Non-Equilibrium Continuum Physics

Extended lecture notes by Eran Bouchbinder
(Dated: June 17, 2021)

This course is intended to introduce graduate students to the essentials of modern
continuum physics, with a focus on non-equilibrium phenomena in solids and within
a thermodynamic perspective. Special focus is given to emergent phenomena, where
collective many-body systems reveal physical principles that cannot be inferred
from the microscopic physics of a small number of degrees of freedom. General
concepts and principles — such as conservation laws, symmetries, material frame-
indifference, dissipation inequalities and non-equilibrium behaviors, spatiotemporal
symmetry-breaking instabilities and configurational forces — are emphasized.
Examples cover a wide range of physical phenomena and applications in diverse
disciplines. The power of field theory as a mathematical structure that does not
make direct reference to microscopic length scales well below those of the phe-
nomenon of interest is highlighted. Some basic mathematical tools and techniques
are introduced. The course is self-contained and highlights essential ideas and basic
physical intuition. Together with courses on fluid mechanics and soft condensed mat-

ter, a broad background and understanding of continuum physics will be established.

The course will be given within a framework of 12-13 two-hour lectures and 12-13
two-hour tutorial sessions with a focus on problem-solving. No prior knowledge
of the subject is assumed. Basic knowledge of statistical thermodynamics, vector
calculus, partial differential equations, dynamical systems and complex analysis is

required.

These extended lecture notes (book draft) are self-contained and in principle no

other materials are needed.



I1.

I1I.

IV.

VL

VIL

VIII.

IX.

CONTENTS

. Introduction: Background and motivation

Mathematical preliminaries: Tensor Analysis

Motion, deformation and stress
A. Strain measures

B. The concept of stress

Equations of motion, the laws of thermodynamics and objectivity

A. Conservation laws
B. The laws of thermodynamics
C. Heat equations

D. Objectivity (frame- indifference)

The linearized field theory of elasticity
A. General derivation for anisotropic and isotropic materials
B. 2D Elasticity

1. Scalar elasticity

2. Conformal invariance

3. In-plane elasticity, Airy stress function

C. Elastic waves
The linearized field theory of thermo-elasticity

The non-linear field theory elasticity
A. Entropic elasticity (“Rubber elasticity”)
B. Geometric nonlinearities and stress measures

C. Small amplitude waves in nonlinear elastic solids
Spatiotemporal instabilities

Visco-elasticity
A. Viscous deformation

B. Bringing linear viscous and elastic deformation together

14
17
19

21
21
24
28
30

35
35
44
44
47
48
93

o7

60
60
64
73

74

81
81
85



C. Oscillatory response

D. Viscoelastic waves

X. The emergence of solidity: Amorphous solids and the glass transition puzzle

89
92

94



Course details:

Lecturer:

Prof. Eran Bouchbinder

E-mail: eran.bouchbinder@weizmann.ac.il

Homepage: https://www.weizmann.ac.il/chembiophys/bouchbinder/
Office: Perlman Building, room 722a

Phone: 08-934-2605

Teaching assistants:

Avraham Moriel

E-mail: avraham.moriel@weizmann.ac.il
Yuri Lubomirsky

E-mail: yuri.lubomirsky@weizmann.ac.il
Office: Perlman Building, room 720
Phone: 08-934-6031

Course website: http://www.weizmann.ac.il/chemphys/bouchbinder/courses-0

Lectures: Tuesday, 11:15-13:00, Perlman 404 + Zoom
Tutorials: Thursday, 09:15-11:00, Perlman 404 + Zoom

Final grade:
About 7 problems sets throughout the semester (40%) and final exam/assignment (60%).

Attendance:

Required (both lectures and tutorial sessions).


mailto:eran.bouchbinder@weizmann.ac.il
https://www.weizmann.ac.il/chembiophys/bouchbinder/
mailto:avraham.moriel@weizmann.ac.il
mailto:yuri.lubomirsky@weizmann.ac.il
http://www.weizmann.ac.il/chemphys/bouchbinder/courses-0

General Principles and Concepts

I. INTRODUCTION: BACKGROUND AND MOTIVATION

We start by considering the course’s title. By ‘non-equilibrium’ we refer to physical phenomena
that cannot be properly treated in the framework of equilibrium thermodynamics. That is, we
refer to phenomena that involve irreversible processes and dissipation. We will, however, make
an effort to adhere as much as possible to thermodynamic formulations (i.e. we will not focus on
purely dynamical systems) and also devote time to reversible phenomena (both because they are
often missing from current physics education and because they set the stage for discussing irre-
versible phenomena). By ‘continuum’ we refer to the scientific approach that treats macroscopic
phenomena without making explicit reference to the discreteness of matter or more generally to
microscopic length and time scales. This also implies that we focus on collective phenomena
that involve spatially extended systems and a macroscopic number of degrees of freedom (atoms,
molecules, grains etc.). We therefore treat materials as continua and use the language of field
theory to describe the phenomena of interest. A crucial concept in this context is that of emer-
gent phenomena, which refers to the fundamental idea that collective many-body systems reveal
laws/behavior that cannot be inferred from microscopic laws of physics and a small number of
degrees of freedom; that is, “More is Different”, adopting the famous title of Philip W. Anderson
(see Science 177, 393 (1972)).

‘Physics’ is surely a bit too broad here, yet it represents the idea that the tools and concepts
that will be discussed have a very broad range of applications in different branches of physics.
In addition, the topics considered can be discussed from various perspectives — such as applied
mathematics, engineering sciences and materials science —, but we will adopt a physicist perspec-
tive. To make ‘physics’ even more specific in the present context, we note that we will mainly focus
on thermal and mechanical phenomena, rather than electrical, magnetic or chemical phenomena.
By ‘thermal’ and ‘mechanical’ — or ‘thermomechanical’ we refer to material phenomena that
involve deformation, material and heat flow and failure, and where the driving forces are thermal
and mechanical in nature. ‘Classical continuum mechanics’ typically refers to ‘solid mechanics’
and ‘fluid mechanics’ from a classical (i.e. non-quantum) physics perspective. In this course we
will mainly focus on solids in the broadest sense of the word.

The word ‘solid’ is not easily defined. The most intricate aspect of such a definition is that it



involves an observation timescale (at least if we do not consider single crystals). However, for the
purpose of this course, it will be sufficient to define a solid as a material that can support shear
forces over sufficiently long timescales. We therefore do not focus on Newtonian fluids and very
soft materials (though we certainly mention them), both of which are discussed in complementary
courses. Nevertheless, we will discuss solid phenomena such as visco-elasticity and nonlinear

elasticity.

Why should one study the subjects taught in this course? Well, there are many (good) reasons.
Let us mention a few of them. First, macroscopic physics deals with emergent phenomena that
cannot be understood from microscopic laws applied to a small number of constituent elements
(degrees of freedom). That is, macroscopic systems feature new qualitative coarse-grained prop-
erties and dynamics. This is a deep conceptual, to some extent even philosophical, issue that
should be systematically introduced. Second, many of the macroscopic phenomena around us are
both non-equilibrium and thermomechanical in nature. This course offers tools to understand
some of these phenomena. Third, continuum physics phenomena, and solid-related phenomena
in particular, are ubiquitous in many branches of science and therefore understanding them may
be very useful for researchers in a broad range of disciplines. Fourth, the conceptual and math-
ematical tools of non-equilibrium thermodynamics and field theory are extremely useful in many
branches of science, and thus constitute an important part of scientific education. Finally, some
of the issues discussed in this course are related to several outstanding unsolved problems. Hence,
the course will expose students to the beauty and depth of a fundamental and active field of
research. It would be impossible to even scratch the surface of the huge ongoing solid-related
activity. Let us mention a few examples: (i) It has been quite recently recognized that the
mechanics of living matter, cells in particular, plays a central role in biology. For example, it
has been discovered that the stiffness of the substrate on which stem cells grow can significantly
affect their differentiation. (ii) Biomimetics: researchers have realized that natural/biological
systems exhibit superior mechanical properties, and hence aim at mimicking the design principles
of these systems in man-made ones. For example, people have managed to build superior adhe-
sives based on Gecko’s motion on a wall. People have succeeded in synthesizing better composite
materials based on the structures observed in hard tissues, such as cortical bone and dentin. (iii)
The efforts to understand the physics of driven disordered systems (granular materials, molecular
glasses, colloidal suspensions etc.) are deeply related to one of the most outstanding questions in

non-equilibrium statistical physics. (iv) People have recently realized there are intimate relations



between geometry and mechanics. For example, by controlling the intrinsic metric of materials,
macroscopic shapes can be explained and designed. (v) The rupture of materials and interfaces
has a growing influence on our understanding and control of the world around us. For example,
there are exciting developments in understanding Earthquakes, the failure of interfaces between
two tectonic plates in the Earth’s crust (vi) Developments in understanding the plastic defor-
mation of amorphous and crystalline solids offer deep new insights about strongly nonlinear and
dissipative systems, and open the way to new and exciting applications.

Unfortunately, due to time limitations, the course cannot follow a historical perspective which
highlights the evolution of the developed ideas. These may provide very important scientific,
sociological and psychological insights, especially for research students and young researchers.

Whenever possible, historical notes will be made.



II. MATHEMATICAL PRELIMINARIES: TENSOR ANALYSIS

The fundamental assumption of continuum physics is that under a wide range of conditions
we can treat materials as continuous in space and time, disregarding their discrete structure and
time-evolution at microscopic length and time scales, respectively. Therefore, we can ascribe to
each point in space-time physical properties that can be described by continuous functions, i.e.
fields. This implies that derivatives are well defined and hence that we can use the powerful
tools of differential calculus. In order to understand what kind of continuous functions, hereafter
termed fields, should be used, we should bear in mind that physical laws must be independent
of the position and orientation of an observer, and the time of observation (note that we restrict
ourselves to classical physics, excluding the theory of relativity). We are concerned here, however,
with the mathematical objects that allow us to formulate this and related principles. Most
generally, we are interested in the language that naturally allows a mathematical formulation of
continuum physical laws. The basic ingredients in this language are tensor fields, which are the
major focus on the opening part of the course.

Tensor fields are characterized, among other things, by their order (sometimes also termed
rank). Zero-order tensors are scalars, for example the temperature field T'(x,t) within a body,
where x is a 3-dimensional Euclidean space and t is time. First-order tensors are wectors, for
example the velocity field v(x,t) of a fluid. Why do we need to consider objects that are
higher-order than vectors? The best way to answer this question is through an example.
Consider a material areal element and the force acting on it (if the material areal element is a
surface element, then the force is applied externally and if the material areal element is inside
the bulk material, then the force is exerted by neighboring material). The point is that both the
areal element and the force acting on it are basically vectors, i.e. they both have an orientation
(the orientation of the areal element is usually quantified by the direction of the normal to it).
Therefore, in order to characterize this physical situation one should say that a force in the ith
direction is acting on a material areal element whose normal points in the jth direction. The
resulting object is defined using two vectors, but it is not a vector itself. We need a higher-order
tensor to describe it.

Our main interest here is second-order tensors, which play a major role in continuum physics.
A second-order tensor A can be viewed as a linear operator or a linear function that maps a

vector, say u, to a vector, say v,

v=Au. (2.1)



Linearity implies that
A(au +v) = cAu + Av (2.2)

for every scalar v and vectors w and v. For brevity, second-order tensors will be usually referred
to simply as tensors (zero-order tensors will be termed scalars, first-order tensors will be termed
vectors and higher than second-order tensors will be explicitly referred to according to their order).

The most natural way to define (or express) tensors in terms of vectors is through the dyadic

(or tensor) product of orthonormal base vectors {e;}
A= Aij e X €;, (23)

where Einstein summation convention is adopted, {A4;;} is a set of numbers and {7, j} run over
space dimensions. For those who feel more comfortable with Dirac’s Bra-Ket notation, the dyadic

product above can be also written as A = A;; |e; ><e;|. In general, the dyad u ® v is defined as
uRv=uv’ (2.4)

where vectors are assumed to be represented by column vectors and the superscript 1" denotes

the transpose operation. If {e;} is an orthonormal set of Cartesian base vectors, we have (for

example)
0 000
e;®es =exe; = | 1 (O 0 1> =[(001] . (2.5)
0 000

Therefore, second-order tensors can be directly represented by matrices. Thus, tensor algebra
essentially reduces to matrix algebra. It is useful to note that for every three vectors uw, v and w

we have
uRuw = (vw)u . (2.6)

where - is the usual inner (dot) product of vectors. In the Bra-Ket notation the above simply

reads |u><v|w> This immediately allows us to rewrite Eq. (2.1) as
Vi€ — UV = A’LL = (Al-jei X ej)(ukek) = Aijuk(ej . ek) e, = Aijujei s (27)

which shows that the matrix representation preserves known properties of matrix algebra (v; =

A;juj). The matrix representation allows us to define additional tensorial operators. For example,
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we can define

tI‘(A) = e - (Aijel- X ej) e, = Aij <ek\ei><ej|ek>: Amélkéjk = Akk , (28)
AT = (Aijei X ej)T = Aijej X e, = Ajiei X €;, (29)
AB = (Aijei & ej)(Bklek X 61) = AijBkléjkei X e = Aiijlei X e . (210)

We can define the double dot product (or the contraction) of two tensors as
A:B= (Aijei & ej) . (Bklek &® el) = AijBkl(ei . ek)(ej : el)
= AijBkl(Sik@-l = AijBij = tI‘(A BT) . (211)
This is a natural way of generating a scalar out of two tensors, which is the tensorial general-
ization of the usual vectorial dot product (hence the name). It plays an important role in the
thermodynamics of deforming bodies. Furthermore, it allows us to project a tensor on a base
dyad
(ei (024 ej) : A: (ei (039 ej) : (Aklek X el) :Akl(e,; . ek)(ej . el) :Akldikéjl = Aij s (212)

i.e. to extract a component of a tensor.

We can now define the identity tensor as
I=4¢(e;®e€j), (2.13)
which immediately allows to define the inverse of a tensor (when it exists) following
AA T =T. (2.14)

The existence of the inverse is guaranteed when det A # 0, where the determinant of a tensor
is defined using the determinant of its matrix representation. Note also that one can decompose

any second-order tensor to a sum of symmetric and skew-symmetric (antisymmetric) parts as

A=Aym+Agen =-(A+ AT+ (A AT). (2.15)

1 1
2 2
Occasionally, physical constraints render the tensors of interest symmetric, i.e. A= AT. In

this case, we can diagonalize the tensor by formulating the eigenvalue problem
ACI,Z' = )\z’ai 5 (216)

where {)\;} and {a;} are the eigenvalues (principal values) and the orthonormal eigenvectors

(principal directions), respectively. This problem is analogous to finding the roots of

det(A — M) = =\ + N[} (A) — M (A) + I3(A) =0, (2.17)
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where the principal invariants {I;(A)} are given by

I(A) = tr(A), pry_%[u%A)—th%}, I;(A) = det(A) . (2.18)

Note that the symmetry of A ensures that the eigenvalues are real and that an orthonormal set

of eigenvectors can be constructed. Therefore, we can represent any symmetric tensor as
A= )\Z a;, ®a;, (219)

assuming no degeneracy. This is called the spectral decomposition of a symmetric tensor A. It is
very useful because it represents a tensor by 3 real numbers and 3 unit vectors. It also allows us

to define functions of tensors. For example, for positive definite tensors (A; > 0), we can define

In(A) =In(\)a; ®a; , (2.20)
VA= \a®a;. (2.21)

In general, one can define functions of tensors that are themselves scalars, vectors or tensors.
Consider, for example, a scalar function of a tensor f(A) (e.g. the energy density of a deforming
solid). Consequently, we need to consider tensor calculus. For example, the derivative of f(A)

with respect to A is a tensor which takes the form

af of
A , . 2.22
0A 8141] €i® € ( )
The differential of f(A) is a scalar and reads
_OF a4 91

Consider then a tensorial function of a tensor F(A), which is encountered quite regularly in

continuum physics. Its derivative D is defined as

_OF_OF o ve= e gemene,
TO0A T 94, T 7 T oA, Fo Tt T ey
OFy
Dyij = =—— 2.24
= klij aA” ( )

which is a fourth-order tensor.
We will now define some differential operators that either produce tensors or act on tensors.

First, consider a vector field v(x) and define its gradient as

v 0 v,
8 T =i e, (2.25)

VU N % N 8xj 833]‘



12

which is a second-order tensor. Then, consider the divergence of a tensor
0A 0A;; 0A;;
V-A= —e; ®eje, = —"e; (2.26)
B A
which is a vector. The last two objects are extensively used in continuum physics.

The tensorial version of Gauss’ theorem for relating volume integrals to surface integrals reads

/V~AdV :%AndS, (2.27)
\%4 S

where V and S are the volume and the enclosing surface, respectively, and n is the outward unit
normal to the surface. Obviously, the theorem is satisfied for scalars and vectors as well. It would
be useful to recall also Stokes’ theorem for relating line integrals to surface integrals

/S(va)-nds = j{v-dl , (2.28)

!
where S and [ are the surface and its bounding curve, respectively, and n is the outward unit
normal to the surface.

Finally, we should ask ourselves how do tensors transform under a coordinate transformation

(from x to x’)
' =Qx , (2.29)

where @ is a proper (det @=1) orthogonal transformation matrix Q7 =Q~! (note that it is not
a tensor). In order to understand the transformation properties of the orthonormal base vectors

{e;} we first note that
r=Qr—=x=Q"2x =z, = Qz;x; = jSx;- ) (2.30)

A vector is an object that retains its (geometric) identity under a coordinate transformation. For
example, a general position vector 7 can be represented using two different base vectors sets {e;}

and {e.} as

~
~

<
<

Using Eq. (2.30) we obtain

~

ri€e; = (jS-l";)ei = -T;(jSei) = x;e- 5 (2.32)

<

which implies

e = Que; . (2.33)
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In order to derive the transformation law for tensors representation we first note that tensors, like
vectors, are objects that retain their (geometric) identity under a coordinate transformation and

therefore we must have

A=Aje®e =Aje Q€. (2.34)
Using Eq. (2.33) we obtain
A= Aje;®e; = Al;Que, ® Qe = (A;;QinQj)er @ e . (2.35)
which implies
Ayt = ALQuQn - (2.36)

This is the transformation law for the components of a tensor and in many textbooks it serves as

a definition of a tensor. Eq. (2.36) can be written in terms of matrix representation as
[A] = Q'[A]Q = [A] = Q[A]Q" (2.37)

where [-] is the matrix representation of a tensor with respect to a set of base vectors. Though
we did not make the explicit distinction between a tensor and its matrix representation earlier, it
is important in the present context; [A] and [A]" are different representations of the same object,
the tensor A, but not different tensors. An isotropic tensor is a tensor whose representation is

independent of the coordinate system, i.e.

We note in passing that in the present context we do not distinguish between covariant and
contravariant tensors, a distinction that is relevant for non-Cartesian tensors (a Cartesian tensor

is a tensor in three-dimensional Euclidean space for which a coordinate transformation ' = Qx

satisfies Ox}/0x;=0x;/0x}).
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III. MOTION, DEFORMATION AND STRESS

Solid materials are deformed under applied driving forces. In order to describe the deformation

of solids, consider a body at a given time and assign to each material point a position vector X

with respect to some fixed coordinate system (i.e. we already use the continuum assumption). For

simplicity, set t=0. At ¢ >0 the body experiences some external forcing that deforms it to a state

in which each material point is described by a position vector &. We then define the motion as
the following mapping

r=x(X,t)=p(X,t). (3.1)

The vector function ¢(-) maps each point in the initial state X to a point in the current state x
at t>0. This immediately implies that X = (X ,t = 0), i.e. at time ¢t = 0 ¢(-) is the identity
vector. The initial state X is usually termed the reference/undeformed configuration and the
current state is termed the deformed configuration. We assume that () is a one-to-one mapping,

l.e. that it can be inverted

X =¢ (1) . (3.2)

The inverse mapping ¢ () tells us where a material point, that is currently at @, was at time
t = 0. It is important to note that we can describe physical quantities either by X, which is called
the material (Lagrangian) description, or by @, which is called the spatial (Eulerian) description.
The choice between these descriptions is a matter of convenience. For a given physical phenomenon
under consideration, one description may be more convenient than the other. We will discuss this
issue later in the course.

