g}. We find that only one such parameter can exist

2 I’m not sure if these are the exact words Galileo would have used.
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√
g
`
τ . This means that this combination has to be constant, therefore

τ = c

√
`

g
, (33)

which is a remarkable result, considering that we know almost nothing about the system
and no equations were solved. Fully formulating and solving the problem would of course
tell us that c= 2π, but consider that even if we would not know how to do so, we can
measure just one pendulum, find the value of c, and know it happily ever after for any
other pendelum.

What happens if we relax the requirement of small deflections? Then we introduce
a new parameter, α, the initial angle. This means that we now have two dimensionless
combinations, so we have one function of one parameter√

g

`
τ = f(α) ⇒ τ =

√
`

g
f(α) . (34)

We actually know f , which is an elliptical integral, but it’s beyond the point right now.
Consider the power of this technique. All you have to do is to measure enough values
of the function f for one pendulum, and again you know enough about all pendelums in
the world.

As a final example I’ll use an historical anecdote. During the early days of atomic
testing, the American government published a series of photos from a nuclear test, but
kept the details of the explosion classified. British physicist Taylor looked at the images
and realised that it gave him enough data to calculate the amount of energy released in
the blast!

Figure 1: The experimental points determined by Taylor from the movie film lay on a
single straight line with slope unity in the coordinates log t, (5/2) log rf . Taylor was thus
able to determine the energy of the explosion from the series of photographs.

Let’s get to it. The quantities we need to consider are the radius at a specific time r,
the time since detonation t, the energy released E, and the initial air density ρ. Looking
at all the possible combinations Π = rργEβtα we find that the only possible dimensionless
combination is

α = −2

5
, β = −1

5
, γ =

1

5
⇒ Π =

ρ1/5r

E1/5t2/5
, (35)
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which as before, being the only dimensionless quantity, has to be constant, so

r =
cE1/5

ρ1/5
t2/5 . (36)

Thus, in a Log Log plot, we should expect to see a straight line, as can be seen in Fig. 1.
From the y axis intersection a value for cE1/5ρ−1/5 can be found, and knowing ρ and

assuming c to be unity3 Taylor got quite a good estimate for E. At the time, Taylor’s
publication of this value (which turned out to be approximately 1021 erg) caused, in his
words, “much embarrassment” in American government circles: this figure was considered
top secret, even though the film was not classified.

3 A similar problem in gas dynamics has shown c to be about unity.

8


	Isotropic tensors
	0th rank tensors
	1st rank tensors
	2nd rank tensors
	3rd rank tensors
	4th rank tensors

	Navier-Stokes equation
	An historical note about the power of symmetries in continuum theories

	Dimensional analysis and Pi theorem

