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Fusion rules in turbulence address the asymptotic properties of many-point correlation functions when some
of the coordinates are very close to each other. Here we put to the experimental test some nontrivial conse-
quences of the fusion rules for scalar correlations in turbulence. To this aim we examine passive turbulent
advection as well as convective turbulence. Adding one assumption to the fusion rules, one obtains a prediction
for universal conditional statistics of gradient fields. We examine the conditional average of the scalar dissi-
pation field^¹2T(r )uT(r1R)2T(r )& for R in the inertial range and find that it is linear inT(r1R)2T(r )
with a fully determined proportionality constant. The implications of these findings for the general scaling
theory of scalar turbulence are discussed.@S1063-651X~96!50311-9#

PACS number~s!: 47.27.Gs, 47.27.Jv, 05.40.1j

The aim of this paper is to present an analysis of experi-
mental data@1–3# pertaining to turbulent scalar advection
and to discuss the implications of this analysis in the context
of fusion rules and conditional averages. We begin with a
short theoretical background of the issues in order to make
this paper self-contained. Turbulent advection is described
mathematically by the equation of motion for a scalar field
T~$r %,t!,

@] t1u~r ,t !•“#T~r ,t !5k¹2T~r ,t !, ~1!

wherek is the scalar diffusivity andu~r ,t! is the turbulent
velocity field responsible for the advection ofT(r ,t). The
problem of ‘‘passive’’ scalar advection is the one in which
the properties ofu(r ,t) are not affected by those of the scalar
T(r ,t). In ‘‘active’’ scalar problems, like turbulent convec-
tion, the velocity field and its statistical properties are
coupled with those of the scalar field and Eq.~1! has to be
supplemented with an additional equation foru(r ,t) and
T(r ,t). In our thinking below we consider passive as well as
active scalar fields. In both cases we are interested in the
limit of large Péclet number Pe, which is defined as
ULL/k, whereUL is the typical velocity difference across
the outer scaleL of turbulence.

The statistical properties of the scalar fields are commonly
discussed in terms of the so-called structure functions
S2n(R) defined as

S2n~R![^@DT~r ,r1R!#2n&, ~2!

where ^•••& stands for an ensemble average and we denote
DT(r ,r1R)[T(r1R,t)2T(r ,t), In writing this equation,
we assume that the statistics of the velocity field leads to a
stationary and spatially homogeneous ensemble of the scalar
T. If the statistics are also isotropic, thenS2n becomes a
function ofR only, independent of the direction ofR. The
scaling exponents of the structure functionsS2n(R) charac-
terize theirR dependence in the limit of large Pe,

S2n~R!}Rz2n, ~3!

whenR is in the ‘‘inertial’’ interval of scales that will be
discussed later in this paper. One of the fundamental ques-
tions in the theory of turbulent advection is what the numeri-
cal values of the exponentsz2n are and whether they con-
form to classical Kolmogorov-type arguments or, rather,
exhibit the phenomenon of multiscaling.

An important equation to analyze in this context is the
so-called balance equation, which is obtained by writing Eq.
~1! twice at pointsr andr1R, subtracting the equations, and
multiplying the result by 2n@T(r1R,t)2T(r ,t)#2n21. Tak-
ing the ensemble average and using the symmetry between
the two points analyzed, one finds the balance equation

D2n~R!5J2n~R!, ~4!

whereD2n(R) stems from the convective term in~1! and
J2n(R) stems from the diffusion term

J2n~R!524nk^¹2T~r !@DT~r ,r1R!#2n21&. ~5!

It was argued recently, by Kraichnan@4# and later in Refs.
@5–7# that balance equations play a very important role in
providing nonperturbative relations that can determine, or
severely constrain, the values of the scaling exponentsz2n .
A good example is Kraichnan’s model of passive scalar ad-
vection @8#, in which the velocity fieldu is d correlated in
time, but exhibits power-law scaling in space. In this case the
convective termD2n can be calculated exactly in terms of
S2n @4#,

D2n~R!52R12d
]

]R
Rd21h~R!