A quantity of fundamental importance is the displacement field defined as
UX,t)=x(X,t) — X . (3.3)
This material description can be converted into a spatial description following
UX,t)=z(X,t) - X =z — X(z,t) =U(p '(x,1),t) = u(z,t) . (3.4)

Note that U and w are different functions of different arguments, though their values are the

same. The velocity and acceleration fields are defined as
V(X,t)=0U(X,t) =v(x,t) and A(X,t)=0,U(X,t)=a(x,t). (3.5)

The corresponding spatial descriptions can be easily obtained using ¢(-).
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The material time derivative D/Dt, which we abbreviate by D;, is defined as the partial
derivative with respect to time, keeping the Lagrangian coordinate X fixed. For a material field
F(X,t) (scalar or vector. For a tensor, see the discussion of objectivity/frame-indifference later

in the course) we have

DF(X,1) = (B.F(X,1)x , (3.6)

where we stress that X is held fixed here. This derivative represents the time rate of change of
a field F, as seen by an observer moving with a particle that was at X at time ¢t = 0. We can

then ask ourselves what happens when we operate with the material derivative on an Eulerian

field f(z,t). Using the definition in Eq. (3.6), we obtain

Df(x,t) _ (3f(so(X,t),t)>
Dt ot X1 (2)

_ (%)w + (afé? t>>t <8‘Pg’t))xz¢_lw) . (3.7)

The last term in the above expression is the velocity field, cf. Eq. (3.5), implying that

DG 0 0
Dt~ ot % on

(3.8)

The second contribution on the right hand side of the above equation is termed the convective rate
of change and hence the material derivative of an Eulerian field is sometimes called the convective
deriwative. Finally, note that since the material derivative of an Eulerian field is just the total
time derivative of the Eulerian field, viewing x(¢) as a function of time, it is sometimes denoted

by a superimposed dot, i.e. f(x,t) = D,f(a,t). If f(z,t) is the velocity field we obtain
Dw(x,t) = Ow(x,t) +v(x,t) - Vyv(z, t) . (3.9)

The latter nonlinearity is very important in fluid mechanics, though it appears also in the context
of elasto-plasticity. Note that we distinguish between the spatial gradient V, and the material
gradient V x, which are different differential operators. Fluid flows are usually described using
an Eulerian description. Nevertheless, Lagrangian formulations can be revealing, see for example
the Lagrangian turbulence simulation at: http://www.youtube.com/watch?v=LHIIn72dRPk

In order to discuss the physics of deformation we need to know how material line elements
change their length and orientation. Therefore, we define the deformation gradient F' that maps
an infinitesimal line element in the reference configuration dX to an infinitesimal line element in

the deformed configuration

de = F(X,t)dX . (3.10)


http://www.youtube.com/watch?v=LHIIn72dRPk
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Hence,
F(X,t)=Vxp(X,1). (3.11)

As will become apparent later in the course, F' is not a proper tensor, but rather a two-point
tensor, i.e. a tensor that relates two configurations. We can further define the displacement

gradient tensor as
H(X,t)=VxU(X,t), (3.12)
which implies
F=I+H. (3.13)

Here and elsewhere I is the identity tensor. The deformation gradient F' describes both the
rotation and the stretching of a material line element, which also implies that it is not symmetric.
From a basic physics perspective, it is clear that interaction potentials are sensitive to the relative
distance between particles, but not to local rigid rotations. Consequently, we are interested in
separating rotations from stretching, where the latter quantifies the change in length of material

elements. We can, therefore, decompose F' as
F=RU=VR, (3.14)

where R is a proper rotation tensor, det R = +1, and U (should not be confused with the
displacement field) and V' are the right and left stretch tensors, respectively (which are of course

symmetric). This is the so-called polar decomposition. Note that
RR"=1, U=U" Vv=Vv! V=RUR". (3.15)

Therefore, U and V have the same eigenvalues (principal stretches), but different eigenvectors

(principal directions). Hence, we can write the spectral decomposition as

V =\ N;® N;, (3.16)

with
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A. Strain measures

At this stage, we are interested in constructing quantities that are based on the stretch tensors
discussed above in order to be able, eventually, to define the energy of deformation. For this
aim, we need to discuss strain measures. Unlike displacements and stretches, which are directly
measurable quantities (whether it always make physical sense and over which timescales, will be
discussed later), strain measures are concepts that are defined based on displacements/stretches,
and may be conveniently chosen differently in different physical situations. The basic idea is
simple; we would like to come up with a measure of the relative change in length of material line
elements. Consider first the scalar (one-dimensional) case. If the reference length of a material

element is ¢y and its deformed length is ¢ = Ay, then a simple strain measure is constructed by

g()\)zg—&):/\—l. (3.19)
Co

This definition follows our intuitive notion of strain, i.e. (i) It is a monotonically increasing
function of the stretch A (ii) It vanishes when A=1. It is, however, by no means unique. In fact,
every monotonically increasing function of A which reduces to the above definition when A is close
to unity, i.e. satisfies g(1) =0 and ¢'(1) =1, would qualify. These conditions ensure that upon

linearization, all strain measures agree. For example,

L g
g(\) = aw In (£> =In\, (3.20)
0w U 4
;—n1,,
g(A) = 27 3 (N =1) . (3.21)

Obviously, there are infinitely many more. The three possibilities we presented above, however,
are well-motivated from a physical point of view. Before explaining this, we note that the scalar
(one-dimensional) definitions adopted above can be easily generalized to rotationally invariant

tensorial forms as

Ey=(In)\)M;®M;=InU, (3.23)
1 1 1
Ezé(Af—l)Mi@)Mi:E(UQ—I):§(FTF—I) : (3.24)

Ey is the Biot (extensional) strain tensor. It is the most intuitive strain measure. Its main
disadvantage is that it cannot be directly expressed in terms of the deformation gradient F', but

rather has to be calculated from it by a polar decomposition. Ey is the Hencky (logarithmic)
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strain (which is also not expressible in terms of F' alone). Its one-dimensional form, Eq. (3.20),
clearly demonstrates that dEy is an incremental strain that measures incremental changes in the
length of material line elements relative to their current length. Finally, E is the Green-Lagrange
(metric) strain. While it is difficult to motivate its one-dimensional form, Eq. (3.21), its tensorial
form has a clear physical meaning. To see this, consider infinitesimal line elements of size d¢ and
dl’" in the reference and deformed configurations respectively and construct the following measure

of the change in their length

(dl")? — (d0)? = daida; — dX;dX; = FidX;Fpd Xy, — dX;0;,d Xy = (3.25)
2dX; B (F;Fy, — 5jk)} dX;, = 2dX; B (FJi Fi — 5]-;@)} dXy = 2dX; Ejpd Xy,
Therefore,
E:%(FTF—I) = %(C—I) = % (U*-1) = %(H+HT+HTH) 7 (3.26)

where C=FTF is the right Cauchy-Green deformation tensor. So E is indeed a material metric
strain tensor. Further note that E is quadratically nonlinear in the displacement gradient H.
The linear part of E

€= %(H + HT) (3.27)

is the linear (infinitesimal) strain tensor, which is not a true strain measure (as it is not rotationally
invariant), but nevertheless is the basic object in the linearized field theory of elasticity (to be
discussed later in the course). We can easily derive the spatial counterpart of E, by having
(d')? — (dl)?=2dzjejpdxy, with (prove)

e—1 (I-FTF") =

5 (I-b"") . (3.28)

N | —

b= FF7 is the left Cauchy-Green deformation tensor (also termed the Finger tensor, which is
sometimes denoted by B). e, known as the Euler-Almansi strain tensor, is a spatial metric strain
tensor.

The deformation gradient F' maps objects from the undeformed to the deformed configuration.
For example, consider a volume element in the deformed configuration (assume F' has already

been diagonalized)
dw3 = d$1d$2dl’3 == FnXmFQQdXQFgngg == J(X,t)dXs y (329)

where

J(X,t) = det F(X, 1) . (3.30)
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Consider then a surface element in the undeformed configuration dS = dS N, where dS an
infinitesimal area and IN is a unit normal. The corresponding surface element in the deformed
configuration is ds = dsmn. To relate these quantities, we consider an arbitrary line element dX
going through dS and express the spanned volume element by a dot product dX? = dS - dX.
dX maps to dx, which spans a corresponding volume element in the deformed configuration
dx® = ds - dz. Using Eq. (3.29), the relation ds - FdX =F"ds-dX (i.e. ds;F;;dX;=F];ds;dX;)

and the fact that dX is an arbitrary line element, we obtain
dS = J 'F'ds . (3.31)

The spatial velocity gradient L(x,t) is defined as

ov(x,t) o
L=—""=FF . .32
5 (3.32)

The symmetric part of L, D = (L + L"), is an important quantity called the rate of defor-

mation tensor. The anti-symmetric part of L, W = %(L—LT)7 is called the spin (vorticity) tensor.

B. The concept of stress

As was mentioned at the beginning of this section, material deformation is induced by forces.
In order to describe and quantify forces at the continuum level we need the concept of stress
(sketched earlier in section II to motivate the need for tensors). Consider a surface element
ds in the deformed configuration. It is characterized by an outward normal n and a unit area
ds. The surface element can be a part of the external boundary of the body or a part of an
imaginary internal surface. The force acting on it, either by external agents in the former case
or by neighboring material in the latter case, is denoted by df. We postulate, following Cauchy;,

that we can define a traction vector t such that
df =t(x,t,n)ds . (3.33)

Cauchy proved that there exists a unique symmetric second-order tensor o (x,t) (i.e. o =0’ the

physical meaning of which will be discussed later) such that
t(x,t,n) =0o(x,t)n . (3.34)

The spatial tensor o is called the Cauchy stress. Its physical meaning becomes clear when we

write Eq. (3.34) in components form, ¢; = o;;n;. Therefore, 0;; is the force per unit area in the
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ith direction, acting on a surface element whose outward normal has a component n; in the jth

direction. A corollary of Eq. (3.34)
t(x,t,—m) = —t(x,t,n) , (3.35)

is nothing but Newton’s third law (action and reaction).

As o is defined in terms of the deformed configuration, which is not known a priori (one
should solve for it using the stresses themselves), o is not always a useful quantity (it is the
only relevant quantity in the linearized field theory of elasticity, where we do not distinguish
between the deformed and undeformed configurations). To overcome this difficulty, we can define
alternative stress measures that are useful for calculations. In general, we will show later that
thermodynamics allows us to define for any strain measure a work-conjugate stress measure. Here,
we define one such mechanically-motivated stress measure. Let us define a (fictitious) reference

configuration traction vector T'(X,t, N) as
df =t(z,t,n)ds=T(X,t,N)dS , (3.36)

where IN and dS are the reference outward normal and unit area, respectively, whose images in
the deformed configuration are m and ds, respectively. Following Cauchy, there exists a tensor
P(X,t) such that

T(X,t,N)=P(X,t)N . (3.37)

P(X,t) is called the first Piola-Kirchhoff tensor. In fact, it is not a true tensor (it relates
quantities from the deformed and undeformed configuration and hence, like F', is a two-point
tensor) and is not symmetric. Using the above properties, it is straightforward to show that it is

related to the Cauchy stress o by
P=JoF T (3.38)

The concepts of strain and stress will allow us to formulate physical laws, such as conservation
laws and the laws of thermodynamics, and constitutive laws which describe material behaviors,

in the rest of this course.
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IV. EQUATIONS OF MOTION, THE LAWS OF THERMODYNAMICS AND
OBJECTIVITY

A. Conservation laws

We first consider the mass density in the reference configuration po(X,t). The conservation of
mass simply implies that

M= [ py(X,t)dX?> (4.1)
Qo
is time-independent ({2 is the region occupied by the body in the reference configuration), i.e.
DM D

D .
== X, t)dX? == 3 = 4.2

where €2 is the region occupied by the body in the deformed configuration. The integral form
can be easily transformed into a local form. In the reference (Lagrangian) configuration it simply
reads

Dpo _ 0po(X,1)

Dt ot 0 = po(X,1) = po(X) . (4.3)

To obtain the local form in the Eulerian description, note that (by the definition of J, cf. Eq.
(3.29)) po(X)=p(x,t).J(X,t) and J=.J V, - v (prove). Therefore,

Dpy D _ .Dp _
=== [p(:c, (X )| = T+ TpVa-v =10, (4.4)
which implies
Dp(x,t) _ Op(=, 1) _
S pl@ Ve vl 1) = L+ Ve - (sl el 1) = 0. (4.5)

This expression of local mass conservation (continuity equation) takes the general form of a local

conservation law

J(field)
ot

Let us now discuss a theorem that will be very useful in formulating and manipulating other

+ V, - (field flux) = source . (4.6)

conservation laws. Consider the following 1D integral

©(X2,t)

I(t) :/ Y(z, t)dx . (4.7)
p(X1,t)

Note that X; 5 are fixed here. Taking the time derivative of I(¢) (Leibnitz’s rule) we obtain

= [ " e s+ 0 (0 0,0) 00066 — (0N, 1) e Xat) . (48)

(Xl 7t)
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First recall that (generally in 3D)
VX, 1) = Oep(X 1) = vl 1) (49)

Then note that since X; and X, are fixed in the integral we can interpret the time derivative as

a material time derivative D/Dt. Therefore, we can rewrite Eq. (4.8) as

D [e(X2) o(X2,t)

() = /

<p(X1,t)

Dt L O, 1) + 0, (e, (e, 1)) | da (4.10)

The immediate generalization of this result to volume integrals over a time dependent domain {2
reads

%/Qz/}(w,t)da:?’ :/Q [@zﬁ(m,t) +Vw~(1p(w,t)v(:c,t))] dx® . (4.11)
This is the Reynolds’ transport theorem which is very useful in the context of formulating conser-
vation laws. This is the same Osborne Reynolds (1842-1912), who is known for his studies of the
transition from laminar to turbulent fluid flows, and who gave the Reynolds number its name.

Using mass conservation, we obtain (prove)

D%/Qp(m,t)qp(m,t)dm?’:/p(m,t)%‘:’t)dm?’. (4.12)

Q

This is very useful when we choose ¥ (x,t) to be a quantity per unit mass. In particular, setting
=1 we recover the conservation of mass.

Linear momentum balance (Newton’s second law) reads

P(t) - % [ (XXX’ - % /Qp(w,t)v(;c,t)de _F(t) (4.13)

where F'(t) is the total force acting on a volume element €2 (do not confuse P with the first
Piola-Kirchhoff stress tensor of Eq. (3.37)). To obtain a local form of this law note that the total
force is obtained by integrating local tractions (surface forces) t(x,t) and body (volume) forces
b(x,t), ie.

Ft) = /6 tlatom)ds + / b(z, t)da" | (4.14)

Q
where 0f) is the boundary of the volume element. Use Cauchy’s stress theorem of Eq. (3.34) and

the divergence (Gauss) theorem of Eq. (2.27) to obtain

/mt(m,t,n)ds:/ﬂa(m,t)nds:/ﬂvx.g(m,t)dmi%, (4.15)

0
Use then Reynold’s transport theorem of Eq. (4.12), with 1 replaced by the spatial velocity field

v, to transform the linear momentum balance of Eq. (4.13) into

/Q Vo o(x,t) + b(x,t) — p(x, t)v(x,t)] dx* = 0 . (4.16)
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Since this result is valid for an arbitrary material volume, we obtain the following spatial (Eulerian)

local form of linear momentum conservation
Ve o+b=pv=p(Ow+v-Vuv) . (4.17)

Note that this equation does not conform with the structure of a general conservation law in Eq.
(4.6). This can be achieved (prove), yielding

d(pv)
ot

=V (0c—pv@v)+b. (4.18)

A similar analysis can be developed for the angular momentum. However, the requirement that
the angular acceleration remains finite implies that angular momentum balance, at the continuum

level, is satisfied if the Cauchy stress tensor o is symmetric, i.e.
oc=o0", (4.19)

to be derived in the tutorial. We note that the symmetry of the Cauchy stress tensor emerges from
the conservation of angular momentum if the continuum assumption is valid at all lengthscales.
Real materials, however, may possess intrinsic lengthscales associated with their microstructure
(e.g. grains, fibers and cellular structures). In this case, we need generalized theories which
endow each material point with translational and rotational degrees of freedom, describing the
displacement and rotation of the underlying microstructure. One such theory is known as Cosserat
(micropolar) continuum, which is a continuous collection of particles that behave like rigid bodies.
Under such circumstances one should consider a couple-stress tensor (which has the dimensions
of stress x length) as well, write down an explicit angular momentum balance equation and recall
that the ordinary stress tensor is no longer symmetric.

The local momentum conservation laws can be expressed in Lagrangian forms. For example,

the linear momentum balance, Eq. (4.17), translates into (prove)
Vx-P+B=pV, (4.20)

where P is the first Piola-Kirchhoff stress of Eq. (3.37) and B(X,t) = J(X,t)b(x,t). This
equation is extremely useful because it allows calculations to be done in a fixed undeformed
coordinate system X. It is important to note that one should also transform the boundary
conditions of a given problem from the deformed configuration (where they are physically imposed)

to the underformed configuration.
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B. The laws of thermodynamics

Equilibrium thermodynamics is a well-established branch of physics, whose modern incarnation
is deeply rooted in statistical mechanics. This framework, known as statistical thermodynamics,
builds on systematic coarse-graining of statistical descriptions of microscopic dynamics. It gives
rise to an effective macroscopic description of large physical systems through a small set of state
variables. In the spirit of this course, we do not follow the microscopic route of statistical mechanics
(a topic covered in complementary courses), but rather focus on a macroscopic perspective.

Let us consider the balance of mechanical energy (thermal energy is excluded here and will be
discussed soon). The external mechanical power P,,; is simply the rate at which mechanical work

is being done by external forces, either boundary traction ¢ or body forces b. It reads

Pewt = / t-wvds + / b-vdx® . (4.21)
o0 Q

The external mechanical work is transformed into kinetic energy X and internal mechanical power

Pint. These are expressed as

1
K:/—p02d$3 (4.22)
Q 2
and
Pmt—/a:Lda:?’—/a':Dda:S. (4.23)
Q Q

Therefore, mechanical energy balance reads
Pe:vt = P’L’nt + ’C . (424)

It can be easily proven using Eqs. (4.17) and (4.21).

To arrive at the first law of thermodynamics we need to consider another form of energy —
thermal energy. This form of energy accounts for the random (microscopic) motion of particles,
which was excluded from the previous discussion. To properly describe this form of energy we
need two concepts, that of an internal energy U and that of thermal power Q. The internal energy
accounts for all microscopic forms of energy. Here we focus on mechanical and thermal energies,
but in general electric, magnetic, chemical and other forms of energy can be included. U can be

associated with a density u (per unit mass) and hence

U= /Qp(a:,t) u(zx, t) de® . (4.25)
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Note that the total energy is the sum of kinetic and internal energies IC + . The thermal (heat)

power Q is expressed, as usual, in terms of fluxes and sources

Q:—/ q~nds—|—/7“da:3. (4.26)
o0 Q

q is the heat flux and r is a (volumetric) heat source (e.g. radiation). For simplicity we exclude r
from the discussion below. Finally, we note that the rate of change of internal energy is the sum

of rate of change of internal mechanical energy and thermal power
U =Pt Q. (4.27)

which can be regarded as a statement of the first law of thermodynamics. Alternatively, by

eliminating P;,,; between Eqs. (4.24) and (4.27) we obtain
K+U=P.+Q, (4.28)

which is yet another statement of the same law. It has a clear physical meaning: external
mechanical work and heat supply are transformed into kinetic and internal energies. An important
point to note is that this law only tells us that one form of energy can be transformed into another
form, but does not tell us anything about the direction of such processes. This global law can be

readily transformed into a local form (prove), which reads
pu=0:D—-V,-q. (4.29)

It is well known that many physical processes feature a well-defined direction, e.g. heat flows
from a higher temperature to a lower one. This is captured by the second law of thermodynamics.
To formulate the law we need two additional concepts, entropy and temperature. The total
entropy S is a measure of microscopic “disorder” and is well defined in the framework of statistical
mechanics. The absolute temperature 7' (a non-negative scalar), which is also a well defined
statistical mechanical concept, is introduced such that the entropy increase associated with a

thermal power Q is Q/T. The second law then reads

. qn r 3 Q
> — —d —dx’ = = 4.
S > /39 T S+/QT = (4.30)

where the last equality is valid for space-independent T' (otherwise, 7" is part of the integrands
and one cannot globally separate the heat power Q and the temperature 7" in the second law).

The inequality in (4.30) states that the increase in the entropy of a system is larger than (or
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equals to) the influx of entropy by heat (thermal power). When the system under consideration
is closed (e.g. the universe) the second law states that the entropy is an increasing function of
time (or constant), i.e. S > 0. Note that sometimes the entropy production rate ¥ is defined as

N=S8 — Q/T, which is non-negative.

Every macroscopic physical system, and consequently every theory of such systems, cannot
violate the non-negativity of the entropy production rate . This is a serious and very useful
constraint on developing continuum theories of non-equilibrium phenomena. Yet, applying the
second law constraint to arbitrarily far from equilibrium phenomena is not trivial (e.g. it might
raise questions about the validity of the entropy concept itself) and will be further discussed later

in the course.

The most well-developed application, however, of the second law constraint emerges in the
context of Linear Response Theory describing systems that deviate only slightly from equilibrium
(i.e. when driving forces are weak). In this case, the entropy production rate 3 can be expressed
as a bilinear form in the deviation from equilibrium, defining a set of linear response coefficients.
These linear response coefficients must satisfy various constraints to ensure consistency with the
second law of thermodynamics. In fact, by invoking microscopic time reversibility Lars Onsager
showed that these coefficients possess additional symmetries that go beyond the second law of
thermodynamics, known as Onsager’s reciprocal relations. The Nobel Prize in Chemistry in 1968
was awarded to Onsager for this fundamental contribution (the prize citation referred to “the
discovery of the reciprocal relations bearing his name, which are fundamental for the thermo-
dynamics of irreversible processes”). It is worth mentioning in the context of linear irreversible
thermodynamics that Prigogine showed in 1945 that Onsager’s reciprocal relations imply that
the entropy production rate % attains a minimum under non-equilibrium steady-state conditions
(which was one of the major reasons for awarding him the Nobel prize in 1977). Prigogine’s
principle of minimum entropy production generated considerable excitement at the beginning,
but later on it was realized that this result (like Onsager’s reciprocal relations) is specific to small

deviations from equilibrium (linear response).

Let us consider a simple example of the implications of the second law of thermodynamics for
an isolated system that is composed of two subsystems of different temperatures 77 > T5. The
subsystems are separated by a wall that allows heat transport, but not mass or mechanical work

transport. Since the system as a whole is isolated and no mechanical work is involved, the first
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and second laws of thermodynamics read

While heat cannot flow into the system from the outer world, heat can possibly flow through the
wall separating the two subsystems, the rate of which is denoted as Q;_,5. We assume that the

entropy and energy changes of each subsystem is a result of the heat transfer across the wall, i.e.

S =— le;2 = % and S, = Q%ZQ = % . (4.32)
Substituting this in the second law we obtain
S =01, (i - i) >0, (4.33)
T, T
which can be satisfied by
Q1,0 =A(Ty —T,) with A>0 (4.34)

to leading order in the temperature difference (resulting in Newton’s cooling law). Therefore, heat
flows from a higher temperature to a lower one.
To obtain a local version of the second law define an entropy density s(x,t) (per unit mass)

such that
S :/p(a:,t)s(a:,t) dz® | (4.35)
Q

which immediately leads to (recall Eq. (4.30))
p$+Va(q/T) >0. (4.36)

Eliminating V-q between the first and second laws in Eqs. (4.29) and (4.36) we obtain

o:D—pitTps— TVl 5 (4.37)
Usually this inequality is split into two stronger inequalities
oc:D—pu+Tps>0 and ¢q-V,T<0. (4.38)
The second inequality is satisfied by choosing
qg=—rV, T, (4.39)

where k > 0 is the thermal conductivity. This is Fourier’s law of heat conduction. The first

inequality in (4.38) is known as the dissipation inequality (or the Clausius-Planck inequality) and
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will play an important role later in the course. Any physical theory must satisfy this inequality.
We note that the dissipation inequality can be also expressed in terms of the Helmholtz free-

energy density f = u — T's (per unit mass) as

o:D—pf—psT>0. (4.40)

Under isothermal conditions, T = 0, we have

o:D-pf>0. (4.41)

C. Heat equations

Heat equations are manifestations of the first law of thermodynamic. To see this, substitute

Fourier’s law of Eq. (4.39) into the first law of Eq. (4.29) to obtain
pt=0:D +kVET . (4.42)

This equation is transformed into a heat equation once we consider a constitutive law (see below)
for the rate of deformation D and the internal energy density u. In the simplest case, which
you know very well, we consider a non-deforming body D =0 such that the local internal energy
changes only due to heat flow. Therefore, we define the specific heat capacity through ¢T = pu
and obtain

T = DV2T , (4.43)

where here D = k/c is the thermal diffusion coefficient (the ratio of thermal conductivity and the
specific heat capacity). This is just the ordinary heat diffusion equation, which in fact remains
valid also for elastically deforming materials. Later in the course we will encounter more general

heat equations that emerge in the present of more complicated constitutive laws.

A small digression

Diffusion equations possess an interesting feature, which is not always appreciated and which
will teach us an important lesson about continuum physics. The modern microscopic theory of
diffusion (and Brownian motion) is one of the most well-understood problems in physics and one of
the greatest successes of statistical mechanics. To make things as simple and concrete as possible,

we focus here on particle diffusion in 1d. Within this theory, diffusion is described by a particle
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which makes a random walk along the z-axis, starting at x =0 when the clock is set to t=0. At
each time interval At =1 (in this discussion all quantities are dimensionless) the particle makes
a jump of size |[Az|=1 to the right or the left, with equal probability. Statistical mechanics tells
us (through the central limit theorem) that after a sufficiently long period of time (i.e. number
of jumps), the probability distribution function p(z,t) reads

2

e 2t
V27t 7

i.e. a normal distribution with zero mean and variance which is just the time ¢. This continuous

p(x,t) =

(4.44)

probability distribution function is the solution of a diffusion equation of the form
1
Op(x,t) = §8mp(a:, t), (4.45)

which is a 1d version of Eq. (4.43) (with D =1/2 and recall that it is dimensionless here), with
the initial condition

p(z,t=0) = 0(x) . (4.46)

This appears to be a strong result of continuum physics where we describe a physical system
on timescales and lengthscales much larger than atomistic, forgetting about the discreteness of
matter (think of this equation as describing the time evolution of an ink droplet spreading inside
a water tank, where p represents for the mass density of the ink). Is there actually a problem
here? Well, there is. Eq. (4.44) tells us that at time ¢ after the initiation of the process, when the
probability was localized at x=0 (cf. Eq. (4.46)), there is a finite probability to find the particle
(e.g. an ink molecule) at an arbitrarily large z. The fact that this probability is exponentially
small is beside the point. The crucial observation is that it is non-zero, implying that information
propagated from = =0 (at t = 0) infinitely fast. This violates fundamental physics (causality,
relativity theory or whatever).

On the other hand, we know from the microscopic description of the problem that
p(z,t) =0 for |x|>t, (4.47)

i.e. that at most the particle could have made all of the jumps in one direction. That means that
in fact the probability propagates at a finite speed (in our dimensionless units the propagation
speed is 1), as we expect from general considerations.

So what went wrong in the transition from the microscopic description to macroscopic one?

The answer is that Eq. (4.44) is wrong when |z| becomes significantly larger than O(v/t). A more
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careful microscopic analysis (not discussed here) actually gives rise to the following continuum

evolution equation for p(z,t)
1 1
atp(x7 t) + Eattp(xa t) = éaxxp(xa t) ) (448)

which is a combination of a wave equation and a diffusion equation. The fastest propagation
of probability is limited by ordinary wave propagation of speed 1, exactly as we expect from
microscopic considerations. This equation reconciles the apparent contradiction discussed above,
showing that both Eqs. (4.44) and (4.47) are valid, just on different ranges of x for a given time
t. This shows that the continuum limit should be taken carefully and critically. Beware. And
you can also relax, the diffusion equation is in fact a very good approximation in most physical
situations of interest.

Finally, we note that Eq. (4.48) is another equation of continuum physics, known as the
telegrapher’s equation. It was originally derived in a completely different context, that of electric
transmission lines with losses, by Oliver Heaviside (1850-1925). This is the guy who invented
the Heaviside step function and formulated Maxwell’s equations using vector calculus in the form
known to us today (the original ones were much uglier). He also independently discovered the

Poynting vector (which is named after John Henry Poynting).

D. Objectivity (frame - indifference)

To conclude this part of the course we consider the important notion of objectivity or frame-
indifference. To quantify this idea we consider two observers that move (rotationally and trans-
lationally) one with respect to the other. For simplicity we assume that their watches are syn-
chronized and that at time ¢ =0 they agree on the reference configuration X of the body under
consideration. The motions observed by the two observers are related by the following change-of-

observer transformation
& (X,1) = Q)p(X 1) +y(t) . (4.49)

where Q(t) is a proper time-dependent rotation matrix
QQ" =1 and det(Q)=+1 (4.50)

and y(t) is a time-dependent translation vector. A scalar ¢ is classified as objective (frame-
indifferent) if it satisfies ©* =1. A spatial vector u is objective if u* = Qu and a spatial tensor

a is objective if a*=QaQ” (we will try, for notational consistency, to denote spatial tensor by
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lowercase symbols). Material/Lagrangian objective vectors and tensors remain unchanged under
change-of-observer transformation. Hybrid quantities, such as two-point tensors (which have a
mixed spatial-material nature), have other objectivity criteria (see below).

To see how this works, consider the spatial velocity field v = 0;¢p. Then we have

v =0 =Qop+Qp+y=Qu+Qp+1. (4.51)

Therefore, the velocity field is in general not objective. It can be made objective if we restrict
ourselves to time-independent rigid transformation in which Q@ = ¢ = 0. Likewise, the spatial
acceleration field @ = v is not an objective vector. This means that the linear momentum balance
equation (i.e. Newton’s second law) is not objective under the transformation in Eq. (4.49). This
happens because time-dependent Q(t) and y(t) generate additional forces (centrifugal, Coriolis
etc.). This is well-known to us: classical physics is invariant only under Galilean transformations,
i.e. when Q = 0 and § = 0. The classical laws of nature are the same in all inertial frames (and
we know how to account for forces that emerge in non-inertial frames).

The important point to note is that for constitutive laws, i.e. physical laws that describe
material behaviors, people sometimes demand something stronger: they insist that these laws
remain unchanged under the change-of-observer transformation of Eq. (4.49) for general Q(¢) and
y(t). That is, even though Newton’s second law is objective only under Galilean transformations,
one usually demands constitutive laws to be objective under a more general transformation. This
is called “The principle of material frame-indifference”. To see how this works, consider then the

deformation tensor F'. We have

Therefore, F' does not transform like an objective tensor, but rather like an objective vector. This
is because it is not a true tensor, but rather a two-point tensor (a tensor that connects two spaces,
X and « in this case). Two-point tensors (i.e. tensors of mixed spatial-material nature), that
satisfy A*=@Q A under a change-of-observer transformation, are regarded as objective. Hence, F'
is regarded as an objective two-point tensor.

To see the difference between material and spatial objective tensors, consider the right Cauchy-
Green deformation tensor C' (see Eq. (3.26)) and the left Cauchy-Green deformation (Finger)
tensor b (see Eq. (3.28)). For the former, we have

C*'=FTF=F'Q"QF =F'F =C, (4.53)
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i.e. C is an objective material tensor. For the latter, we have
b*=F"FT =QFF"Q" = QbQ" (4.54)

i.e. bis an objective spatial tensor.

The Cauchy stress o is an objective tensor, i.e. o* = QoQ’. This can be easily shown by
using Eq. (3.34), t=0on, and by noting that both ¢ and n are objective vectors. Consider then
the velocity gradient, L=0v/ dx=FF~! for which we have

L'F=F — L*QF =QF + QF — L* = QLQ" + QQ" . (4.55)

Therefore, L is not an objective tensor and hence if one adopts “The principle of material frame-
indifference” then L cannot be used to formulate physical laws. However, by noting that QQT = T
implies QQT = —QQ7, we immediately conclude that the rate of deformation tensor D is
objective. Many physical theories involve the time rate of change of a tensor, for example a stress
rate. However, it is immediately observed that o is not an objective tensor. To see this, note

that Eq. (4.55) implies QQT=W*—QW QT — Q=W*Q—-QW and write

& =QoQ +Q5Q" +QoQ"
— (W*Q — QW) 0Q" + Q6Q" + Qo ("W — W' Q")

=Wo*+o'W'+Q (6 —Wo—oW")Q". (4.56)
Use now WT = —W to rewrite the last relation as
o+ oW —Wo"=Q(6+cW —Wa)Q" (4.57)
or equivalently as
o+ [ W) =Q (6 + o, W) Q" , (4.58)

where [-] is the commutator of two tensors. This result shows that indeed & is not an objective
tensor, but also suggests that

o=6+0, W] (4.59)

is an objective stress rate tensor. This derivative is called Jaumann derivative and is extensively
used in solid mechanics. It is important to note that there is no unique way to define an objective
tensorial time derivative, and in fact there are infinitely many others (some of which are rather
common). The Jaumann derivative, as well as other objective stress rates, can be used to formulate

physical theories.
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What is the basic status of objectivity? Is it a fundamental principle of classical physics or
is it just a very useful approximation (that, by definition, has limitations)? Since macroscopic
constitutive laws should ultimately result from systematic coarse-graining of microscopic physics,
and since the latter obviously satisfy Newton’s second law, there must exist situations in which
objectivity is violated. In particular, in situations in which centrifugal and Coriolis forces cannot
be neglected at the molecular level, objectivity cannot be fully satisfied. On the other hand,
in many situations this is a very useful approximation that allows us to further constrain the
structure of constitutive laws. So we must conclude that objectivity cannot be a “principle” of
physics, rather an approximation (possibly a very useful /fruitful one).

While objectivity is widely invoked, its basic status has been the subject of many heated
debates. An example from the 1980’s can be found at: Physical Review A 32, 1239 (1985),
and the subsequent comment and reply. See also some insightful comments made by de Gennes,

Physica A 118, 43 (1983).
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Constitutive laws

Up to now we considered measures of deformation and the concept of stress, conservation laws,
the laws of thermodynamics and symmetry principles. These are not enough to describe the
behavior of materials. The missing piece is a physical theory for the response of the material to
external forces, the so-called constitutive relations/laws. To see the mathematical necessity of
constitutive laws, consider the momentum balance equations of (4.17) in 2D, in the quasi-static

limit (no inertia) and neglecting body forces
O0p0yy + 0y0py =0 and 0,0y, + 0yoy, =0 . (4.60)

These are two equations for 3 fields. Additional information about how stresses are related to the
state of deformation of a body is required.

In the rest of the course we will consider physical theories for the behavior of materials. These
must be consistent with the laws of thermodynamics discussed above and to comply with the
principle of objectivity (frame-indifference, in its either weak or strong form). While thermody-
namics, objectivity and symmetry principles seriously limit and constrain physical theories and

are very useful, to understand material behaviors we need additional physical input.

Reversible processes: mnon-dissipative constitutive behav-
1078

The simplest response of a solid to mechanical driving forces is elastic. By elastic we mean
that the response is reversible, i.e. that when the driving forces are removed the system relaxes
back to its original state. Put in other words, elasticity means that the system “remembers” its
undeformed state, which can serve as a reference configuration. Later in the course we will discuss
irreversible deformation processes in which the internal state of a physical system evolves, and no
recovery of the original state is observed when external constraints are removed. When an elastic
system is deformed, energy is being stored in it. Suppose that the deformation is described by
the Green-Lagrange strain measure E, cf. Eq. (3.26), then the elastic energy density is described
by the functional u(E,s). All of the physics of elasticity is encapsulated in this strain-energy

functional.
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V. THE LINEARIZED FIELD THEORY OF ELASTICITY

A. General derivation for anisotropic and isotropic materials

In many situations solids deform only slightly within the range of relevant driving forces. Think,
for example, about your teeth when you eat a nut or about all metal objects around you. This is
true for “hard” solids. However, things are different when we consider “soft” solids like rubbers
(e.g. your car tire), gels or various biological materials (e.g. your skin). While they also deform
elastically, they require a finite deformation description, as will be explained later in the course.

If the deformation remains small, we can focus on situations in which the displacement gradient
is small |[H| < 1 (in fact we also require small rotations, see below). Under these conditions,
we can linearize the Green-Lagrange strain E ~ e = :(H + H”), ¢f. Eq. (3.27), and use only
the infinitesimal strain tensor €. This will make our life much easier (but please do not relax, it
will be still quite tough nonetheless). But there is a price; first, as we already discussed, € is not
rotationally invariant. A corollary of this lack of rotational invariance is that a constitutive law

formulated in terms of € will not be objective. To see this, note that

E*:%(C*—I): (C-I)=E . (5.1)

DN —

That is, E is an objective material tensor, which immediately implies that € is not. So already
in our first discussion of a constitutive relation we violate objectivity. We can easily adhere to it
formally, but the practical price will be high as it will force us to go nonlinear. In a huge range
of problems, though, rotations remain small and € does a remarkable job in properly describing
the relevant physics.

Another great advantage of the linearity assumption is that we should no longer distinguish
between the undeformed X and deformed @ configurations. The reason is that while these
configurations are of course distinct in the presence of deformation, and as the displacements
themselves can be large the difference can be large itself, gradients remain small and all physical
quantities are indistinguishable to linear order. Moreover, the convective term in the material

derivative plays no role as it is intrinsically nonlinear. The linearized strain tensor takes the form

1 8ul 3u]-

and we can also identify € with D. Finally, since in the context of the linearized theory of

elasticity mass density variations are small (the mass density appears only as a multiplicative
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factor in products and hence effectively contributes only to higher orders), we can use quantities
per unit volume rather than quantities per unit mass. In particular, we define pu=u and p s=35,
and for the ease of notation drop the bars.

Under these conditions, the dissipation inequality of the second law of thermodynamics of Eq.
(4.38) reads o:€ — 1+ T $ > 0. To proceed, we express (g, s) in terms of variations in € and s

and substitute in the above inequality to get

(a’—%):é—l—(T—%)éEO. (5.3)

Since elastic response is reversible, we expect an equality to hold. Moreover, the strain and the
entropy can be varied independently. Therefore, the second law analysis implies

ou ou
o= and T:a—s. (5.4)

There is a related, more formal, approach to derive these relations. We focus on (5.3), without
assuming an equality. However, we do note that v and o are independent of €. That is a basic
property of an elastic response: the rate at which a state is reached makes no difference. Therefore,
the only way to avoid violating the inequality under all circumstances is to set the brackets to zero
(the same argument holds for the entropy term). This is termed the Coleman-Noll procedure.

The resulting relations are thermodynamic identities that are derived from the second law
of thermodynamics. The first one says that the stress o is thermodynamically conjugate to the
strain €. The strain energy functional takes the form (we assume that the entropy does not change
with deformation and hence is irrelevant here)

1
u = 5 Oij €ij » (55>

where linearity implies a tensorial linear relation between the stress and the strain & = Ce (also
explaining the appearance of 1/2 in the expression above for the strain energy density) or in
components
Oij = Uijki€ki - (5.6)
The response coefficients, Cjx, known as the elastic constants (the forth order tensor C' is known
as the stiffness tensor), are given by
0%u

C; ikl — -
" 8€ija6kl

(5.7)

Equation (5.6) is a constitutive relation, i.e. a relation between the stress (driving force) and the

strain (response), which is a generalization of Hooke’s relation for an elastic spring (F = —k x).
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How many independent numbers are needed to describe C'7 Naively, one would think that
3* = 81 independent numbers are needed. However, C possesses various general symmetries that
significantly reduce the amount of independent numbers, even before considering any specific
material symmetries. First, the symmetry of the Cauchy stress tensor implies, through Eq. (5.6),
that
Cijri = Cjin - (5.8)
Furthermore, the symmetry of the infinitesimal strain tensor, € = 7, implies

Cijit = Cijik - (5.9)

These two symmetries imply that we need only 36 independent numbers (6 for the first two
indices and 6 for the last two). Furthermore, since C' is obtained through a second-order tensorial
derivative of the energy density u, see Eq. (5.7), interchanging the order of differentiation suggests
an additional symmetry of the form

Cijit = Chiij - (5.10)

The latter imposes 15 additional constraints (%), which leaves us with 21 independent numbers.
Therefore, in the most general case C' contains 21 independent elastic coefficients (in fact, C' can
be represented as a 6 by 6 symmetric matrix — which depends on 21 independent numbers —,
where the components of o and € are represented as vectors with 6 components).

This is the extreme anisotropic case. However, usually materials exhibit some symmetries that
further reduce the number of independent elastic constants. For example, composite materials (e.g.
fiberglass, a glass-fiber reinforced plastic) may be invariant with respect to various translations
and rotations. Here we focus on isotropic materials. Since the energy functional is a scalar, it
depends only on invariants of €, which can be written as tre, tre? and tre® (sometimes people

use other invariants that are linearly dependent on these). Since in a linear theory the energy

must be quadratic in the strain, only two combinations, (tre)? and tre?, can appear and hence
A 2 2
u(e) = §(tr€) +ptre” . (5.11)

It is important to note that we can replace € by E in this energy functional to obtain the simplest

possible nonlinear elastic material model

u(E) = %(tr E¥ +putrE*. (5.12)

This constitutive law, termed the Saint Venant-Kirchhoff material model, is both rotationally

invariant and objective. Alas, it is also nonlinear due to the inherent geometric nonlinearity in
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E. This constitutive law is the simplest nonlinear elastic model because it is constitutively linear,
i.e. u(FE) is quadratic in E, but is geometrically nonlinear (due to the nonlinear dependence of E
on H). Here we adhere to a constitutive law which is linear in H, and hence use Eq. (5.11).
Equation (5.11) shows that isotropic linear elastic materials are characterized by only two
elastic constants, the Lamé constants. p is also known as the shear modulus (can we say something
about the sign of A\ and u at this stage?). Using the following differential tensorial relation

d trA™

T =n(A™HT | (5.13)

the constitutive law (Hooke’s law) can be readily obtained
oc=MNtrel +2ue (5.14)

or in components

Oij = Ner Ogj + 20845 (5.15)

The stiffness tensor can be written as Cjjp = A0, + p(ikdj; + 050,1). It is important to stress
that Hooke’s law is simply a perturbation theory based on a gradient expansion. This is entirely
analogous to the constitutive law for Newtonian fluids, which is based on a velocity gradient
expansion (p in Hooke’s law plays the role of shear viscosity and A the role of bulk viscosity).
Let us first consider a few homogeneous deformation situations. Consider a solid that is strained
uniaxially (say in the x-direction) by an amount ¢,, = €. The stress state of the solid is described
by 0., = o and all of the other components vanish (because the lateral boundaries are free).
Symmetry implies that the strain response is €;; = 0 for ¢ # j and ¢,y = €., = €,. Our goal is to

calculate the response o and £, in terms of the driving €. Using Eq. (5.15) we obtain
0=Ae+2e,)+2ue; and o= Ae+2e,)+ 2ue . (5.16)

Solving for the response functions o(¢) and €, (¢) we obtain

A 3N +2
£l =————c=—-ve and a:u

=Fe. 5.17
2\ + 1) A o 0F (5.17)

E is known as Young’s modulus and v as Poisson’s ratio. These response coefficients are most
easily measured experimentally and are therefore extensively used. In many cases, Hooke’s law is
expressed in terms of them (derive). The latter analysis immediately tells us something about v

in a certain limit.
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Let us then consider an isotropic compression of a solid. In this case we have 0,, = 0,y =
0., = —p, where p is the hydrostatic pressure, and ¢,, = £,, = ¢,, = ¢ (all other components of

the stress and strain tensors vanish). We then have

_3A+ 2
3

tre= K tre . (5.18)

Noting that the relative change in volume is given by 0V/V =det F — 1 = (1 4 €,,)(1 + €,,) (1 +
€..) — 1 ~ tre, we see that K is the bulk modulus, which we are already familiar with from

thermodynamics, K = —V0dp/0V. Using the bulk modulus we can express the energy functional
of Eq. (5.11) as

1 1 2
U(E) = §K(t1‘ 5)2 + )2 <5ij — g tr 6(5@‘) . (519)

The components in the second brackets are the components of the deviatoric strain tensor, €% =

e — trel /3, where tre?” = 0. The representation in Eq. (5.19) shows that the total strain
energy can be associated with a deviatoric (shear-like) part, weighted by the shear modulus
i, and a volumetric (dilatational) part, weighted by the bulk modulus K. Another important
implication of this representation is that g and K multiply terms which are positive definite and
independently variable. The importance of this observation is that thermodynamics implies that
at (stable) equilibrium the (free) energy attains a minimum and hence u must be positive under
all circumstances. Since the deformation can be either volume conserving, tre = 0, or isotropic,
e «x I, we must have

K >0, (5.20)

This has interesting implications for other elastic constants. For example, it tells us that A >
—241/3, which shows that A is not necessarily positive. Taking the two extreme cases, A = —2/3

and A > u, we obtain the following constraint on Poisson’s ratio

—1<v< . (5.21)

N | —

Therefore, while a negative v might appear unintuitive (as it implies that a solid expands in the
directions orthogonal to the uniaxial stretch direction), it does not violate any law of physics. An
example for a natural material with a Poisson’s ratio of nearly zero is cork, used as a stopper for
wine bottles.

In the last few decades there has been an enormous interest in materials with unusual values
of Poisson’s ratio. In particular, materials with a negative Poisson’s ratio were synthesized, see

the review article in Nature Materials, “Poisson’s ratio and modern materials”, Nature Materials
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10, 823-837 (2011) (see http://www.nature.com/nmat/journal/v10/n11/pdf/nmat3134.pdf).
You may also want to look at: http://silver.neep.wisc.edu/~lakes/Poisson.html. Such
materials are a subset of a larger class of materials known as “Metamaterials”. Metamaterials are
artificial materials designed to provide properties which may not be readily available in nature,
and can be very interesting and useful.

The power and limitations of the continuum assumption can be nicely illustrated through
a discussion of the evolution of the concept of Poisson’s ratio, from Poisson’s original paper
in 1827, which based on the molecular hypothesis, through the subsequent development based
on the competing continuum hypothesis, to the explosion of research in this direction in recent
decades based on a better microscopic/mesoscopic understanding of the structure of materials
and computational capabilities.

The upper bound for v also have a clear physical meaning. In a uniaxial test we have
tre = (1 —2v)e, (5.22)

which immediately tells us that incompressible materials, i.e. materials for which tre = 0, have
v = 1/2. In fact, the incompressibility limit is a bit subtle. To see this, recall Eq. (5.18),
—p = K tre. Obviously, a finite pressure can be applied to an incompressible material. This
means that in the incompressibility limit we have tre — 0 and K — oo, while their product is
finite. It is also clear that no work is invested in applying a pressure to an incompressible material
and no energy is being stored. Indeed, in the incompressibility limit we have K (tre)? — 0. Note
also that while K oc (1 — 2v)~! diverges in the incompressibility limit, the shear modulus p and
Young’s modulus F remain finite. Finally, we stress that the bounds on Poisson’s ratio in Eq.
(5.21) are valid for isotropic materials. Anisotropic materials can, and actually do, violate these
bounds.

Before we move on to derive the equations of motion for a linear elastic solid, we note a few
properties of the linearized (infinitesimal) strain tensor e. First, as we stressed several times above,
it is not invariant under finite rotations (prove). That means that even if the relative distance
change between material points remains small, € cannot be used when rotations are not small. In
that sense it is not a true strain measure. Second, the components of € are not independent. The
reason for this is that e is derived from a continuously differentiable displacement field w. The
resulting relations between the different components of €, ensuring that the different parts of a
material fit together after deformation, are termed “compatibility conditions”. In 3D there are 6

such conditions, making a problem formulated in terms of strain components very complicated,


http://www.nature.com/nmat/journal/v10/n11/pdf/nmat3134.pdf
http://silver.neep.wisc.edu/~lakes/Poisson.html
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and in 2D there is only one compatibility condition, which reads
OyyEzz + OpzEyy = 200yE0y - (5.23)

Finally, note that compatibility is automatically satisfied if the displacement field is used directly.
The equation of motion describing linear elastic solids is readily obtained by substituting the
constitutive relation (Hooke’s law) of Eq. (5.15) into the momentum balance equation of (4.17),

taking the form

A+ )V (V- u)+uViu+b=pdyu . (5.24)

It is called the Navier-Lamé equation. It accounts for a huge range of physical phenomena and
can easily serve as the basis for a two-semester course. In spite of its linearity, its solutions in 3D
and/or under dynamic situations might be very complicated and require (sometimes non-trivial)
numerical methods.