]

]R
S2n~R!, ~6!

with d being the space dimension andh(R) the scalar part of
the eddy diffusivityh(R)}Rzh, with zh a scaling exponent.
If we could represent exactly also the right-hand side~RHS!
J2n(R) in terms ofS2n(R), we could evaluate all the scaling
exponentsz2n from the balance equation~4!. Here is where
the fusion rules come in. The fusion rules appear naturally in
the analytic theory of Navier-Stokes turbulence@7,9–11# and
passive-scalar turbulent advection@6,11,12# and determine
the analytic structure ofn-point correlation functions when a
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group of coordinates tend towards each other. In the case of
scalar advection we consider simultaneous many-point cor-
relation functions of field differences

F2n~r0ur1 ,r2 , . . . ,r2n!

5^DT~r0 ,r1!DT~r0 ,r2!•••DT~r0 ,rn!&. ~7!

We note that the previously defined structure functionsS2n
are obtained by ‘‘fusing’’ all the coordinatesr1 , . . . ,r2n to
one coordinater01R. The fusion rules were derived in@11#
for systems that enjoy universality of the scaling exponents
~i.e., the scaling exponents do not depend on the detailed
form of the driving of the turbulent flows! and whose corre-
lation functionsF2n are homogeneous functions of their ar-
guments,

F2n~lr0ulr1 , . . . ,lr2n!5lz2nF2n~r0ur1 , . . . ,r2n!.
~8!

This form applies whenever all the distancesur i2r0u are in
the so-called inertial range, between the outer scaleL and the
appropriate dissipative scale of the system, denoted below as
h. The fusion rules address the asymptotic properties of
F2n when a group ofp points,p,2n21, tend towardsr0
(ur i2r0u;r for all i<p), while all the other coordinates
remain at a larger distanceR from r0 (ur i2r0u;R for i.p
andR@r). In particular, under the two general assumptions
of scale invariance and universality of the scaling exponents
the fusion rules state that to leading order inr/R,

F2n~r0ur01r,r01R , . . . ,r01R!;
S2~r!

S2~R!
S2n~R!. ~9!

This forms holds as long asr is in the inertial range.
We show now how to use this fusion rule to calculate

J2n(R). First write it as

J2n~R!524kn lim
r→0

“r
2F2n~r0ur01r,r01R, . . . ,r01R!.

In using the fusion rule~9! to evaluate this quantity we in-
terpret the limitr→0 as a limitr→h. This seems natural
for large Pe´clet numbers whenh→0. It is important, how-
ever, to stress that there is a hidden assumption here. We
expect the functionF2n(r0ur01r,r01R, . . . ,r01R), which
is a function ofr andR, to change its analytic behavior as a
function of r. This change occurs at the viscous crossover
scaleh. The issue is whether this crossover scale isn and
R independent. That this is so has beenproven for Kraich-
nan’s model of turbulent advection@11#, but not in general.
We believe that this is more generally true due to the linear-
ity of the equation of motion~1!, independently of the sta-
tistical properties of the driving velocity field. The experi-
mental results that we discuss later in this paper will strongly
indicate that this is the case in a wide context of scalar tur-
bulent fields. We caution the reader that this is not so in
Navier-Stokes turbulence. With this in mind we write

J2n~R!;24kn@¹r
2S2~r!ur5h#S2n~R!/S2~R!. ~10!

Using the fact that the mean of the scalar dissipation field,
denotedē, is evaluated asē;k@¹r

2S2(r)ur5h# and also the
fact that in the inertial rangeJ2(R)524ē, we write

J2n~R!5nC2nJ2S2n~R!/S2~R!, ~11!

whereC2n is an as yet unknown dimensionless coefficient,
but C251. Equation~11! was suggested for Kraichnan’s
model in@4# and derived in@6#. Here we propose that it holds
in a much wider context. To this end we turn now to the
analyses of experimental data.