There are, however, many situations in which analytical tools can be employed. One typical
situation is when we are not interested in the exact solution, with all the n’s 2’s etc., but rather
in the way the solution depends on the material’s parameters, loading and geometry of a given
problem. In this case we invoke everything we have at hand: physical considerations, symmetries,
dimensional analysis etc. Let us demonstrate this in two examples (both are fully analytically

tractable, but they will serve our purpose here).

Ezxample: Surface Green’s function

Consider a linear elastic, isotropic, half-space which is loaded at the flat surface by a concen-
trated force. We assume that the force is applied to an area which is small compared to the
scales of interest (this will be a recurring theme later in the course), hence the pressure at the
surface (z = 0) takes the form p,(z,y,2z =0) = F.0(z)d(y), where the x — y plane is parallel
to the surface and z is perpendicular to it (note that p, = —o,,). Focus then on the shape of
the deformed (originally flat) surface, i.e. on u,(x,y,2=0). What form can it take? First, the
azimuthal symmetry of the force with respect to the surface, implies that u, depends on z and y
only through the radius r. Second, linearity implies that it must be proportional to F,. Finally,
since F), has the dimension of force and u, has the dimension of length, we need another quantity

that involves force dimension. The only quantity available in the problem is the elastic modulus
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E (or p). Put all these ingredients together, we must have

F,
Er’

(5.25)

u,(r,z=0) ~

This gives us the shape of the deformed surface. Note that since there is no lengthscale in the
problem, the shape is scale-free. Of course the singularity at » — 0 is not physical, it simply
means that as we approach the applied force the details of how it is applied, as well as material
nonlinearities, matter and actually regularize the singularity. If we compare our result to the
exact one we discover that we indeed only missed a prefactor of order unity, which takes the
form (1 —v?)/m. Since we have considered a concentrated force, our result is valid for any surface
pressure distribution, i.e. we have a calculated a Green’s function. Therefore, for a general surface
pressure distribution p,(z,y,z = 0), we have

1—v2 [ p.(a,y,z=0)da'dy
B ) e —aP -y

uy(z,y,2=0) = (5.26)

Example: Hertzian contact

Consider a linear elastic sphere of radius R that is pressed against an infinitely rigid plane
by a force F. This problem was considered (and solved) by Hertz in 1882 and is known as the
Hertzian contact problem (in fact, Hertz considered two deforming spheres). It signaled the birth
of contact mechanics and is of enormous importance and range of applications. These span the
full range from friction and tribology of small structures, through earthquakes in the earth crust
to rubble piles in the solar system. In order to get the essence of Hertz’s solution without actually
solving the partial differential equations we need a physical insight, a geometrical insight and a
constitutive relation. Denote the distance by which the sphere approaches the plane by 6 and
the radius of the circular contact that is formed by a. The crucial physical question to ask (and
to answer, of course) is what the typical lengthscale of the strain distribution is. Since strains
are built in the sphere only because of the formed contact, we expect the strain distribution to
be concentrated on a scale a (where the rest of the sphere responds essentially in a rigid body
manner). Therefore, the displacement ¢ is accumulated on a scale a near the surface and the
typical strain is 5

~ = 0.27
et (527)

This is the physical insight we needed. The geometrical observation is simple and reads

a® ~ R, (5.28)
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i.e. for a given displacement § the contact area is linear in the sphere’s radius R (to see this simply
cut from the bottom of a sphere of radius R a piece of height § and estimate the cut area). Note
also that the last equation implies that a < R since § is small. Using the constitutive relation,
Hooke’s law, we have

F Eé

a a

where pg is a typical pressure. Using the last two equations, we can calculate the 3 relevant

“response” functions a(F; R, E), 6(F; R, E) and po(F; R, E) to be

FR 1/3 P2 1/3 FE2 1/3
a ~ (F) s 5 ~ (—REZ) s pO ~ ( R2 ) . (530)

Therefore, we manage to express the response quantities in terms of the driving force (F'), geom-

etry (R) and constitutive parameters (E). These players (i.e. the driving forces, geometry and
constitutive relations) are generic players in our game. Comparing the resulting expressions above
to the exact ones indeed shows that they are correct to within numerical constants of order unity.
These results are rather striking. How come a linear theory gave rise to a nonlinear response, i.e.
a nonlinear dependence of the response quantities on the driving force F'? The answer is that
nonlinearities were hidden in the geometry of the problem. In other words, the fact that the con-
tact area is a variable that depends self-consistently on the deformation, but is unknown a priori,
makes the problem effectively nonlinear. Contact problems are highly nonlinear even within the
framework of a linear elastic field theory. As a final comment, we note that py represents the
pressure at the center of the contact. The pressure must drop to zero at the contact line, r=a (r

is measured from the center). The result (not derived here) reads

p(r,z=0) =po\/1 - =, (5.31)

where z=0 is the location of the rigid plane. This shows that while the pressure is continuous at

the contact line, its derivative is not.

Before we consider further simplifications of the Navier-Lamé equation of (5.24), let us explore
some of their general properties. For that purpose, recall the identity Vu=V(V-u)—-V x (V xu).
Applying it to the Navier-Lamé Eq. (5.24), in the absence of body forces (b = 0) and under

equilibrium (static) conditions (no inertia), we obtain

A+2)V(V-u) —puV x (Vxu)=0. (5.32)
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Acting with the divergence operator on this equation, we obtain
V2(V-u)=0, (5.33)

since V- (V x A) = 0 for any vector field A. This shows that under equilibrium (static) conditions
V -u satisfies Laplace’s equation, i.e. it is harmonic. Operating then with the Laplacian operator

on the Navier-Lamé Eq. (5.24), we obtain
ViV2u =0, (5.34)

i.e. under equilibrium (static) conditions u satisfies bi-Laplace’s equation, i.e. it is a bi-harmonic

vector field. These results are useful in various contexts.

B. 2D Elasticity

We now turn to discuss further simplifications of the Navier-Lamé Eq. (5.24). In many

situations the dynamics of a linear elastic body can be approximated as two-dimensional.

1. Scalar elasticity

The simplest possible such situation is when the only non-vanishing component of the displace-
ment field is given by u,(z,y). This physical situation is termed anti-plane deformation. In this

case, the Navier-Lamé Eq. (5.24) reduces to
,uV2uZ = pattuz y (535)

which is a scalar wave equation. ¢ = \/u/p is the shear wave speed. Let us focus first on static

situations in which this equation reduces to
Vu, =0, (5.36)

i.e. u, satisfies Laplace’s equation (a harmonic function). Laplace’s equation emerges in many
branches of physics (electrostatics, fluid mechanics etc.). The theory of complex variable functions
offers very powerful tools to solve 2D problems. We first discuss this approach for Laplace’s
equation in (5.36). Let us first briefly recall some fundamentals of complex functions theory. Let

z be a complex variable, z = x +iy. A function f(z) is called analytic if it satisfies

0:f(2) = ['(2) and 0,f(z) =if'(2) . (5.37)
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Writing f(z) as f(z) = u(x,y) + iv(z,y), Eq. (5.37) implies
['(2) = 0. f(2) = Opu + 10,0 = —i0y f(2) = Ov — idyu , (5.38)
leading to the well-known Cauchy-Riemann conditions
O,u= 0y, and 0,v=—0yu . (5.39)
Eq. (5.37) also implies the following operator relation
1 .
0, = 5(835 —10,) . (5.40)
Recalling that the complex conjugate of z is Z = x — iy, we also have
1 .
0; = 5(% +1i0y) . (5.41)

Any complex function f(z,y) can be represented as f(x,y) = g(z,2z). Therefore, an analytic
function is a function that is independent of Z. This observation immediately shows that any
analytic function is a solution of Laplace’s equation, e.g. the one in (5.36). To see this we note
that

V? = 04y + 0, = 40.0: . (5.42)

Therefore,
us(z,y) = Rf(2)] or w.(z,y) =S[f(2)], (5.43)

where f(z) is sometimes called a complex potential (note the analogy with electric potential in
electrostatics). Choosing the real or imaginary part is a matter of convenience. The specific
solution f(z) is selected so as to satisfy a specific set of boundary conditions. The stress tensor

(in this case only the 0., and 0., components do not vanish) is given by (prove)
Oy + 102 = pf'(2) (5.44)

when one chooses u,(z,y) = S[f(2)].

Example: Screw dislocations

Later in the course we will work out a more complicated example of how these powerful tools
help us solving important problems. Here we would like to consider a simple example. For that aim

we introduce an object called a “dislocation”. Dislocations will appear later in the course as the
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carriers of plastic deformation in crystalline and polycrystalline materials, and are very important
and interesting objects. For our purposes here we define a dislocation as a continuum object that
carries with it a topological charge and focus only on the static linear elastic consequences. By
“topological charge” we mean that if we integrate the displacement field in a close loop around
the dislocation core (where we define the origin of our coordinate system) we obtain a finite value,
ie.

jf du, =b . (5.45)

This implies the existence of a branch cut. The magnitude of the topological charge, b, is the size
of the so-called Burgers vector b, b= |b| (named after the Dutch physicist Jan Burgers, who is
also known for the famous fluid mechanics equation). In this case we have b=02. Note that a
dislocation is a line (and not a point) defect, which extends along the z-direction. Translation
symmetry along this direction allows for a 2D treatment. Obviously, the generation of a dislocation
is neither a linear process, nor an elastic one. Still, once it exists, we can ask ourselves what the
linear elastic fields generated by the topological charge are. The field equation is (5.36) and the
boundary condition is given by Eq. (5.45). The stress must vanish far away from the topological
charge that generates it. As noted above, the boundary condition implies the existence of a
branch cut. Linearity implies that u, ~ b. We can meet all of these constraints and solve the field
equation by choosing
b bo

— _ Cx -
u, = 27T\s[log 2] o (5.46)

Recall that log z = log(re®) =logr + if. This is a solution because log z has the proper branch

cut, it is analytic outside the branch cut and it satisfies

]{duzzi/ dg =5 . (5.47)
2 ) .

_ ub x —aiy b
z x — S ~ — . 5.48
Oy + 10 27rx2+y2 . ( )

Using Eq. (5.44) we obtain

Such a dislocation is known as a screw dislocation. As we said above, dislocations are very
interesting objects. Here, by looking at the linear elastic consequences of dislocations, we already
see one aspect of it. The linear elastic stress field diverges as 1/r near the core of a dislocation.
The size of the Burgers vector b is atomic (typically a lattice spacing). The linear elastic solution
is valid at distances larger than the dislocation core, whose size ¢ is typically of the order of a
few atomic spacings. The detailed structure of the topological defect within the core regularizes

the linear elastic divergence. What happens at large distances? The stress (and strain) fields of
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a dislocation decay very slowly in space, an observation that has profound consequences. To see

this, let us calculate the energy of a single dislocation (per unit length in the z-direction)

R 1 R d
U= /udxdy = / §0ij5ijrdrd6 ~ ubZ/ % = ub?®log (5) : (5.49)
. e T c

where R is the macroscopic size of the system. We see that the energy of a single dislocation
diverges logarithmically with the size of the system. That means that when many dislocations
are present (a number to bear in mind for a strongly deformed metal is 10"m~2), they are
strongly interacting. Dislocations are amongst the most strongly interacting objects in nature. In
addition, they are also amongst the most dissipative objects we know of, but that has to do with

their motion, which we did not consider here.

2. Conformal invariance

Many equations of mathematical physics possess an important and very useful property called
conformal invariance. A conformal transformation/mapping between the complex planes w and z
is defined as

z=d(w), (5.50)

where ®(w) is an analytic function with a non-vanishing derivative, i.e. ®'(w) # 0. Conformal
means (nearly literally) angle-preserving. To see this consider an infinitesimal line element in the

w-plane, dw, and its image in the z-plane, dz. They are related by
dz =¥ (w)dw . (5.51)

However,

(W) = |P' (w)]el2mel®’ @) (5.52)

which means that every two infinitesimal line elements dw going through the point wy are mapped
into their images dz going through zo = ®(wy) by a common expansion/contraction (determined
by |®'(wp)|) and a common rotation (determined by the angle arg [®'(wp)]). Therefore, the relative
angle between them is preserved.

If a field equation is invariant under such a conformal transformation/mapping, then we can
solve a given problem in a simple domain and immediately get the answer for a (more) complicated
domain by a suitably chosen conformal transformation. This is a powerful mathematical tool. An

example for a conformally invariant field equation is Laplace’s equation in (5.36). To show this
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we need to prove that any solution f(z) of Laplace’s equation in the z-plane remains a solution
in the w-plane under a conformal transformation g(w) = f(®(w)). For this particular equation
this is automatically satisfied since g(w) is also an analytic function (because it is a composition
of two harmonic functions). However, it would be useful to see how it works. First, note that we

have

0uf(®(w)) = ¥ (w)0.f(2) , (5.53)

ie. 0, = ®'(w)0,, which immediately implies 0, = ®'(w)d;. We then have

020, f(P(w)) = 05 [®'(w)0. f(2)] =
0.f(2)05®" (W) + @' (w)0p0.f(2) = | (w)[?0:0.f(2) =0 . (5.54)

Therefore,

0.0, f(®(w)) =0, (5.55)

which proves the conformal invariance of Laplace’s equation. Later in the course we will use this
result in the context of fracture mechanics. It is important to note that conformal invariance is
a property of partial differential equations, not of differential operators. In the above example,
the differential operator was not invariant, i.e. 9,0, = |®'(w)[?0:0., but the equation is. This,
for instance, immediately implies that the Helmholtz equation, V?u + « = 0 is not conformally
invariant. Finally, recall that a differential equation is also defined by its boundary conditions,
which should be conformally invariant as well. For Dirichlet (v = const.) or Neumann (n -
Vu=0) boundary conditions this is satisfied, but other boundary conditions make things more

complicated.

3. In-plane elasticity, Airy stress function

The Navier-Lamé Eq. (5.24) can be also reduced to 2D under in-plane deformation conditions.
There are two possibilities here, one called “plane-stress” and the other one “plane-strain”. To
see how it is done, let us explicitly write Hooke’s law in Eq. (5.15) in terms of E and v. As was

noted above, the stiffness tensor C' in the relation o = C'e can be represented as a 6 by 6 matrix
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such that
Oa l—v v v 0 0 0 Exz
Oyy v 1l—-v v 0 0 0 Eyy
Oz _ E v v 1—v 0 0 0 €2z (5.56)
o, | A+VA=20) 0 0 0 1-2 0 0 €2y
Orp 0 0 0 0 1-2v 0 €z
Oy 0 0 0 0 0 1—2v Exy

We can invert this relation into the form € = So, where § = C~! is the compliance tensor (if you
noticed that C is called the stiffness tensor and S is called the compliance tensor and wondered
about it, this is not a mistake and there is no intention to confuse you. It is a long-time convention

that cannot be reverted anymore). We write the last relation explicitly as

Eyy v 1 —v 0 0 0 Oyy

€2z o 1 —v —v 1 0 0 0 O, (5 57)
e ElO 0 014y 0 0 Oy '
Ern O O 0 0 1 + 14 0 Oz

Exy 0O 0 O 0 0 1+4+v Oy

We are now ready to perform the reduction to 2D.

Plane-stress

We first consider objects that are thin in one dimension, say z, and are deformed in the xy-
plane. What happens in the z-direction? Since the two planes z = 0 and z = h (where h is the
thickness which is much smaller than any other lengthscale in the problem) are traction-free, we
approximate o,, = 0 everywhere (an approximation that becomes better and better as h — 0).

Similarly, we have o,, = 0., = 0. We can therefore set 0,, = 0,, = 0,, = 0 in Eq. (5.57) to

obtain
1
Eyy | = | 1 0 Tyy (5.58)
Exy 0 0 1+v Oy
and
v
€2:(2,y) = — 5 (00 (2, y) + 0y (T, 9)] - (5.59)

E
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To obtain the plane-stress analog of the Navier-Lamé Eq. (5.24) we need to invert Eq. (5.58),

obtaining
Orx 1 v 0 Exx
E
oy | =72 |v 1 O Eyy | (5.60)
Ty 001—-v Exy

which can not be simply obtained from Eq. (5.56) by removing columns and rows. We can now
substitute the last relation in the 2D momentum balance equation V - o = pdyu (we stress again
that o and w are already 2D here). The resulting 2D equation reads

vE n E
1—v2 2(1+v)

] V(V-u)+ { ] Viu = poyu (5.61)

2(1+v)
which is identical in form to the Navier-Lamé Eq. (5.24) simply with a renormalized A

~ vE 2vp 2\

1—v2 1—v A+2u (562)
The shear modulus p remains unchanged
e = — (5.63)
TSI '

Finally, we can substitute 0., (z,y) and oy, (z,y) inside Eq. (5.59) to obtain ¢,.(x,y). Note that

u,(z,y,2) = €..(x,y)z is linear in z.
Plane-strain
We now consider objects that are very thick in one dimension, say z, and are deformed in

the xy-plane with no z dependence. These physical conditions are termed plane-strain and are

characterized by €,, = €., = €, = 0. Eliminating these components from Eq. (5.56) we obtain

fo l—v v 0 €z
Tw | T (1 u)ﬁ Bl Fvy (5.64)
Oy 0 0 1-2v Eay
and
7(0.9) = T =gy o) + el (5.65)

We can now substitute Eq. (5.64) in the 2D momentum balance equation V - & = pdyu (where

again o and u are 2D). The resulting 2D equation is identical to the Navier-Lamé Eq. (5.24),
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both in form and in the elastic constants. With the solution at hand, we can use Eq. (5.65) to

calculate 0,.(x,y). Finally, we note that Eq. (5.64) can be inverted to

[ 1—-v —v 0 Ora

14+v
fw | =T F —v 1=v 0| |oy]| (5.66)
Exy 0 0 1 Oy

which can not be simply obtained from Eq. (5.57) by eliminating columns and rows. Using the

last relation we can rewrite Eq. (5.65) as

022(2,y) = V00 (2,y) + oy (2, 9)] - (5.67)

In summary, we see that in both plane-stress and plane-strain cases we can work with 2D
objects instead of their 3D counterparts, which is a significant simplification. One has, though,

to be careful with the elastic constants as explained above.

Airy stress function (potential)

Focus now on 2D static deformation conditions (either plane-stress or plane-strain) and write

down the momentum balance equations under static conditions
OpOuy + O0y0zy =0 and 0,0y, + 00y, =0 . (5.68)
These equations are automatically satisfied if o is derived from a scalar potential x following
Opw = OyyX, Ozy = —OpyX, Oyy = OpzX . (5.69)
x is called Airy stress potential. This implies
Ope + Oy = V72X . (5.70)

What a differential equation does x satisfy? Obviously up to now we did not use the fact that we
are talking about a linear elastic solid (we just used linear momentum balance). To incorporate

the linear elastic nature of the problem we use Hooke’s law, which implies
Opz + 0y =troxtre=V-u. (5.71)

However, we already proved that V - w is harmonic under static conditions (cf. Eq. (5.33)),

leading to V*(0,s + 0,,) = 0, which in turn implies

V2Vix =0. (5.72)



52

Therefore, x satisfies the bi-Laplace equation, i.e. it is a bi-harmonic function.

Example: Cylindrical cavity

Consider a large linear elastic solid containing a cylindrical hole of radius R under uniform
radial tensile loading 0 far away (plane-strain conditions). The hole can be regarded as a defect
inside a perfect solid. What is the emerging stress field? What can we learn from it? First, the

geometry of the problem suggests we should work in polar coordinates (derive)

Or  Ogo Or  Opo B
(&»T + 7 + T’_2) (arr + 7 + T_2> X(T7 9) =0 (5'73)
and
Oprr = aTX + 80_02)(7 org = —0, (aG_X) y 009 — aT‘TX . (574)
r T T

Furthermore, azimuthal symmetry implies 0,y = 0 and no 6-dependence. Moreover, since the
only lengthscale in the problem is R, we expect the result to be a function of /R alone. Finally,
linearity implies that o, and gy are proportional to ¢°°. We should now look for #-independent

solutions of the bi-harmonic equation of (5.72) with the following boundary conditions
o(r=R)=0 and o..(r—o0)=0. (5.75)

The #-independent solutions of Eq. (5.73) are r?, logr and r?logr (show that x(r,8)=¢o(r,0)+
&1(r, 0)1 cos O+¢s(r, 0)r sin O+¢3(r, 0)r? is the general solution of the bi-harmonic equation, where
{¢s(r,0)} are harmonic). The r?logr solution gives rise to a logarithmically diverging stress as

r — oo, and hence should be excluded here. We therefore have
x(r) = alogr + br? . (5.76)
Satisfying the boundary conditions implies that a=—0> R? and b=0>/2, leading to

R? R?
Opp = 0 (1 — ﬁ) , Ogg =0 (1 + 7“_2) ) (5.77)

Note that ogp at the surface of the cylinder, which tends to break the material apart, is two
times larger than ¢°. This (mild) amplification factor is a generic property of defects which
plays a crucial role in determining the strength of solids. We will discuss this later in the course

when dealing with failure. Another interesting feature of the solution is that ogg+ 0, is a constant.



93

Complex variable methods are applicable to Eq. (5.72) as well. We first rewrite it in terms of

complex differential operators as

It is obvious that analytic functions are solutions of this equation. However, there are more
solutions because of the appearance of another derivative with respect to z. In fact it is clear that
Zf(z), where f(z) is an analytic function, is also a solution. As no other solutions can be found,
the most general solution of the bi-Laplace equation is given in terms of two analytic functions
f(2) and g(2) as

x =R[z2f(2) +g(2)] - (5.79)
Of course the imaginary part can be used as well. It is important to understand that while this
solution is given in terms of analytic function it is by itself not an analytic function. The reason
is obvious: it depends on z. The stress tensor can be easily derived using complex derivatives,

yielding (derive)

Ore + 0y = AR[F(2)] (5.80)
Oyy — Oz + 2004, =2[Z2f"(2) + ¢"(2)] . (5.81)

Finally, we note that while the bi-Laplace equation is not conformally invariant (prove), conformal

methods are useful for its solution.

C. Elastic waves

Up to now we did not discuss dynamic phenomena. However, the most basic solutions of the
Navier-Lamé Eq. (5.24) are dynamic and well-known to you from everyday life: elastic waves.
This might appear strange at first sight because the Navier-Lamé Eq. (5.24) does not take the
form of an ordinary wave equation. The reason will become clear soon. The first step to address
this question would be to decompose the general displacement field w into a curl-free component

and a divergence-free component (Helmholtz decomposition)
u=Vo+V x, (5.82)

where ¢ and 1 are scalar and vector displacement potentials, respectively. Recall that V-(V x) =
0 and V x (V¢) = 0. Note that the vector potential features a gauge freedom, i.e. ¢ — ¥ + Vo
with a scalar field ¢ leaves u unchanged. A common gauge choice is V -9 = 0 (e.g. as adopted

in seismology). In 2D, it can be satisfied by choosing ¥ =1, 2.
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Substituting Eq. (5.82) into the Navier-Lamé Eq. (5.24), we obtain
V (A +21) V3¢ — pdyd] + V x [uV?h — pdytp] =0 . (5.83)

Using the analogy of this equation with Eq. (5.82) we see that each term in the square bracket
should vanish independently, yielding

03V2¢ = &tgb and CgVQ'l,b = 8”'1,0 s (584)

1/A 2 (5.85)

are the dilatational (longitudinal, sound) and shear wave speeds, respectively. Linear elastody-

where

namics is therefore characterized by two different wave equations with two different wave speeds,
cq > cs (recall that A > —24/3, which implies A+2p > 4u/3 > ). In that sense, while this theory
shares various features with electrodynamics (electromagnetism), it is more complicated because
of the presence of two wave speeds instead of one (the speed of light). It is also important to note
that while the two wave equations in (5.84) are independent inside the bulk of the solid, they
are coupled on the boundaries, which of course makes things more complicated (we will see this
explicitly when discussing fracture later in the course). Finally, note that there exist also surface
(Rayleigh) waves whose propagation velocity cg is different from both ¢y and ¢4. In general, we
have cgp < ¢ < ¢y.

How do we actually know that ¢, corresponds to shear waves and ¢y to dilatational waves?
This is implicit in the fact that the latter are curl-free and the former are divergence-free, but can
we find more explicit distinguishing features? To that aim, consider plane-wave solutions of the

form

u=g(x-n—-cta, (5.86)

where m is the propagation direction, a is the direction of the displacement and |n| = |a|] = 1.

Substituting this expression into the Navier-Lamé Eq. (5.24), we obtain (see tutorial)
(=) a-n)n+(—-ca=0. (5.87)

There are two independent solutions to this equation; either ¢ = ¢, and @ - n = 0 or ¢ = ¢4 and
a-n = +1 (recall that both n and a are unit vectors). Therefore, shear waves are polarized such

that the displacement is always orthogonal to the propagation direction and dilatational waves
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are polarized such that the displacement is parallel to the propagation direction.
Dilatational (pressure/density) waves in fluids and solids

Let us briefly discuss the difference between dilatational (pressure/density) waves in fluids and
solids. Since we consider linear waves we can neglect convective nonlinearities and hence the

momentum balance equation for both fluids and solids reads
pov=V-o. (5.88)

The difference stems from the different constitutive laws that relate the stress tensor o to particles

motions. To see this, we use Eq. (5.19) to write Hooke’s law as
1
o=Ktrel +2u (s—gtrsI) : (5.89)

For a fluid we have p =0, i.e. fluids cannot sustain shear stresses at all (note that since we
focus on non-dissipative waves we exclude viscous stresses here). Consider then small density

perturbations, p = po + dp, such that
tre=—=——. (5.90)

Therefore, to linear order in density perturbations the momentum balance equation for fluids

reads

K
poﬁtv = —%V,O . (591)

Operating with the divergence operator on both sides of this equation we obtain

K
00OV - v = —p—Vzp . (5.92)
0

Finally, linearizing the mass conservation equation of (4.5)

Op+ poV-v=0, (5.93)
we obtain
K
@tp = —V2,0 . (594)
Po

Therefore, the speed of sound (dilatational /desnity/pressure waves) in fluids is /K /py. What

happens in solids? One may naively think that even though solids feature a finite shear modulus



96

1, the combination € — %tr el — which describes shear deformation — does not contribute to

dilatational waves. This is wrong. In fact, we have
1 2 1
V-(z—:—gtrsI>:§Vtre—§Vx(qu) : (5.95)

Using this result in the momentum balance equation (through Hooke’s law) and operating with

the divergence operator on both sides we obtain
Ap 2
poatv o= K+ ? Vitre . (596)

Following the steps as in the fluid case, we immediately see that the speed of sound in solids is

K+

PR which is of course identical to the result obtained in Eq. (5.85) since K +%“ = A 2pu.

We thus conclude that the shear modulus contributes to the speed of sound in solids, which is

different from the speed of sound in fluids.
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VI. THE LINEARIZED FIELD THEORY OF THERMO-ELASTICITY

What happens when additional fields play a role? Up to now we did not consider explicitly the
role of temperature. We know that ordinary solids expand when heated. Therefore, we expect
that differential heating, i.e. temperature gradients, would give rise to nontrivial thermal stresses.
Such processes are important in a wide range of physical systems, from heat engines, through
blood vessels to the deformation of the earth. In situations in which the temperature T plays a
role, the relevant thermodynamic potential is the Helmholtz free energy, which is obtained by a

Legendre transformation of the internal energy
f(e,T)=u(e,T)—Ts(e,T) . (6.1)
Therefore, the second law of thermodynamics (dissipation inequality) in Eq. (4.38) reads
ogé—f—sT>0, (6.2)

where we identified D=¢. Using the chain rule to express f, we obtain

(a—%):e‘—(ﬁg—;)Tzo. (6.3)

Since elastic response in reversible, we expect an equality to hold. Moreover, the strain and the

temperature can be varied independently. Therefore, the second law analysis implies

a:% and s ﬁ

= — . 4
Oe or (6:4)

These relations are the macro-canonical counterparts of Eqgs. (5.4). What form then f(e,T) can
take within a linear theory? Obviously the temperature independent terms in Eq. (5.11) still
appear. To couple temperature variations to deformation we need to construct a scalar, which
within a linear theory must take the form (7' —Tj) tre (where Tj is some reference temperature).

Therefore, f(e,T') takes the form

f(e.T) = %K(m)? +u (% _ %tr s(sl-j) ~ Kap (T —Ty) tre + fo(T) , (6.5)

where the physical meaning of ar will become clear soon and fy(7) is a temperature dependent

function that plays no role here. The constitutive relation reads

1
045 = —KOéT (T — To) 51']' + K tr 861']' + 2#(52']' — 5 tr E(Sij) . (66)
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First consider free thermal expansion of a body (i.e. the temperature is increased from Ty to

T). In this case no stresses emerge, & = 0, and the deformation is isotropic, hence Eq. (6.6)

implies

tre = ap (T —1Tp) . (6.7)
Since tre is the relative volume change, dV/V | ar is simply the thermal expansion coefficient
ar = L9¥.

A side comment: While the thermal expansion coefficient appears as a linear response co-

efficient, it is not a harmonic (linear) material property (i.e. it cannot be obtained from a
quadratic approximation to the energy). To see this, convince yourself that the thermal aver-
age 0V =V <tre>r vanishes when a quadratic approximation to the energy, u ~ (tre)?, is used.
You need to go nonlinear, i.e. invoke anharmonic contributions to the energy.

The equations of motion for a linear thermo-elastic solid take the form (neglecting inertia and

body forces, and using A and p again)
A+ )V (V- u)+puViu=ar KVT . (6.8)

This shows that thermal gradients appear as a source term (inhomogeneous term) in the standard

linear elastic equations of motion.

Example: Heated annulus

Consider a thin annulus of internal radius R; and external radius Ry. Consider then a
nonuniform, purely radial, temperature field 7'(r) and determine the resulting displacement field.
The geometry of the problem implies that the only non-vanishing displacement component is
u(r,0) = u(r). Writing then Eqs. (6.8) in polar coordinates we obtain

ou u ar K
T - 5 = (o :
Oprtt + " 3 /\_1_2“8 (6.9)

What are the boundary conditions? As the inner and outer surfaces of the annulus are traction-

free, we have the following boundary conditions
O’TT(T = Rl) = o—w(r — Rz) =0. (6.10)

The key point for solving Eq. (6.9) is to note that the operator on the left-hand-side can be

rewritten in compact form as

Ot + ~ =9, P‘“ “)] . (6.11)
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Therefore, integrating twice Eq. (6.9) readily yields

arK 1 [" N ., ar  C
= - T d — 4+ = 6.12
u(r) A+2w/Rl () + A2 (6.12)

where ¢; and ¢y are two integration constants. These are being determined (derive) by the
traction-free boundary conditions of Eq. (6.10) and turn out to be proportional to [ Ii T (r")yr'dr'.

Are these results valid for 7'(r) =const., i.e. for a spatially uniform temperature field?
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VII. THE NON-LINEAR FIELD THEORY ELASTICITY

Our previous discussion focussed on linear elastic deformation. Why is it such a useful the-
ory? After all it is a linear perturbation theory, so what makes it so relevant in a wide range
of situations? In other words, why ordinary solids do not typically experience large elastic de-
formations? The answer is hidden in a small parameter that we have not yet discussed. Until
now the only material parameter of stress dimensions was the elastic modulus, say p. In ordinary
solids the elastic modulus is large. Compared to what? What other typical, intrinsic, stress scales
exist? The answer is that ordinary solids start to respond irreversibly (flow plastically, break,
etc.) at a typical stress level that is usually much smaller than the elastic modulus. In other
words, reversibility breaks down at a typically small displacement gradient. As reaching the on-
set of irreversibility limit still requires relatively large stresses, this explains why a small elastic
deformation perturbation theory is useful. We will focuss on irreversible processes later in the
course.

Everyday life experience, however, tells us that there are many materials that respond reversibly
at large deformation. Think, for example, of a rubber band, of your skin or of jelly. Such materials
can deform to very large strains (of order unity or more) under mild stresses and recover their
original shape when the stress is removed. They are “soft”. Such soft materials are of enormous
importance and range of applicability, and have attracted lots of attention in recent years. What
makes them significantly softer than ordinary solids? The answer is that their elasticity has a

difference origin.

A. Entropic elasticity (“Rubber elasticity”)

The paradigmatic example of an elastic behavior is a Hookean spring in which a restoring force
is exerted in response to length /shape variations. In this case, the restoring force has an energetic
origin: the interatomic interaction energy changes with the length/shape variations. However,

this is not the only form of an elastic behavior. Consider the Helmholtz free energy density
f(ET)=uE,T)-Ts(E,T), (7.1)

where E now is the Green-Lagrange (metric) strain tensor. A stress measure is obtained by the
variation of f with respect to E. Ordinary elasticity of “hard” materials, e.g. of metals, has an

energetic origin. In this case the entropy s does not depend on the deformation, while the internal
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energy u does. On the other hand, “rubber” elasticity of “soft” materials, e.g. of gels, rubber
and various polymeric materials, has an entropic origin. In this case, the internal energy does not
depend on the deformation, but the entropy does.

To understand the physics underlying entropic elasticity we consider a network of long-chain
polymers within a fixed unit volume. We assume that the network is incompressible. Consider
first a single polymer chain of length L =m/, where m is the number of monomers and ¢ is the
length of a single monomer. Suppose now that one end of the chain is fixed (say at the origin)
and the other end is free to wander in space. Denote the end-to-end vector by 7. In situations in
which r=|r| < L and under the assumption that there is no correlation between the orientation
of successive monomers, the probability distribution function of the end-to-end distance p(r) can
be easily determined, in analogy to a random walk in time, to be

372

p(r) oc € 2 | (72)

where (r?) =m (? is the mean-square value of r. p(r) measures the number of configurations the
chain can be in for a given end-to-end distance r. Also note that no elastic energy is involved here,
i.e. the “joints” of size ¢ can move freely (in principle, ¢ can be larger than the monomer size, i.e.
the so-called persistence length above which correlations fade away. In this case, the polymer is
termed “semi-flexible”, but we do not discuss this here). A chain with these properties is termed
a Gaussian chain (note that despite the name, p(r) of Eq. (7.2) is not strictly Gaussian, but rather
takes the form p(r)=4mrr? (%)3/2 e %, featuring p(0)=0 and r>0. Consequently, one can

say that p(r) is predominantly Gaussian). The configurational entropy of a single polymer chain

with an end-to-end distance r is given by

_ _ 3r?
§=s0+ kplnlp(r)] =50 — kp—=- (7.3)

2(r2)’
where sy and Sy are unimportant constants. In order to understand the effect of deformation

h polymer chain we denote the undeformed end-to-end distance by r® =

on the entropy of the it
(Xl(i), Xéi), X?Ei)) and the deformed one by 7 = (x(li), xgi), xgz)) =\ xH /\éi)XQ(i), /\gi)Xéi)), where
{/\l(cii173} are the (principal) stretches. Therefore, the entropy change of a single chain due to

deformation reads

Ag<i>:—23<ﬁ§> (2 = DX+ PP - DX+ (OOF - DIXEPR) - (7.4)

We now assume that the deformation is affine, i.e. that the macroscopic and microscopic strains

are the same, )\,(f) = M. Hence, the entropy change per unit volume of the part of the polymeric



62

network that contains N chains and occupies a volume V' reads

N .
Az®
s = E = (7.5)

N

23’;( DS IO + (02 - 1) S /\2—1; )

i=1 1=1
We now invoke isotropy and assume that we can treat {[X ,5")]2} as independent variables, to obtain

N N N

STIXEP = SO = NG (7.

i=1 =1 i=1

ol
S
Mg
no

I

Therefore, the free energy density of the polymeric network (due to deformation) is given by
1
f=~Ts=gnksT M+ +A-3) . (7.7)

where n = N/V is the number of chains per unit volume (density of chains). Recall that we
assume also incompressibility (consequently we did not consider the variation of the entropy with

volume changes), i.e. that the constitutive law also includes the incompressibility condition
J=det F = )\1)\2)\3 =1. (78)

We can immediately identify nkgT as an elastic modulus (it has the dimensions of energy density,

i.e. of stress), which actually corresponds to the shear modulus
w=nkgT . (7.9)

This dependence on T, i.e. du/dT > 0, has remarkable consequences that distinguish entropic
elasticity from energetic one. For example, a piece of rubber under a fixed force will shrink /expand
in response to heating/cooling, just the opposite of the behavior of a metallic spring! Another
related effect, that we do not discuss in detail here, is that of adiabatic stretching. When we rapidly
(and elastically) stretch a piece of metal it cools down. However, a rubber band under the same
conditions warms up. You can easily experience it yourself by rapidly stretching a piece of rubber
and using your lips as a thermo-sensitive device. We note that f, which was calculated above, is
the free-energy in the deformed configuration per unit volume in the undeformed configuration.
Equations (7.7)-(7.8) constitute the incompressible neo-Hookean model, which is one of the
first and most useful nonlinear elastic models. The statistical mechanical model that was used to

derived it, originally due to Flory in the early 1940’s, is called the Gaussian-chain model. The
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name “neo-Hookean” has to do with the intimate relation of this model to the small strains linear

elastic Hookean model. Noting that

1
wE = tr(FTF —I) == (A + A2+ 72— 3) , (7.10)

DO | —

we can rewrite Eq. (7.7) as
f=ptrE = %,u [tr(F"F) —3] . (7.11)
We can incorporate Eq. (7.8) into this free-energy function by writing
f= %u [tr(F'F)-3] —a(J-1) , (7.12)

where « is a Lagrange multiplier introduced to enforce incompressibility. This is the simplest
possible model that is quadratic in F' and reduces to Hookean elasticity at small stretches. This
phenomenological approach cannot, of course, predict the exact expression of p in Eq. (7.9),
which requires a statistical mechanical derivation, though the T-dependence is expected on general
grounds. Note also that unlike Hookean linear elasticity the neo-Hookean model is rotationally
invariant under finite rotations and is also objective.

We note in passing that we can allow for volume variations (i.e. give up the incompressibility

constraint), in which case the Gaussian-chain model would yield
1
f= S [tr(F"F) —3—2logJ] , (7.13)

which simply accounts for the entropic contribution due to volume variations. More elaborated
models of compressible neo-Hookean-like materials include additional functions of J — 1 in the
free-energy.

To appreciate the “softness” of materials that are governed by entropic (rubber-like) elasticity,
let us make some rough estimates. First consider ordinary (say, metallic) solids. The elastic
modulus has the dimensions of stress, which is equivalent to energy density. The typical energy
scale for metals is roughly leV. Divide this by an atomic volume, Q ~ 10~*m?, and you get
10GPa which is a reasonable rough estimate (the Young’s modulus of metals can reach 100GPa).
Consider now Eq. (7.9), u = nkgT. At room temperature we have kg7 =~ 1/40eV, which sets
the energy scale for rubber elasticity. If we assume a chain density n of 1072 per atomic volume,
we get an elastic modulus which is about 3 orders of magnitude smaller for rubber. Indeed,
10MPa is a reasonable rough estimate for the modulus of rubber. When we consider gels, which

are typically filled with water (or other solvents), the effective chain density can be significantly
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smaller and the modulus drops down to the 10KPa range, which is 6 orders of magnitude smaller
than ordinary solids. These rigidity levels are also characteristic of biological substance such as

tissues and cells.

B. Geometric nonlinearities and stress measures

Many other useful nonlinear elastic models were developed based on either statistical mechan-
ical or phenomenological approaches that employ symmetry principles and experimental obser-
vations. It is usually very difficult to solve nonlinear elastic problems analytically. The inherent
difficulty goes beyond the usual statement that nonlinear differential equations are not analyti-
cally tractable in general. The reason for that is geometrical in nature and has to do with the
fact that in nonlinear elastic problems the domain in which we solve the differential equations
depends itself on the solution that is sought for (and of course unknown to begin with). Think, for
example, of the Cauchy stress o, defined as the force per unit area in the deformed configuration,
and consider a free boundary. Since the boundary is traction-free, o,, = 04, = 0 on it, where n
and t denote the normal and tangent to the free boundary, respectively. In order to satisfy this
boundary condition throughout the deformation process, the location should be known, but this
usually requires to know the solution. We did not encounter this problem in the linearized theory
since the deformed and undeformed are distinguishable only to second order in the displacement

gradient.

One way to deal with this situation is to formulate problems in the undeformed configuration.
This was briefly discussed in Eqgs. (3.37), (3.38) and (4.20), and will be repeated here within
a thermodynamic context. Consider a small incremental deformation of a body (that might be
already deformed) and ask how much stress work was done within a volume element dx3. For
that aim, define an incremental strain measure de as the change in length of a material element
relative to the current (deformed) state of the material. To stress the difference between € and &,
we resort to 1D and we discuss again Eqs. (3.19)-(3.20). ¢ is defined as the change in length with

respect to the undeformed state £y, ¢ — £y, relative to the undeformed state

dl Cde 01—,
:> —

d€:— £ = — =
EO Lo EO éO

=A-1 = A=ec+1, (7.14)

where A = (/{, is the stretch. de is defined similarly to de, but with respect to the deformed
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(current) state, implying

¢
:d_£ = €= d_len £ =ln\A = A\=e€". (7.15)
14 0w ! N

While these two strain measures (as every other two strain measures) agree to linear order, they

de

differ dramatically in general; A(e) is a linear function, while A(e) is exponential. Going back
to our original question, the stress work done by the Cauchy stress o in the (current) volume
element dx3 is

o :dedx® (7.16)

where de is a tensorial generalization of de (cf. Eq. (3.23), where a slightly different notation was
used). We can now associate a new stress measure that is thermodynamically conjugate to a given
strain measure by demanding that the stress work produced would equal the above expression. To
see how this works let us focus on the case in which the deformation measure we use is F', which
connects the deformed (reference) and undeformed (current) configurations. Since F' is defined
in terms of the reference coordinates X, the relevant volume element is X?. We then define a
stress tensor P such that

P:dF§X® = o:dedx’ . (7.17)
P is the first Piola-Kirchhoff tensor, that was already defined in Eq. (3.37) using other consid-
erations, which is related to o through Eq. (3.38), P = JoF~T. This is perfectly consistent
(prove) with the thermodynamic definition of Eq. (7.17). It is very important to note that P:dF
is a work increment in the deformed (current) configuration per unit volume in the reference

configuration. Since df has the very same meaning, we can identify df = P:dF which leads to

o
o (7.18)

Therefore, P is the force per unit area in the reference configuration acting on its image in the
deformed (current) configuration. These quantities might appear (very?) strange at first sight
(even at the second and third ones), but they are enormously useful in real calculations since
these can be done in the reference configuration. For that aim, we need to express the momentum
balance equation in terms of P in the reference configuration, which was already done in Eq.
(4.20).

As we said above, this procedure can be followed for any strain measure. As another example,
consider the Green-Lagrange strain tensor E. In that case we define a stress measure S, termed
the second Piola-Kirchhoff stress tensor, such that df = S : dE. Therefore,

_9f
=% (7.19)
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This stress measure is rather commonly used.
To demonstrate how these stress measures (and the associated geometric nonlinearities) appear

in physical situations, let us consider the incompressible neo-Hookean material characterized by
f= g (A2 4+ A2+ X2 —3) (7.20)

and

det F' = )\1)\2)\3 =1 s (721)

where ); are the principal stretches. Consider a cylinder under a uniaxial stress state with P, =
P >0 (along the main axis of the cylinder) and P, = P;=0 (traction-free lateral boundaries). The
stretches take the form Ay = A and Ay = A3 = A™'/2, where we used isotropy and incompressibility.
The relation between the Cauchy stress and the first Piola-Kirchhoff stress reads (recall that
J=det F =1)

o=AP. (7.22)

Eq. (7.18) implies that in our uniaxial example we simply have P = Jf/0\ (this is proved below).
Therefore, we have

f:g(/\2+2)(1—3) — Pzg—ﬁzu(A—“% (7.23)

The constitutive relation P = p (A — A72) is different from the constitutive relation
c=AP=p(N-X") (7.24)

due to deformation-induced nonlinearities. Note that all of these effects disappear when we

linearize with respect to e (A =1+ ¢)
o~P~3ue=~Fe. (7.25)

Therefore, £ = 3p is the Young’s modulus (did you expect this? what is Poisson’s ratio of
this material?). One immediate consequence of nonlinearities in the constitutive law is that the
symmetry between tension and compression observed in the linear theory is typically broken. We
will now work out a few examples to demonstrate the rather dramatic physical effects that emerge
in nonlinear elasticity.

In the example above, it was stated/argued that P = 0f/0\ is satisfied along the uniaxial

tension axis. Let us prove it. Our starting point is the free-energy functional in Eq. (7.12), where



67

« is a Lagrange multiplier introduced to enforce incompressibility (i.e. df/da=0 implies J=1).

Recalling that 0 tr(FTF)/OF =2F and ddet F/OF =det F F~T we obtain

of T
P=——=uF — FF— . 2
oF = X a det (7.26)

Consider then, as above, a deformation state of the form

A 00
F=|0 X 0|, (7.27)
0 0 As
which implies
A 0O AT 00
P=p|l 0 X 0 [—aXX| 0 X' 0 (7.28)
0 0 ) 0 0 X!
,U/>\1—Oé/\2>\3 0 0
= 0 ,LL)\Q — Oé/\lAg 0 . (729)
0 0 ,LL)\3—O£/\1/\2

Applying this to the uniaxial tension state considered above together with incompressibility yields

PN —a 0 0
P= 0 A2 — A2 0 : (7.30)
0 0 pAT2 —a \1/?

The traction-free boundary conditions, P, = P; =0, allow to determine the Lagrange multiplier,

leading to a=pu/). Using the latter, one obtains P = P, = (A — A\72)=0f /0], as stated.

FExample: Necking instabilities

Consider a bar of initial length ¢, and cross-section sg that is stretched along its major axis by

a tensile force of magnitude F, such that it features length ¢ and cross-section s. Suppose that
the material is incompressible, i.e. that

sl=syly — s:s()%ozsoe_E , (7.31)

where we used A = (/{y = e°. Consider then a tensile force F' that stretches the bar, i.e.

F=s(e)o(e) =spo(e)e . (7.32)
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This result shows that the response to the applied force F' is composed of a constitutive part

€. We would like to understand the implication of this for various

o(e) and a geometric part sge”
representative constitutive laws o(e). In a brittle material, e.g. window glass, we expect abrupt
fracture at small € as F' is increased. We will discuss brittle fracture later in the course. Instead,
let us consider materials that can be deformed to large deformation without breaking, i.e. metals
and soft materials. Crystalline (metal) deformation will be discussed later in the course, but for

our purposes here we note that metals usually exhibit a response that can be approximated as a

power-law relation between stress and strain,
Ometal(e) =FEe" s (733)

where n is some positive power, typically smaller than unity. As a representative relation for soft

materials, let us use the neo-Hookean law
oan(€) = (N2 = A7H) = p(e* —e ) . (7.34)
Focus first on the case of a metal, in which we have
Fretar ~ €€ . (7.35)

At small strains the constitutive power-law dominates the response, which is monotonically in-
creasing, while at large strains the geometric term dominates the response, which is monotonically
decreasing. In between, the response reaches a maximum at ¢, = n. What are the mechanical
implications of such a response? The existence of a peak force, F. = F(e.), above which there’s
no way to balance the force with a uniform deformation, implies an instability. In our case it
takes the form of a necking instability where the bar’s cross-section becomes smaller and smaller
in some region, until the local stress is so large that the bar breaks. The necking instability is a
typical mode of failure in metals under tension, as implied by our simple analysis. A complete
account of the necking instability (initiation, critical wavelength, nonlinear evolution etc.) goes
well beyond our simple analysis, which nevertheless gives us a sense of the phenomenon. What

happens for the neo-Hookean material, say rubber? In this case we have
Frubber ~ et — 6_26 ’ (736>

which shows that the force is a monotonically increasing function of the strain. This suggests that

there is no necking instability in this case. Indeed, soft materials (e.g. rubber) do not generally
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undergo a necking instability under tension.

Ezample: Balloon (or blood vessel) under internal pressure

Consider a thin spherical shell made of an incompressible soft material (a balloon or a blood
vessel. The latter may be more properly modelled as a cylindrical shell, but the results will be
similar) under internal pressure of magnitude p. The internal radius in the undeformed (reference)
configuration is L and the outer is L + H, with H < L. The corresponding quantities in the
deformed configuration are ¢ and ¢+ h. We also have h < ¢. This small parameter will be useful
in solving the problem. Our goal is to determine the relation between the internal pressure and
the deformation.

We can immediately write down the global stretches in this problem

h ¢
M=z A== =X (7.37)

Incompressibility implies (upon linearization with respect to h and H)

14 H
HL? ~h* — =\V7 = A= A2 (7.38)

Consider then the force balance equation (r is the radial coordinate in the deformed configuration)

200 — 0pg — Opp

0,0y + 0. (7.39)

r

The symmetry of the problem implies 0g99 =044 = 0. The boundary conditions read
op(r=0=—=p and o, (r=C(+h)=0, (7.40)

where the minus sign in the first boundary condition ensures that the radial stress is compressive.
The radial stress varies in space, i.e. 0,0,,.%#0. Since h is small, the boundary conditions imply

that to leading order we have

p
OpOrp =~ — . 7.41
oo ? (7.41)

We then assume that o> p (we will check for consistency at the end) and hence Eq. (7.39) can
be written as (where r~/)

p 20 2ho
-~ = ~ — . 7.42
r T p=— <o (7.42)

The last relation shows that our assumption about the relation between p and o is valid (since

h < ¢). Note that of course it was not necessary to a priori assume o > p and then check
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for consistency a posteriori, though this procedure (i.e. of assuming something, exploring its
implications and check for consistency at the end) is very common in theoretical physics and
hence has a pedagogical /educational value. Alternatively, one can substitute ..~ —p in the force

balance Eq. (7.39) and solving for p (we could use the spatial average of o,,., —p/2, but as we are

interested in an order of magnitude estimate, it makes no difference), we obtain
2ho 2ho
- + 0O

B il
l

which of course agrees with Eq. (7.42) to leading order in the smallness h/¢. It can be used to

obtain higher order corrections (possibly with some additional considerations), but as h/¢ < 1,
the leading order will be enough. Note that the spatial variation of o,, can be obtained from

Eq. (7.41), together with the boundary condition at r=/, yielding

() = %r —p (1 + é) . (7.44)

We would now like to express p as a function of A. Noting that

h hHL H_ _,
(THLI- L (745)
we obtain
2H

Again, we see that the response to the applied pressure p is composed of a constitutive part o(\)
(an increasing function) and a geometric part A~ (a decreasing function). The condition for the
existence of a maximum in the response function reads

) _, do(Ae) _ 30(\)
) X Y

(7.47)

which suggests an instability for p > p(A.) occurring at the point where geometric thinning

overcomes constitutive stiffening. As a concrete example, assume the material is neo-Hookean

f:g(xg%ﬂgﬂ;_g):g(w+x4—3), (7.48)
which implies
o(\) = )\% =2u(N=X""Y = pA)~ A=A (7.49)

Therefore, A\, = 7'/6 ~ 1.38. If a blood vessel experiences a pressure p > p(Ae), it might develop

an aneurysm (which might be bad news).
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Example: Elastic cavitation

Consider a spherical cavity of initial radius L inside an elastic material loaded by a radially
symmetric tensile stress far away, 0°°. The symmetry of the problem suggests that all quantities

are functions of r alone and that o044 = 09p. The force balance equation reads

— Og0

B,y + 22 ~0. (7.50)

r

Integrating this equation from the deformed radius of the cavity ¢ to r we obtain

oo(r) = — / Trr — 900 4 (7.51)
¢ T

where we used the traction-free boundary condition o,..(r = ¢) = 0 and 7 is a dummy integration
variable. Denote then r' = 7/¢ and focus on r — oo, we obtain
opr(00) = =2 /OO g(rl7—/L/€)dr’ : (7.52)
1 r
where o, — gg9 = g(r’, L/{) is a property of the solution (which involves also the constitutive
relation). From our previous analysis we know that the existence of the cavity amplifies the
(circumferential) stress at the surface as compared to the applied stress o> (for a cylindrical
cavity we calculated the amplification factor to be 2 and for a sphere is it 3/2). If we keep
on increasing the applied stress an ordinary material will simply break near the cavity surface.
However, in soft materials something else can happen (the same can happen is an elasto-plastic
material, to be discussed later). We can ask ourselves whether the cavity can grow (elastically!)
without bound under the application of a finite stress at infinity. To mathematically formulate
the question take the £ — oo limit in Eq. (7.52) and define
o, = —2 lim /00 Mdr’ : (7.53)
1

l—00 r

Therefore, if the integral above converges, then for any ¢* > o, the cavity will grow indefinitely.
The critical stress o, is called the cavitation threshold. o, is finite if (', L/{) = 0, — 099 — 0

as r — 00, which is the typical situation.

Let us see how this works in a concrete example, where the goal is to find o, — g9 =g(r’, L/{)
and then evaluate the integral in Eq. (7.53). Consider an incompressible elastic material. As
above, the initial radius of the cavity is L and the radial coordinate is denoted as R. The

deformed radius is ¢ and the coordinate of the deformed configuration is r. Incompressibility
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implies that the volume of any material piece in the reference configuration is conserved in the

deformed one, in particular we have

4 4
S B -L)=2("-0) = Re)=("+1°=6)" (7.54)

The non-radial stretches take the form

M—M—%~ (7.55)

Incompressibility implies

M=A = M= =212 (7.56)
which leads to

et o (BY (7.57)
Finally, this leads to

3.4 713 _ 3 2/3 3 L/ —1 2/3

r r

with 7/ = r/¢. Consider then the stress state. It is triaxial and contains only the diagonal
components (0., 0pg, 0gg), With 045 = 0g9. However, since the material is incompressible we can
superimpose on this stress state a hydrostatic stress tensor of the form —ogel without affecting
the deformation state, resulting in (o, — 0gg,0,0), which is a uniaxial stress state in the radial
direction. Therefore, the constitutive relation takes the form o,,. — g9 = g(\,). Focus then on a

neo-Hookean material for which g(\) = u(A* — A™!) and evaluate the integral in Eq. (7.53)

P LIy, /°° [(1 —r A=Y L (7 s0)

o, = —2 lim

(—oo Jq r! r!

This integral can be readily evaluated (just use x = 1 — '3 and dx = 3r'~*dr’), yielding

5
o, = 7“ . (7.60)

This result, which was verified experimentally (see, for example, J. Appl. Phys. 40, 2520 (1969)),
clearly demonstrates the striking difference between ordinary and “soft” solids. The ideal strength
of ordinary solids is about p/10. The actual strength is much smaller (see later in the course).
However, “soft” solids can sustain stresses larger than p without breaking (though, as we have

just shown, they can experience unique instabilities such as elastic cavitation).
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C. Small amplitude waves in nonlinear elastic solids

Let us consider now the propagation of elastic waves in nonlinearly elastic materials. We would

like to focus on small amplitude waves that propagate on top of a nonlinearly deformed state.
What would be the propagation speed of such waves?
To qualitatively address this issue we focus on a 1D formulation in which the constitutive law
can be written as o(e). If the material is undeformed, then the constitutive law takes the form
o = Fe and waves propagate at a speed \/m , where pg is the mass density in the undeformed
configuration. Suppose now that material is already deformed to a strain e (and hence experiences
a stress o(e€)). The transport of energy and momentum at this state is still controlled by small
amplitude elastic waves. The question is then, what elastic modulus determines the propagation
speed? For that aim we define the tangent modulus as

_da

E(e)—g.

(7.61)

This modulus is a constant for linear elastic materials, but varies with the state of deformation
for nonlinear elastic materials. The wave propagation speed would then be \/E(€)/p(€), where
both the relevant modulus and the mass density depend on the current state of deformation
through e. We thus conclude that wave propagation in nonlinear elastic solids depends on the
state of deformation which affects both the elastic constants and the mass density in the material
framework. As usual, such calculations are much more convenient to perform in the reference

configuration (see tutorial session).
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VIII. SPATIOTEMPORAL INSTABILITIES

Spatiotemporal instabilities play an essential role in shaping the world around us. Practically
all of the symmetry-breaking patterns observed in nature are generated by instabilities. The
most generic approach to instabilities is known as linear stability analysis. The philosophy is
simple; consider a set of partial differential equations, generically nonlinear, for a set of fields
(schematically denoted by f(x,t))

7 [f(x,t)]=0. (8.1)

Suppose fp is a space- and time-independent (or steadily propagating) solution satisfying the
global symmetries of a given problem (not always such solutions exist, see below). Introduce then

a small spatiotemporal perturbation of (x,t) such that

f(x,t) = fo+ of (x,t) . (8.2)

Since df is small compared to fy, we can linearize the equations with respect to the small pertur-
bation df to obtain
Zof (2, t)] =0 (8.3)

Finally, we consider each Fourier mode separately
6f (z, 1) ~ etkatet (8.4)

where k is the spatial wavenumber and w is the temporal frequency. The linearized Eqs. (8.3)
then become algebraic equations for w(k). Whenever R [w(k)] >0, an instability is implied as the
perturbation grows exponentially in time. Note that in many problems fj is a steadily propagating
solution of the coordinate ¢ =2 — ct, in which case the formalism is applicable once ¢ is used. In
other problems, a time-independent solution fy(x) exists, in which case translational invariance is
broken and not all wavenumbers |k| admissible. Finally, there are problems in which there exist
no time-independent solutions (e.g., in the necking problem briefly discussed above, the spatially-
homogeneous solution is intrinsically time-dependent, fo(¢)), in which case things become more
complicated.

Linear stability analysis is a very useful tool, but it is also limited to some extent. Not find-
ing a linear instability does not mean there exists no nonlinear one, or alternatively, finding a
linear instability does not tell us what happens when the perturbation grows and nonlinearities

intervene. To understand how this general framework works in a problem where elasticity plays
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a central role (yet not an exclusive one), let us consider a concrete example.

Ezample: The Asaro-Tiller—Grinfeld (ATG) instability

Consider a solid, say of rectangular shape, under the application of a uniaxial tension (or
compression) of magnitude oy (the non-hydrostatic conditions are important). The stress is small
and the response is linear elastic. The solution is simply that of homogeneous stress and it is
stable (i.e. , if a compressive stress is applied, we assume the conditions for buckling are not met).

We now introduce a new (non-elastic, non-equilibrium) piece of physics: mass transport along
the surface of the solid. The surface evolves with a normal velocity v,,, which is driven by variation
of the chemical potential density p (the chemical potential is the relevant thermodynamic quantity

because we are talking about mass transport). Mathematically speaking we say that
v, = 2(1) , (8.5)

where 2(-) is a differential operator that depends on the physical nature of the mass transport
We may think of several mass transport processes. When the solid is in equilibrium with its

liquid phase (or gaseous phase), mass transport can take place by melting-recrystallization (or

evaporation-condensation). In both cases, the transport law takes the form

U~ —Ap (8.6)

where Ap = ps — gy is the chemical potential difference between the solid and liquid phase (or

gaseous phase ji,). Another possible process would be surface diffusion, which is the surface

analog of ordinary bulk diffusion. In this case, surface gradients of p drive a material flux J

op
o~ ——— 8.7
95 (8.7)
where s is the arclength parameterization of the surface. Mass conservation implies
oJ, O
n ~ — ~ = 8.8
! Os 0s? (88)
Putting the prefactors in, we end up with
D &%
= —— 8.9
U= e (8.9)

where D, whose dimension is length? /time, is proportional to the surface diffusion coefficient and
v is the surface tension. We stress that the evolution of the surface, encapsulated in v, is a

non-equilibrium dissipative process.
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The next step would be to write down an expression for the chemical potential density (in the
presence of a liquid phase, we are of course interested in the chemical potential difference between
the solid and the liquid). Let us first write down the answer and then try to understand its
origin. The chemical potential density contains two contributions, one is an elastic strain energy
contribution near the surface and the other is a surface contribution

1—12

¥ (o4 — ann)z + VK, (8.10)

M= fle + fs =

where 1. and s are the elastic and surface energy contributions to the chemical potential density.
t and n are the tangent and normal to the surface, respectively, 7 is the surface tension/energy
as above and k is the surface curvature. If the surface is not in contact with its liquid phase, i.e.
0nn =0 (note that o, =0 with or without a liquid), the elastic contribution is simply the elastic
strain energy in the solid. If the surface is in equilibrium with its liquid phase, then there is a
finite pressure of magnitude |o,,| also in the liquid, and the chemical potential difference depends
on the difference oy — 0,,,,. This result also shows that under hydrostatic conditions in the solid,
Oy = 0py, there’s no elastic contribution (and the effect we are interested will disappear).

What about the surface energy contribution? The change in the Gibbs free energy due to
surface area changes is dG = 7dA. Since the (surface) chemical potential is the change of G
with the number of particles of total volume dV' added to the surface, p=dG/dV, we should ask
ourselves how the surface area changes when we add a volume dV of material to a surface (we stress
that dV' is not an incremental deformation, but rather represents a piece of a material). That
obviously depends on the curvature of the surface. For a convex/concave surface an addition
of a particle of volume dV results in an increase/decrease in the surface area by an amount
dA ~ dVk, where k is the signed curvature (assumed positive for convex surfaces). To make
this absolutely clear, consider a spherical surface of radius R and the addition of an infinitesimal
mass element of volume dV. The change in the sphere’s volume is given by 47 R?dR = dV, and
hence the change in the effective radius is dR = dV/4wR?. Hence, the change is the area is
dA = d(47R?) = 87 RdR = 2dV/R ~ dV k. For a spherical cavity, we get the same result with a
minus sign. Therefore, the surface energy contribution to the chemical potential density is vx.

Plugging the expression for p in Eq. (8.10) into Eq. (8.9) we obtain a dynamic equation that
can be used to study the stability of the surface against small perturbations. To be absolutely
clear about the last point, we denote the deviation of the surface from being flat by h(z,t), where

x is the load application direction. Both v, and g can be expressed in terms h(z,t). For a flat

1—v2
2F

surface, h(x,t) = 0, kK = 0 and p is constant pu = op (here o9 =0y — 0py,). This, of course,
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implies v,, = 0, as expected. To understand what happens when the surface is not flat, we should
introduce a small spatiotemporal perturbation h(z,t) # 0 and see if it grows or decays in time.
Before we do that, let us first try to make a rough estimate. For that aim, consider a square wave
perturbation of the surface, with an amplitude a and a wavelength X. Let us estimate the change
in the Gibbs free energy due to the perturbation. On the one hand, the protruding parts of the
perturbation are far less stressed than they were when the surface was flat. Therefore, the elastic

energy (per wavelength) is reduced roughly by

o2 \a
AG, ~ — 2L 11
¢ 2F 2 (8.11)

The surface energy is increased due to the creation of new surface of size 2a (again per wavelength)
by
AG = 2va . (8.12)

Therefore, the total variation of the Gibbs free energy is given by

o2 \a
AG = A AGy ~ ——L = 4 9va . 1
G G, + AG, 5E o + 2va (8.13)

The important insight here is that there is a competition between an elastic effect, that tends
to reduce the free energy (a destabilizing effect), and a surface effect that tends to increase it
(a stabilizing effect). For sufficiently small wavelengths, the surface term penalizes more, and
stability is expected. For sufficiently large wavelengths, the elastic term wins and the free energy

is reduced. The critical wavelength scales as

vE
od '

Ao ~ (8.14)

where wavelengths satisfying 0 < A <\, are stable and A > \. are unstable. While this is a crude
estimate, it gives us some insight into the physics behind the instability and essentially the right
answer (as we will see soon). Actually it is no more than a dimensional analysis, which is in
general quite a powerful tool.

Let us now perform the analysis in a more systematic way, where our goal is to express the
equation of motion for the surface to leading order in the deviation h(x,t) from a flat surface. As
we consider small shape perturbations of the surface and we limit ourselves to a linear analysis,
this small perturbation can be always decomposed into a sum of Fourier modes. Hence, we can

focus on each mode separately and write

h(x,t) = hgeotvt (8.15)
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The small parameter in the problem is khg, i.e. we assume small surface gradients. We will

linearize the equations with respect to this small parameter. To linear order the curvature reads

9%h
which leads to
s =~ YE*h . (8.17)

As expected, the surface term plays a stabilizing role for all k-vectors. The perturbed elastic

problem is not very difficult to solve (you will be doing this in a tutorial session) and the result is
O — Onn = 09 (1 — 2|k|h) . (8.18)

Convince yourself that the k-space operator is a long-range elastic operator in real space, as

expected from elastic interactions. The last result implies the following linearized expression

(1 - v2)o?

s (L~ 4lk[h) (8.19)

fle

which indeed shows that elasticity plays a destabilizing role for all k-vectors. Therefore, as we
obtained from the simple estimate above, there is a competition between a stabilizing surface
effect and a destabilizing elastic effect. This is a generic situation when dealing with instabilities.

Combining the two contributions, we obtain

(1—v?)od  2(1—1?)o} )

In addition, we note that to linear order we have

_Oh

~ o (8.21)

Un

For an evaporation-condensation/melting-recrystallization mass transport process (for which

Oth ~ —Ap{h}), we obtain the following dispersion relation

21 — 2\ +2

2 =00 e (8.22)
E

For a surface-diffusion mass transport process (for which 0;h ~ 0,,p{h} — note that to linear

order Jss >~ 0,,), we obtain the following dispersion relation

2(1 —1?)

2
w(k) ~ K - %01k — k2| . (8.23)

The relation w(k), known as the stability /instability spectrum, contains all of the information

regarding the linear stability of a given physical system. Having it at hand, we are now in a
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position to decide about the stability conditions. It is clear that w > 0 implies instability (an
exponential growth of the perturbation) and w < 0 implies stability (an exponential decay of the
perturbation). Therefore, for both mass transport mechanisms, we find a critical wavenumber of
the form

2(1 — v?)op

ke = ——— .24
= (5:21)

which is identical to our scaling estimate above up to prefactors of order unity. For £ > k.
perturbations are stable and for 0 < k < k. they are unstable. This result shows there is a
continuous range of unstable modes. Which one of these will be observed experimentally (the
instability is observed experimentally and in fact it is very important for various technological
processes)?

To answer this question we should introduce the concept of the “fastest growing mode” (or
“most unstable mode”), which refers to the mode that grows most strongly and hence will be the
one to be observed. In this case, we obtain slightly different results for melting-recrystallization
(mr) (or evaporation-condensation) and for surface-diffusion (sd), because their stability spectrum

is different (though its zero crossing is the same)

ke

kT = 5 and  wy, ~ k2, (8.25)
k

ket = 34C and  wy, ~ kb (8.26)

As we explained above, an unstable mode grows and eventually its amplitude invalidates the
linearity assumption, necessitating the need for a nonlinear analysis. We would like to know, for
example, whether the surface develops narrow grooves (cusps) that may lead to cracking (global
failure of the sample) or the unstable processes saturates at a finite amplitude. Usually numerical
analysis is needed in order to answer such questions. The instability was first discovered by Asaro
and Tiller in 1972 and then independently rediscovered by Grinfeld in 1986. An experimental
evidence for the instability can be found, for example, in Phys. Rev. B 46, 13487-13495 (1992).
Some results on the nonlinear evolution of the instability can be found, for example, in Phys.
Rev. Lett. 82, 1736-1739 (1999).

It is important to note that the ATG instability is a generic instability whose existence is
independent of parameters (it only requires a non-hydrostatic stress state). In other physical
systems, one may find that all wavenumbers are stable for some range of the control parameters,
but not for others. The ATG instability is very important for various physical systems and pro-

cesses. For example, it significantly affects Molecular Beam Epitaxy (MBE), which is a method
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for thin-film deposition of single crystals (i.e. the deposition of a crystalline overlayer on a crys-
talline substrate), widely used in the semiconductor devices industry (e.g. for your cellphones and
WiFi).

Finally, we stress again that while elasticity plays an essential role in the instability, i.e. a
reduction in the stored elastic energy overcomes the surface tension contribution (those who are
interested in elastic effects on surface physics in general, are advised to consult the following
review paper, Surface Science Reports 54, 157-258 (2004)), the surface corrugation is not an
elastic deformation (bending), but rather a result of mass transport, i.e. an irreversible process.

Such processes will be discussed in the rest of the course.
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Irreversible processes: dissipative constitutive behaviors

Up until now we mainly discussed deformation processes that did not involve dissipation, i.e.
we essentially focussed on elastic constitutive behaviors. In the second part of the course we will
extensively discuss irreversible deformation processes, i.e. dissipative constitutive behaviors. This

will allow us to gain a deeper understanding into the non-equilibrium physics of materials.

IX. VISCO-ELASTICITY

Let us first consider experimental observations. Suppose we impose a constant small stress on
a solid. An elastic solid will be nearly instantaneously deformed into a strain level determined by
its elastic moduli. However, many solid materials (e.g. polymers) continue to accumulate strain
on a much longer timescale, exhibiting a “creep” behavior. Alternatively, suppose we impose
now a fixed small strain to a solid. An elastic solid will reach nearly instantaneously a state of
constant stress. However, many solid materials exhibit long timescales stress relaxation under
such conditions. Our goal in this section is to develop some understanding of these physical

behaviors, which are termed visco-elastic.

A. Viscous deformation

Before discussing visco-elasticity, we would like first to consider the simplest dissipative be-
havior. To see how it emerges consider then the second law of thermodynamics as expressed in
the dissipation inequality in (4.38) and assume that the material of interest cannot store elastic
energy at all, i.e. its internal energy density is a function of the entropy alone, u(s), and D does

not contain an elastic component. In this case —u balances T's and we obtain
oc:D>0. (9.1)
The simplest way to satisfy this dissipation inequality under all circumstances is by using
o=2nD, (9.2)

where 17 > 0 being the Newtonian (shear) viscosity (in fact o and D here should be replaced
by their deviatoric parts). Indeed, a material that does not deform elastically and its rate of

deformation is linearly related to the stress is simply a Newtonian fluid (note that actually we
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also assumed incompressibility above). From a mathematical point of view, the viscosity relation
in Eq. (9.2) is analogous to Hooke’s law since in both cases we linearly relate gradients of the basic
field (displacement in linear elasticity and velocity in Newtonian fluid mechanics) to the stress (of
course physically they are fundamentally different, one being non-dissipative and the other purely
dissipative). This is why these constitutive laws are simple and useful (but also limited): they
are, after all, linear perturbation/response approaches. Using the viscosity relation in Eq. (9.2)
one can derive the well-known Navier-Stokes equations that properly describe Newtonian fluids

under a wide range of conditions.

Why do we consider fluid viscosity if our main interest here is in solids? This is in fact a very
deep question that is intimately related to the emergence of solidity /rigidity in noncrystalline ma-
terials and discussing it thoroughly goes well beyond the scope of this course (we will nevertheless
spend time discussing some basic aspects of this important issue). Having said that, we can still
provide good answers to this question in the present context: (i) Many solids exhibit a viscous
component in their mechanical response (though, of course, not an exclusively viscous response
as Newtonian fluids) (ii) Considering viscous dissipation may allow us to gain some insight into

the origin of dissipation in solids.

First, it would be good to have some numbers in mind. The shear viscosity of water (room
temperature, low frequencies) is 1072 Pa-sec. The shear viscosity of a glass at its glass temperature
(in fact this is the operative definition of the glass temperature, but this is really another story)
is 10'2 Pa-sec. The viscosity of noncrystalline solids well below their glass temperature and of

metals is extremely large, usually regarded as infinite.

At the beginning of this section we considered viscous deformation from a thermodynamic
perspective. Let us adopt now a more microscopic approach to the viscous flow of fluids, with
the hope of gaining some insight into dissipative deformation processes. When we apply a small
stress to a crystalline solid interatomic distances vary as elastic energy is being stored, but atoms
do not change their neighbors, i.e. they do not rearrange themselves into a new configuration in
response to the applied stress. As we stressed earlier in the course, elastic deformation implies a
memory of a single state/configuration. What happens in the same situation in a fluid? In this
case it would be more illuminating to consider the application of a constant strain rate. If it were
an elastic solid then the stress would increase in proportion to the applied strain rate (but not

indefinitely).

In a Newtonian fluid, however, elastic energy cannot be stored and hence the stress must relax
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somehow. The microscopic process that mediates stress relaxation, and therefore viscous flow, is
molecular rearrangements in which molecules change their neighbors, usually by hopping motion.
So inelastic behavior involves configurational changes that mediate stress relaxation and energy
dissipation. Note, of course, that when Newtonian fluids are considered, configurational changes
take place constantly even in the absence of external driving forces, i.e. particles diffuse. To
better understand this, think of the molecular/atomic forces that do not allow two molecules
to easily come closer to one another and therefore resist rearrangements/hopping motion and
the accompanying stress relaxation. Let us assign an energy barrier A to the rearrangement
process (of course A actually characterizes the state of the whole system, irrespective of whether
it corresponds to a local process or not). In equilibrium, the rate of barrier crossing (transition)
is proportional 7, ' exp (—kBAT), where 7y is the molecular vibration time. This fundamental
result is valid when A > kpT and is usually associated with Arrhenius (1889), Eyring (1935)
and Kramers (1940) (the last two went beyond the first by calculating also the prefactor). In
the absence of external driving forces, forward and backward transitions are equally probable and
hence while transitions constantly take place, there is no net flow (in fact, detailed balance is
satisfied). However, particles perform random walk in space with a typical jump distance a of
the order of a molecular distance a and a time unit 7 = 7y exp <I€BAT> Therefore, the diffusion

coefficient is

D ~ —. (9.3)

Let us go back now to the situation in which we apply a small stress to the fluid. In this case the
barrier crossings would be biased in the direction of the applied stress, giving rise to macroscopic
flow. Following the previous discussion, the resulting (shear) strain rate (considered here to be a

signed scalar that corresponds to an applied signed shear stress o) takes the form

) 1 _A—QJ B _A+Qa (9.4)
¢ - exp T exp T , )

where the first term describes forward transitions and and other backwards ones, and () is a
molecular volume of the order of a® (note that to avoid confusion with the diffusion coefficient,
we denote here the rate of deformation by €). The last relation can be rewritten as
1 Qo
€~ —sinh { — ] . 9.5
T (l{?BT) ( )
Note that this expression satisfies the required symmetry é(—o) = —é(o), which ensures consistency

with the second law of thermodynamics, i.e. 0é>0. Following Eq. (9.2), the Newtonian viscosity
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is in fact defined as

.o
Using the above expression for é we obtain
kgT A
0~ = Toexp (—kBT) . (9.7)

This result provides some insight into the origin of fluid viscosity. It is a product of a temper-
ature dependent quantity of stress dimensions, kg7 /€2, and a relaxation timescale 75 exp <kBAT)
that depends on the underlying structure and molecular interactions, and temperature, through
A/kgT. This result also gives us a sense of the origin of the large viscosity of solids. An obvious
effect would be a large ratio A/kgT, which tends to exponentially increase the viscosity. In fact,
another important effect was hidden in our derivation. In the expression for € in Eq. (9.4) there is
in fact a multiplicative factor that represents the probability to find molecules that can undergo
hopping motion, which for the case of fluids we assumed to be of order unity, i.e. each molecule
(on average) contributes to the flow at each time interval. In disordered solids this probability is

much small, giving rise to a large pre-factor in Eq. (9.7).

The major message we take from the discussion of fluid viscosity is that inelastic, dissipative,
deformation involves configurational changes in the state of the deformation system and that
this change is mediated by some form of stress relaxation induced by particles rearrangements.
While the nature and properties of these configurational stress relaxation processes will vary from
system to system (e.g. polymeric solids vs. metals), the basic idea remains valid. The physics of
such configurational changes is usually described at the continuum level by coarse-grained internal
state variables, which are in fact non-equilibrium order parameters (extension of ordinary order

parameters in equilibrium statistical physics). These will be discussed later.

A corollary of the above discussion of fluid deformation/flow is a fundamental result in statis-

tical physics that is worth mentioning. Putting together Eqs. (9.3) and (9.7) leads to
0D ~ kgT (9.8)

which is the famous Stokes-Einstein relation. It is a paradigmatic example of a fluctuation-
dissipation relation (here diffusion describes equilibrium fluctuations and viscosity describes non-

equilibrium dissipation). Ordinary solids do not satisfy this relation.
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B. Bringing linear viscous and elastic deformation together

The experiments we described at the beginning of this section clearly demonstrate that solids
might exhibit a viscous component in their response. How do we account for this piece of physics?
More precisely, how do we describe a response that is both elastic and viscous?

As usual, we start by making some simplifying assumptions. In short, we assume linearity as
well as spatial and temporal homogeneity. Under these conditions the most general linear relation
between the stress o and the strain € (since the elastic part of the deformation is assumed to
be linear, € is an appropriate strain measure to describe elasticity. As we also consider viscous
deformation, which can be large, we should use € as in the previous discussion of fluid viscosity.
We arbitrarily choose the former here, but we should remember that the deformation can in fact

be large) reads

(Tij(t) = /t Gijk:l(t — t,)ékl(t/)dt, . (99)

—00

The tensor G is sometimes termed the stress relaxation modulus (it has the dimensions of stress).
Note that G(t —t') vanishes for ¢’ >t due to causality, i.e. the stress at time ¢ can only be affected
by strain variations that took place at earlier times, ¢’ <. This is manifested by the choice of
the upper integration limit in Eq. (9.9). For G(t) =nJ(t), we obtain a purely viscous behavior
o=mn¢€ (note that here n is a fourth order viscosity tensor). For G(t)=C H(t) (here H(t) is the
Heaviside step function), we recover the elasticity relation o = C' e of Eq. (5.6), where €(0)=0 is
assumed. In general, all of the viscoelastic properties of a material are contained within a single
time-dependent tensor, which is a generalization of the elasticity tensor. From the mathematical
structure of Eq. (9.9) we immediately see that G(t) is in fact the stress response to a step strain
E(t) =€eo0(t) or equivalently e(t) =€ H(t). If such a measurement is performed and the stress

response o (t) is tracked, one can obtain G(t) following

G =o¢;". (9.10)
In a simple shear setting (for an isotropic material), we obtain G(t) =o(t)/eo. Likewise, we can
define a creep compliance modulus J that quantifies the response to a step stress as

gij(t) :/t i (t — ) (t)dt" . (9.11)

—00

Note that as in Eq. (9.9), causality implies that the upper integration limit is ¢. In the scalar case

and for a step stress o(t)=0¢H(t), we have

Ity =2 (9.12)
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While the creep compliance J(t) (it has the dimensions of inverse stress) contains the same physical
information as the stress relaxation modulus G(t), transforming one into the other in the most
general case is not necessarily trivial and might involve numerical evaluation of Fourier integrals.
For a simple Newtonian fluid we have J(t)=t/n, while for an elastic solid we have J(t)=H(t)/E.

To get a better understanding of how visco-elasticity actually works, let us consider simple
models. The basic elements that capture the linear visco-elastic response of solids are an elastic

element (Hookean spring) whose response is given by
o=Fe, (9.13)

(we use here E as a representative elastic modulus, though the shear modulus p can be used as
well. The relevant modulus is determined by the properties of the loading, e.g. uniaxial vs. shear

deformation) and a viscous element (dashpot) whose response is given by
o=n¢. (9.14)

Any linear combination of these elements (connected in series or in parallel) describes a visco-
elastic model. The complexity of the connected network of elements determines the complexity

and richness of the model.

The Kelvin-Voigt model

One simple possibility would be connect a spring and a dashpot in parallel, i.e. to say that
elastic deformation gives rise to an elastic stress ¢ and that viscous deformation gives rise to a
viscous stress oV, while both types of deformation share the same total strain €. In this case, we
have

oc=0"40"" =Fe+né. (9.15)

This is known as the Kelvin-Voigt model. In fact, by substituting a step strain (t) = ¢ H (t)
in the above equation we see that this model simply emerges as a sum of the elastic and viscous

stress relaxation moduli
GEV(t) = GUt) + GV*(t) = EH(t) + nd(t) , (9.16)

where the superscript 'KV’ stands for Kelvin-Voigt. Let us calculate the creep compliance in this

model. To that aim, we impose a step stress o(t) = o9 H(t) in Eq. (9.15). The initial strain
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cannot jump (this would imply a diverging strain rate, which would imply an infinite viscous
stress) and hence £(t=0) = 0. Therefore, solving og=F ¢ 4+ n¢ with this initial condition yields
t)=—=|1— - JV(t)=—F=—= 11— - . 9.17

(=% - (-2 = =L h-eo(-2)] .

At short times, t < n/E we have

t
JEV () ~ = | (9.18)
Ui
i.e. a viscous response, while for long times, t > n/FE, we have
1
JEV (1) ~ — 9.19
(B~ . (9.19)

which is an elastic response. Therefore, the Kelvin-Voigt model represents short timescales viscous
response and long timescales elastic response, with a crossover at a characteristic time n/E. The
existence of such a timescale is a qualitatively new physical feature that was absent in the elastic
constitutive laws (where there exists no intrinsic timescale). The competition between elastic and
viscous deformation gives rise to a characteristic timescale. In the creep compliance experiment,
this corresponds to the typical time by which the system develops a strain of the order of o¢/FE.
What happens if we remove the external stress, say at t'; after the strain saturates (i.e. t'>n/FE)?
In this case, we set o = 0 in Eq. (9.15) to obtain 0 = F ¢ + n¢, which is solved by

e(t—1) = %exp {—@] . (9.20)

This implies that the Kelvin-Voigt model exhibits full recovery of the initial shape when the stress
is removed after a constant deformation state has been reached. This might look like an elastic

behavior, but it is not. Dissipation is involved.
The Mazwell model

Another simple model can be constructed by saying that the elastic and viscous response share

the same stress o, but contribute additively to the strain rate ¢, i.e.

° -el ~VLS )

This model is known as the Maxwell model which corresponds to a spring and a dashpot con-
nected in series. Let us see whether and how this model is consistent with the second law of

thermodynamics. The dissipation inequality (for a scalar case) reads

cé—u+Ts>0. (9.22)
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Here again we treat v and s as quantities per unit volume. Unlike the purely viscous case, a
visco-elastic solid can store elastic energy. The important point to note is that the internal energy
density u cannot depend on the total strain e, but rather on ¢, u = u(e®,s). There are deep
reasons why the total strain cannot be regarded as an independent thermodynamic variable, but
more importantly, we note that internal energy can be reversibly stored during deformation only

through elastic strains and that stresses are always thermodynamically conjugate to these strains

ou
= —. 9.23
T Bed (9.23)
Therefore, @ = 0 &% + T, which leads to
( el ~V1S -el . . V1S
oe® + o€ )—(05 —|—Ts)+TsZO - o™ > 0. (9.24)

This dissipation inequality is indeed satisfied by the choice o = n&“*, with > 0. Note that in
Eq. (9.24) the elastic power g cancels out, i.e. the reversible part of the applied power is stored
in the material (and accounted for in the internal energy), and of course does not contribute to
the dissipation. This is precisely why the heat equation in Eq. (4.43) follows from Eq. (4.42) for
elastically deforming materials.

Let us now consider the properties of the Maxwell model. By substituting a step stress o(t) =
oo H(t) into Eq. (9.21) and integrating from ¢ = 0~ to ¢’ = ¢, we see that this model simply

emerges as a sum of the elastic and viscous creep compliances

) = ) + ey = T LT Pf? 9. (9.25)

where the superscript "M’ stands for Maxwell. In this case, the short times, t < n/E, behavior is

elastic
1
JM(t) ~ — 9.26
()~ (9.26)
while the long times, t > n/FE, behavior is viscous
M t
JU(t) ~ — . (9.27)
U]

Therefore, the Maxwell model represents short timescales elastic response and long timescales
viscous response. This means that solids described by this model feature a finite Newtonian
viscosity.

Let us calculate the stress relaxation modulus in the framework of this model. A step strain

e(t) = o H(t) is represented in this model by the initial condition o(t=0) = E'¢( (i.e. the spring
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responds instantaneously, while the dashpot remains passive) for the equation

o o
0=—5+-— 9.28
5t (9.28)
valid for ¢ > 0. The solution is readily obtained as
Et t Et
o(t) = Ecgexp (——) — GM(t) = @ = FE exp (——) ) (9.29)
Ui 2 n

As expected, in this case the material cannot support stresses on long timescales. What happens
if during the stress relaxation process, say when the stress has reached a value o, < FE g¢, all
external constraints are being removed? In this case we have an instantaneous strain relaxation
of magnitude o,/ F, and the material remains deformed at a strain level of eg—oy/E. The Maxwell
model describes a simple, single timescale, exponential stress relaxation process. It is clear that
both the Kelvin-Voigt and the Maxwell model may be too simple to capture a wide range of
realistic visco-elastic phenomena. The limitations are quite clear: the Kelvin-Voigt model exhibits
no short times elasticity and the Maxwell model exhibits no long times elasticity (which might
be realistic for supercooled liquids and glasses near their glass transition temperature). These
limitations are intrinsically related to the fact that these models involve only a single timescale.
Real visco-elastic solids typically exhibit a range of timescales, which can be mathematically

represented using the Maxwellian stress relaxation function as a Green’s function by writing

G(t) = /f(T)e_t/TdT, (9.30)
T

where f(7) is a continuous distribution of response coefficients corresponding to different relax-
ation times 7. Since any visco-elastic model can be viewed as a combination of springs and

dashpots, f(7) represents a continuous distribution of such elements.
As we said above, the creep compliance J(t) contains the same physical information as the
stress relaxation modulus G(t), though it is not trivial to explicitly transform one into the other
in the most general case. Nevertheless, an implicit integral relation satisfied by these two functions

can be obtained. It takes the form

t
/ Gt —t)J(t)dt' =t . (9.31)
0
You will be asked to prove this relation in one of your homework assignments.

C. Oscillatory response

In addition to stress relaxation and creep experimental protocols, one can also measure the

visco-elastic response to an oscillatory perturbation. This experimental protocol is a fundamental
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tool for probing the physics of visco-elastic materials. More generally, it is a standard way to probe
the linear response of many physical systems and quantities (e.g. dielectric properties, mechanical
properties etc.). In our context, we consider the application of a small amplitude periodic strain
of the form

e(t) = goe™t | (9.32)

where as usual in linear response theory we use a complex representation (while physical quantities

are represented either by the real part or imaginary one). We then track the stress response
o(t) = eoG*(w)e™! | (9.33)

where G*(w) = G'(w) + iG"(w) is the complex modulus. G'(w) is known as the storage modulus
and G”(w) as the loss modulus (the physical meaning of these terms will become clear soon).
If we scan over a wide range of angular frequencies w, the function G*(w) can be determined.
This function contains the same information as the stress relaxation modulus G(¢) (and hence
also as the creep compliance modulus J(t)). To see this, substitute gge™? in the scalar version of
Eq. (9.9), yielding

o(t) = & /t iwG(t —te“tdt" . (9.34)

—0o0

By a simple change of variables ¢ = t — ¢ we obtain
G (w) = iw / GE)e“idi (9.35)
0

Therefore, the complex modulus G*(w) equals iw times the unilateral Fourier transform of G(t).
Note that since G'(w) and G”(w) are derived from a single real function they are not independent.
They are related by the Kramers-Kronig relations (to be discussed in a tutorial session). The

Newtonian viscosity can be readily extracted according to

. O o GHw
= lim — = lim ()
e—0 &€ w—0 W

(9.36)

Let us apply this result to the Maxwell model, whose stress relaxation modulus GM(t) =

E exp (—FEt/n) is given in Eq. (9.29). We then need to evaluate the following expression

lim G.(w) = lim GM(t)e ™dt . (9.37)

w—0 W w—0 0

In this case, but not necessarily always, we can exchange the order integration and the w — 0

limit to obtain

/ GM(t)dt = E/ e Btngr = 77/ e fdx=n, (9.38)
0 0 0
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which confirms Eq. (9.36) for the Maxwell model.

The complex modulus can be also expressed as
G*(w) = |G*(w)]e"™) | (9.39)

where G’ (w) = |G*(w)| cos[d(w)], G"(w) = |G*(w)]sin[d(w)] and

_ G//(CL))
G'(w)

tan[o(w)] (9.40)

which is known as the loss tangent. ¢ quantifies the phase shift between the perturbation (strain)
and the response (stress). To understand the physics behind this terminology let us calculate the
dissipation during one deformation cycle. We know that for an elastic solid this would give zero,
i.e. no dissipation is involved, while for a viscous fluid all of the work is being dissipated. Let’s
see what happens in the case of a viscous-elastic solid. For that aim we would like to integrate

the incremental work ode over a complete cycle

Wais = 7{ ode . (9.41)

We use de = R[édt] = —wegsin(wt)dt and o = R[eo|G*|e!@ )] = £o|G*| cos(wt + 0)
27w
Wais = j{ada = —3|G¥| / wsin(wt) cos(wt + 0)dt = T |G*|sind oc G . (9.42)
0

Therefore, we observe that in cyclic deformation a visco-elastic material dissipates energy in
proportion to the loss modulus, hence the name. Furthermore, since the latter vanishes when
d = 0, the term loss tangent becomes clear. In fact, one can show that W/ W, o tand, where
Wio is the stored energy (by the elastic component) in the first quarter-cycle (prove). Finally, let
us calculate the complex modulus for the Kelvin-Voigt and Maxwell models. For the former we

substitute e(t) = goe™* in Eq. (9.15) obtaining
o(t) = eo(E +iwn)e™! = G*(w) = F + iwn . (9.43)

Again, we see the same picture emerging, the response is viscous at high frequencies (short
timescales) and elastic at low frequencies (long timescales). The storage and loss moduli are
G’ = F and G” = nw. For the Maxwell model we use Eq. (9.21) to obtain

iwn

G*(w)=EB—LE_ . (9.44)
1+
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The corresponding storage and loss moduli read

) — 5 L) ) - —E
G(w)EW and G(w)EW. (9.45)

The low frequency behavior is dominated by the viscous response G”/E ~ w > G'/E ~ w? while

the high frequency behavior is dominated by the elastic response G'/E ~ 1> G"/E ~ w™L.

In
addition, note that ‘low’ and ‘high’ frequencies are defined relative to the characteristic frequency
scale in the model, ~ E/n. As stressed above, in most cases these are oversimplified models, yet

they provide us with some basic physical understanding.

D. Viscoelastic waves

An important application of visco-elastic materials is in energy absorbing devices, which are
used as mechanical dampers. To get a feeling how this works (in principle, we are of course

not considering the devices themselves), let us consider wave propagation through a visco-elastic

material. We focus on a scalar case and write the displacement field as u(z,t) = u*(z,w)e™" and
the stress field as
o(x,t) = o (z,w)e™" = G*(w) 8u et (9.46)
x

where we used e(z,t) = a"éi’t) = % e™!. Substituting these expressions in the momentum balance
equation
do  %u
— =P 9.47
or ~ "o (947)
we obtain
O*u*
G*(w = —pwiu* . 9.48
(@) 5 =P (9.45)

k= we obtain a propagating plane-wave solution of the form

(e t) ~exp i (_m vrt)]. (9.19)

We observe that G* plays the role of the elastic constant in an ordinary (elastic) plane wave and

Using u* ~e™

that \/W is a complex wave-speed. Suppose we would like to transmit low frequency waves
and strongly attenuate high frequency ones. What kind of a material do we need? We would
like to have a strong dissipative (viscous-like) response at high frequencies and an elastic response
at low frequency. Therefore, our material should be Kelvin-Voigt-like. Let us use the complex

modulus of the Kelvin-Voigt model in Eq. (9.43) as an example

G"(w) = E(1 4 iwT) (9.50)
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where 7 = n/E. We are interested in the inverse complex speed

\/? [m - %m (9.51)

in the limits wr < 1 and w7t > 1. In the low frequency limit, wr < 1, we have

) 1 1 1 ( in)
= — ~—|1——]. 9.52
G*(w) cv1+iwr c 2 (9:52)

Substituting this result into Eq. (9.49) we obtain

iw (z —ct) x
U ~ exp [_f} exp {_M] : (9.53)
Here
2 A
lw) = TC ~— > for wrkl, (9.54)
Wit wrT

where A=2mc/w is the wavelength. Therefore, in the low frequency limit waves propagate at the
ordinary wave speed with a large attenuation length scale ¢ (many wavelengths). This is expected
as the Kelvin-Voigt model is predominantly elastic in the long timescales limit.

In the opposite limit, wr > 1, we have

P11 1 (9.55)
G* cV1+iwr 2wt '

Substituting this result into Eq. (9.49) we obtain (defining ¢(w)=cv/2wr /w)

i — (W) wt T

U ~ exp [—m +iw t} exp {—ﬁ} — exp [—z(ajg(—w))] exp {—m} , (9.56)

which shows that both the wavelength and the decay length are determined by #(w) (which

actually means that the wavelength is ill-defined). Hence we conclude that in the high frequency

limit wave propagation is completely attenuated.
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X. THE EMERGENCE OF SOLIDITY: AMORPHOUS SOLIDS AND THE GLASS
TRANSITION PUZZLE

It would be impossible to discuss the physics of solids without mentioning the glass transition
puzzle. The question that we ask first is how do solids form (in fact, we actually ask what is a
solid)? The simple textbook answer is that solids form through a crystallization process, which
is a first-order phase transition, as their liquid phase is cooled below the melting temperature
T,,. However, a substantial fraction of the solids around us are not crystalline or polycrystalline.
Think of your window glass or of a piece of plastic. They are amorphous solids. How do they
form? When we mentioned the first-order phase transition through which crystals are formed, we
did not refer to the dynamical aspects of the process. Being a first-order phase transition, the
crystallization process requires the nucleation of a critical crystalline nucleus within the liquid.
This nucleation process is stochastic, has a finite free-energy activation barrier and is driven
by thermal fluctuations. It takes a finite time to be activated and it depends exponentially on
the temperature. Therefore, for the phase transition to take place we need to cool the liquid
sufficiently slowly through its melting temperature T,,. If, on the other hand, we do it faster, the
phase transition does not take place. What happens then?

Consider a thermodynamic quantity, say the volume or the enthalpy, and plot it as a function
of the temperature T' for different cooling rates. For sufficiently small rates a first-order phase
transition occurs at T" = T,,,, accompanied by a sharp drop in the thermodynamic quantity. A
crystal is formed. As we explained above, when the cooling rate is sufficiently increased, there is
no phase transition and the curve continues to go down smoothly with the decreasing temperature.
A supercooled liquid is born. Supercooled liquids are meta-stable equilibrium states. At some
point, near a temperature that is termed the “glass temperature” Tj, the curve levels off. A glass
(an amorphous solid) is born. What is the nature of this state of matter? To start scratching
the surface of this fascinating branch of physics, let us consider another macroscopic variable, the
Newtonian viscosity. As we said above (in our discussion of visco-elastic solids), the Newtonian
viscosity of ordinary liquids, say water (at room temperature), is 1072 Pa-sec. Let us now plot
the logarithm of the Newtonian viscosity 1 as a function of 1/7 (it is called an Arrhenius plot).
For simple liquids (as we discussed above), we expect this curve to be a straight line. This is
true at high temperatures. However, when the temperature approaches the glass temperature 7T,
a dramatic (strongly nonlinear) increase of the viscosity is observed. We are talking about 10

orders of magnitude within a narrow window of temperatures. This is one of the most dramatic
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phenomena we know of in terms of dynamical range. However, as far as we know, there is no phase
transition (i.e. no divergence or singularity) in this range of temperatures. The viscosity curve
is smooth. What then is the glass temperature 7,7 It is operatively defined as the temperature
for which the viscosity reaches 10'2 Pa-sec. At this high level of viscosity a shear stress can be
sustained by the glass for a macroscopic time, of about 10% sec (this is 14 orders of magnitude
larger than the microscopic timescale, which is of the order of picoseconds). When the temperature
is further reduced, the viscosity shoots up so strongly that the glass can sustain shear stresses for
extremely long timescales, effectively infinite. For example, Plexiglass or Polycarbonate (i.e. the
material from which your eye-glasses are made) are at about 0.7 — 0.87, (at room temperature)

and you were never worried that they would start flowing.

To better appreciate these effects, let us briefly mention the Pitch drop experiment, the longest
scientific experiment ever. It was initiated in 1930 at the University of Queensland, Australia.
The experimental configuration consists of Pitch (a glassy polymer) which is allowed to flow under
gravity through a funnel. The Pitch viscosity is estimated to be 10! times larger than that of water
(i.e. it is above its T};) and since then only 9 drops have fallen and the tenth is currently forming.
During the years in which the Pitch has been dripping no one has ever seen a drop falls. If you
want to try your luck, you can visit: http://smp.uq.edu.au/content/pitch-drop-experiment,

where the experiment is continuously broadcast online.

Correlation functions, fluctuations, o relaxation times and stretched exponentials

The crucial question, which is still regraded as one of the biggest puzzles in condensed-matter
physics, statistical physics and materials science, is what makes a glass a solid, i.e. how come
it can sustain a shear stress for enormously large times? As there exists no evidence that the
viscosity actually diverges at any finite temperature and no real phase transition is taking place
(though from a practical point of view this question is quite academic, a glass well below its
glass temperature will be “frozen” essentially forever), one needs to ask himself what makes the
relaxation dynamics of a glass so slow. This is a question about dynamics, not about thermo-
dynamics (though there are also clear thermodynamic signatures of the glass “transition”, which
we do not discuss here). One thing is absolutely clear: we are talking here about a (strongly)

out-of-equilibrium phenomenon.

To get a slightly better understanding of what actually is going on, let us consider microscopic


http://smp.uq.edu.au/content/pitch-drop-experiment
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quantities. The van Hove correlation function is defined as

Glr,t) = % <ZZ§ [ — (re(t) — rj(()))]> , (10.1)

i=1 j=1
where < - > is an ensemble average. Obviously the volume integral of G(r,t) just gives the
number of particle N, i.e. [G(r,t)dr=N. It is common to decompose G(r,t) into its self and
distinct parts

G(r,t) = Gs(r,t) + Gy(r, t) , (10.2)

where the self part is given by

Gyl ) = <Za[r — (r(t) - m(O))]> (10.3)

Galr,t) = % <ZZ§ r — (ralt) — rj(()))]> | (10.4)

We obviously have [Gy(r,t)dr=1 and [G4(r,t)dr=N — 1. At time ¢ = 0, we have
G(r,0) =46(r) + pyg(r) (10.5)

where p,, = N/V is the average number density and g(r) is the pair distribution function (when
orientations are averaged out, or for isotropic systems as we consider here, we obtain the usual
radial distribution function. The Fourier transform of this function is the static structure factor).
These quantities are directly measurable using scattering techniques. One striking observation
about glasses is that their radial distribution function (i.e. the probability to find a particle a
distance r away from a given particle at the origin) is nearly identical to that of an equilibrium
liquid at a higher temperature. Therefore, there seems to be no obvious static signature (i.e. at the
level of the radial distribution function) for the dramatic slowing down of the internal dynamics
of a glass.

We should look at dynamic quantities. Let us define the intermediate scattering function
(which again can be decomposed into its self and distinct parts) as the spatial Fourier transform
of G(r,t)

F(k,t) = /G(r,t)e—ik""dr : (10.6)

For the self part of the intermediate scattering function (ISF) we obtain

F(k,t) = % <Ze—i’“'[’“i<f>—”<0>1> = (D,(k,1)) . (10.7)

i
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How does this function look like? For an equilibrium liquid it simply decays exponentially with
a characteristic molecular timescale (k is usually chosen to correspond to the first peak in the radial
distribution function, but this is not important here). When the glass transition temperature is
approached something dramatic happens. The self intermediate scattering function exhibits two-
step relaxation dynamics. First, over a relatively short timescale, it drops to a value somewhat
smaller than unity. Then it remains “stuck” at this level for a long time and finally it drops
to zero. The final relaxation is non-exponential, but rather follows a “stretched exponential”

behavior

Fy(k,t) ~ e W1 (10.8)

with a stretching exponent g < 1. The characteristic relaxation time, defined as the time it
takes Fs(k,t) to reach 1/e, is denoted by 7,. It is this timescale, the so-called « relaxation time,
that grows dramatically near the glass temperature. In fact, as the main relaxation time, it is
proportional to the viscosity

n~Ta - (109)

Note, however, that the stretched exponential behavior in fact implies a distribution of timescales
(which is only peaked at 7,). We can also ask what is the manifestation of this slowing down
of relaxation times at the level of single particles. For that we can focus on the mean-squared-
displacement (r%(¢)) and plot log (r?(t)) vs. logt. For an equilibrium liquid the picture is clear.
The behavior is ballistic (i.e. a straight line of slope 2 in the log-log plot) below a typical vibration
timescale and diffusive (i.e. a straight line of slope 1 in the log-log plot) above it. Near the glass
transition the curve develops a long plateau before it crosses over to a diffusive behavior. The
typical timescale in which the plateau ends is again 7,. The physical picture is that the particles
are “frozen/locked” within cages formed by their neighbors and only once the cage opens up by
some very low probability cooperative fluctuation of several particles, it can diffuse away. It is this
cooperative motion that is believed to be at the heart of the dynamic slowing down near the glass
temperature, though nobody knows how to calculate the relaxation time from first principles.
These dynamics are also markedly different from an ordinary fluid in which thermal fluctuations
and stress relaxation events are distributed rather homogeneously in space and occur on similar
time scales. A glass is a disordered state of matter in which the thermal vibration timescales are
well separated from stress relaxation timescales. This suggests a picture in which the vibrational
degrees of freedom of a glass are quickly equilibrated with the heat bath, but the structural

degrees of freedom are out-of-equilibrium with the bath. Obviously a major theoretical hurdle
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in calculating the relaxation time is that we do not know how to handle the intrinsic structural
disorder of a glass.

For an equilibrium liquid a Gaussian approximation is valid and the self-ISF can be written as

Fy(k,t) ~ exp {—W} : (10.10)

Since the diffusion coefficient is
2
D = lim _(r ()

t—o00 o6t ’

(10.11)

we obtain

Fy(k,t) ~ exp [-Dk*t] . (10.12)

As we discussed above, this is indeed the case for equilibrium liquids. The breakdown of this

behavior as the glass temperature is approached, tells us that the statistics become non-Gaussian.
Vibrational anomalies and Stokes-FEinstein relation violation

The disordered nature of the glassy state has some dramatic implications for vibrational exci-
tations. In crystalline solids, the low frequency vibrational modes are extended (long wavelength)
phonons, whose density of states scales as Dp(w) ~ w91 (d is the dimension), following Debye’s
theory (hence the subscript). Glasses of course feature low frequency phonons as well, which is
just a manifestation of global continuous symmetries (the Goldstone theorem). However, they
feature also other low frequency vibrations, which do not exist in their crystalline counterparts.

Here we highlight major properties of these vibrational anomalies:

e Quasi-localized glassy modes — Very recently it has been established that the low frequency
end of the vibrational spectrum of glasses features quasi-localized (non-phononic) vibrational
modes in addition to low frequency phonons. These modes feature a localization length (of
a few atomic sizes) and a power-law decay. Moreover, they follow a universal gapless density

of states Dg(w) ~w?.

e The Boson peak— At somewhat higher frequencies (typically corresponding to the terahertz
range in experiments) other non-phononic vibrational excitations exist. These generically
give rise to the so-called Boson peak (the name has nothing to do with the physics of
Bosons) that manifests itself by plotting D(w)/w?!, which exhibits a peak (D(w) is the

total /measured vibrational density of states).



99

These vibrational anomalies are intimately related to some universal low temperature anomalies
in glasses (e.g. in the thermodynamic and transport properties), which are not discussed here.

Another implication of the glass transition is related to the Stokes-Einstein relation, n D ~ kgT,
which was mentioned in our discussion of Newtonian fluids. In the glassy state, near 7, this
relation between diffusivity and viscosity is violated by a factor that can reach 10> — 10%. That is,
while the diffusivity D decreases with decreasing T, it does so less dramatically than the increase

in the viscosity 7.
Dynamic heterogeneity and aging

It is clear from the above discussion that glassy dynamics is highly heterogeneous. In search
for statistical measures of cooperativity/heterogeneity, people started looking at higher order

correlation functions. One popular object is the four-point density correlation function defined as

Ca(r,t) = (p(0,0)p(0,)p(r, 0)p(r, 1)) = (p(0,0)p(0, 1)) {p(r,0)p(r,1)) . (10.13)

It quantifies the spatial (different particles separated by =) correlation between correlated motion
in time (single particle). The hope here is to be able to extract a growing correlation length from
such a correlation function. In many cases it is not easy to evaluate this correlation function and

hence its spatial integral is used instead

xa(t) = /04(7',15)(17' ) (10.14)

X4 is known as the “dynamic susceptibility” and the spatiotemporal correlated motion is termed
“dynamic heterogeneity”. x4 is regarded as a dynamical order parameter, which is also peaked at
To and can be used to define a cooperativity lengthscale.

We mentioned above that glasses are intrinsically out-of-equilibrium. This means, for example,
that all of the standard powerful tools and results of equilibrium statistical thermodynamics (e.g.
fluctuation-dissipation relations, equipartition etc.) are not valid. Another fundamental aspect
of this is the phenomenon of aging. Glasses near their glass temperature spontaneously relax
towards equilibrium (albeit very slowly). That means that even in the absence of external forces
physical quantities (e.g. energy, volume etc.) change over time. Time translational invariance
(TTT) is broken in the glassy state, i.e. it is a non-ergodic state. Following the timescales sepa-
ration discussed before, it is clear that the structural degrees of freedom are those that age (they

undergo structural relaxation), while the vibrational ones are equilibrated with the bath. In a
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schematic manner, we may say that a glass is non-Arrhenius, non-exponential and non-ergodic.

Non-affine deformation and the elasticity of amorphous materials

One may naively think that elasticity of amorphous system is rather simple. Eventually, how
complicated a generalization of a linear Hookean spring can be? The answer is that structural
disorder may make even elasticity rather non-trivial. To get a feeling of that, we need to introduce
the notion of non-affine deformation. Suppose we apply simple shear deformation to a solid.
In a perfect crystal, the deformation of any atom is the same as the macroscopically imposed
deformation. All particles respond similarly. We call this affine response. This cannot happen
in a disordered (amorphous) solid. In this case, not all particles can reach local mechanical
equilibrium by following the macroscopic deformation. They have to move in different directions
and over different distances to conform with their local environment. The elastic response is
heterogenous. We say that the deformation contains a non-affine component, i.e. part of the
local deformation in the system is not the same as the macroscopically imposed one. What are
the consequences of this non-affine deformation to elasticity? The non-affine deformation makes
the system softer as compared to its crystalline counterpart of the same composition. The shear

modulus (the bulk modulus is rather insensitive to such physical effects) can be written as

K= HB — Hna , (10.15)

where pp is the affine contribution (the one of a perfect crystal, “B” stands for “Born”) and i, is
associated with the non-affine deformation. p,, is typically 30% of pp, which makes amorphous
solids about 30% softer than their crystalline counterparts. Put in another way, for a given
applied shear stress 7, an amorphous solid stores more elastic energy ~ 72/u than its crystalline
counterpart (of the same composition). The non-affine motions provide the amorphous system

with additional degrees of freedom for storing energy.

Visco-elasticity of amorphous materials

We mentioned above that glassy dynamics are characterized by a broad spectrum of relaxation
times. A direct experimental evidence for that is obtained through linear mechanical spectroscopy.
In particular, the loss modulus G”(w) (defined in Eq. (9.39)) spans many orders of magnitude,

i.e. it is much broader than G”(w) for the Maxwell model which drops off linearly from its peak.
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In a glass, G”(w) is peaked at w, ~ 1/7, but decays much slower away from the peak.

Effective temperatures emerging from non-equilibrium fluctuation-dissipation relations

Let us consider another intriguing feature of glassy systems. For that, we need to recall the
fluctuation-dissipation theorem of equilibrium statistical physics. Consider two physical observ-

ables, say A and B, and define their two-point mutual correlation function as
C(t) =<A(t)B(t)> — <A(0)><B(0)> . (10.16)

Introduce then a small perturbation hp (an external field), which drives the systems gently out-of-
equilibrium and which is thermodynamically conjugated to B. That is, hgB is a time-dependent
perturbation to the original time-independent Hamiltonian of the system). The susceptibility x ()

quantifies the response of the observable A to this perturbation

(1) = . (10.17)

Note that of course one is allowed to choose A= B. Finally, the fluctuation-dissipation relation

takes the form
1

= O -] (10.18)

x(t)

This is one of the central features of systems at thermal equilibrium. What happens in glassy
systems, either during aging or when they are persistently driven externally (the latter will be
discussed soon in the context of plasticity)? Well, as these are out of equilibrium systems, we
expect the equilibrium fluctuation-dissipation relation to break down. Is the breakdown interesting
and insightful?

At short times, when the particles vibrate within the cages formed by their neighbours, the
system is just an equilibrium system at the bath temperature 7. Hence we expect the equilib-
rium fluctuation-dissipation relation to remain valid. This means that the vibrational degrees of
freedom of a glassy material are in equilibrium at 7. At longer time, where the non-equilibrium
nature of the configurational degrees of freedom is crucial, we expect the relation to break down.
In the last 20 years or so people studied this breakdown, both on the computer and in the lab,
and discovered something remarkable: in many cases, the longer times relation between x(¢) and
C'(t) is not some arbitrary function, but rather it remains linear with a slope different from —1/T

(the absolute value of the slope is generically smaller than —1/7"). These observations have driven
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people to propose that the configurational degrees of freedom of glasses are in quasi-equilibrium
at an effective temperature T, ¢ >T determined from the long times slope of the non-equilibrium
fluctuation-dissipation relation. These ideas have triggered a lot of interest and subsequent ex-
tensive work, see the following review paper: “The effective temperature”, Journal of Physics A:

Mathematical and Theoretical 44, 483001 (2011).

The issues briefly raised above, including the strongly nonlinear dissipative (plastic) response,

are hot topics in the condensed-matter, statistical and materials physics communities.
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Quantity Notation
Reference/undeformed configuration X
Deformed configuration (spatial, Eulerian) x
The motion (mapping between X and x) r=p(X)
Displacement vector field UX,t)=z(X,t) - X=x— X (z,t) = u(x,1)
Velocity vector field V(X,t)=0U (X,t) =v (1)
Acceleration vector field A(X,t)=0,U (X,t) =a(x,t)
Material derivative D, = (%)X = (%)m + (%)t Wéf t))X
F(X,t)=Vxp(X,t)

Deformation gradient tensor

X
J(X,t)=det F(X,t)

Deformation gradient Jacobian (volume conversion)
Surface element dS = J 'F'ds
Displacement gradient tensor H (X t)=VxU (X,t), F=I1+H
Biot extensional strain tensor Eg=U-—-1
Hencky logarithmic strain tensor Eg=hU
E=lU*-1)=i(H+H"+H"H)

Green-Lagrange strain tensor (Lagrangian)

Euler-Almansi strain tensor (Eulerian) e=1(I-FF)

Linear (infinitesimal) strain tensor e=l(H+H"), ;=1 (% + %)
J 1

. . . _ Ov(zt) _ prp—1
Spatial velocity gradient tensor L==—+~=FF

Rate of deformation tensor

Spin tensor (vorticity)

Traction vector (deformed, reference)
Cauchy stress tensor o (x,t)
Helmholtz free energy density f=u—"Ts
P(X.t)= aF?; 5= JoF T

First Piola-Kirchhoff stress tensor

Second Piola-Kirchhoff stress tensor

T(X,t,N)=P-N=0-n=t(xtmn)

Relation between stresses and tractions
8%u

— J%u R
C = 5e9e) Cijm = D106

Stiffness tensor (fourth order)
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Elastic Moduli |Notation
Bulk Modulus K
Young’s Modulus E
Lamé parameter A
Shear modulus 0
Poisson’s ratio v

Conservation laws

Mathematical formulation

General conservation form

6(?tld) + V. (field flux) = source/sink

Mass conservation

Op (x,t) + Vg (p (2, 1) v (2,t) =0

Reynolds transport theorem

b Jo ¥ (

Linear momentum balance

Angular momentum balance

x,t)de® = [, [0 (x,t) + Vg (¥ (x, 1) v (x,1))] do?
b+ Vs -0=pd, B+Vx-P=p,V
o=o"

Thermodynamics

Mathematical formulation

First law

K+U=Pe+Q, pi=0:D—V,q

Second law

S > — Joq Tds + [, Fda?, o:D —pf —psT >0

T

Heat equation

pi=0:D + kViT

Linear elasticity

Mathematical formulation

Small deformation approximation

H| <1, E~xe=3H+H"), D~¢

Constitutive relation (general materials)

o = C:e (C contains 21 independent numbers)

Energy density (isotropic materials)

u(e) = 3 (tre)” + utre?

Hooke’s law (isotropic materials)

o = Mrel + 2/15, 045 = )\gkk@-j + 2[1,52']'

Navier-Lamé equation

A+ )V (V- )+ pViu+b=piyu

Compatibility conditions (in 2D)

OyyEaa + OraEyy = 205yEmy

Airy stress function (in 2D)

ViV2y =0

Helmholtz decomposition

u = V(b + V x ’lp — CEVQ(b = @tqﬁ, C§v2’lp = att’(/)

Wave speeds

— A2 — /e
Cd_\/ o Cs_\/;
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Thermo-elasticity Mathematical formulation
Free energy density f(e,T)= 3K (tre)?* + p(e;; — 36;5tre)? — Kap(T — Ty)tre
Constitutive relation oij = —Kar (T —Tp) §;j + Ktred;; + 2u(ei; — ééijtrs)
Thermo-elastic Eqs. of motion (no inertia) A+ p)V(V-u)+ puViu = arKVT
Nonlinear elasticity Mathematical formulation

Free energy density (per unit volume in the reference config.)| f(E,T)=u(E,T)—Ts(E,T)

Incompressible neo-Hookean material u=iptr(F'F)—3]—a(J—1)
Saint-Venant material U= %tr2E + ptrE?
Linear visco-elasticity Mathematical formulation
Newtonian (linear) viscosity n= lir% o/
E—

Constitutive relation (with stress relaxation modulus)| o

t) = ffoo Gijrl (t —t) e (t) at/
t) = fioo ik (t —t") o (') dt’

vis 4 ¢ (and the same strain)

is (
Constitutive relation (with creep compliance modulus)| &;; (
o

Kelvin-Voigt model o=

Maxwell model ¢ =¢%+¢v  (and the same stress)
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