We first display experimental results that confirm the
theoretical prediction~11!. The results show that to a good
accuracyC2n'1 for all n and R. The theoretical conse-
quences of thisn andR independence ofC2n will be dis-
cussed after examining the data.

We use temperature data measured in the wake of a
heated cylinder@1#. Water of speed 5 m/s flowed past a
heated cylinder of diameter 19 mm~Reynolds number equal
to 9.53104), The temperature was measured at a fixed point
downstream of the cylinder on the wake center line. The
cylinder was heated so slightly that the buoyancy term was
unimportant and temperature acted as a passive scalar. Tem-
perature was measured as a function of time, and we use here
the standard Taylor hypothesis that surrogates time deriva-
tives for space derivatives. In Fig. 1 we display
J2n(R)/2nk as a function of (2k)21J2S2n(R)/S2(R) for n
varying from 2 to 6 and for variousR values in the inertial
range. We see that all the points fall on a line whose slope is
unity to high accuracy and whose intercept~in log-log plot!
is very closely zero. This good agreement is a confirmation
of the validity of the fusion rules. In addition, this agreement
lends support to theassumptionthath is n andR indepen-
dent. It should be stressed that individual tests at various
values ofn as a function ofR corroborate the same conclu-
sion, i.e., Eq.~11! is supported by the experimental data with
C2n being near unity. The most sensitive test of the alleged
constancy of the coefficientsC2n is obtained by dividing
J2n(R) by nJ2S2n(R)/S2(R) for all the available valuesn
andR. The result of such a test is shown in Fig. 2. We see
that all the measured values ofC2n are concentrated within

FIG. 1. Plot of loge uJ2n(R)/(2nk)u vs loge u(2k)21J2S2n(R)/S2(R)u
for n52 ~squares!, 3 ~triangles!, 4 ~diamonds!, 5 ~stars!, and 6
~circles! andR in the inertial range. The data are taken from Ref.
@1#. The line is not a fit, but the theoretical expectation with slope 1
and intercept 0.
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the interval (0.75,1) for all separation within the inertial in-
terval. Considering the fact that the quantities themselves
vary in this region over five orders of magnitude, we inter-
pret this as a good indication of the independence ofC2n of
R andn. TheR independence is very clear and is a direct test
of the fusion rules. The weakn dependence seems to indicate
that C2n decreases slightly withn; this may arise from the
limited accuracy of the data. We are reluctant to make a
strong claim about the accuracy of 10th- or 12th-order struc-
ture functions.

Let us accept for now the evidence that the coefficients
C2n in Eq. ~11! are n independent and look for a way to
understand it. Note thatJ2n(R) can be written exactly in
terms of conditional averages in the form

J2n~R!524nkE dd T~r ,r1R!P@DT~r ,r1R!#

3@DT~r ,r1R!#2n21^¹2T~r !uDT~r ,r1R!&.

~12!

We see that the conditional average^¹2T(r )udT(r ,r1R)#&
appears as a natural object that needs to be determined. If we
make the assumption that the conditional average, which in
general is a function of the two variablesR andDT, is fac-
torizable as a function ofR times a function ofDT, then the
only possible such form is

24k^¹2T~r !uDT~r ,r1R!&5
J2

S2~R!
DT~r ,r1R!.

~13!

With this form in ~12! we regain the RHS of~11!, but since
the conditional average cannot be a function ofn, the coef-
ficient C2n mustbe n independent. We note that Kraichnan
conjectured that the conditional average islinear in
DT(r ,r1R) in the context of the Kraichnan model and nu-
merical simulations supporting this conjecture were pre-
sented@5#. Moreover, linearity approximations of conditional

average of the form̂¹2XuX& and relations such as~11! have
also been studied earlier by Ching@13# and by Pope and
Ching @14#. In this paper we propose that the linearity of the
conditional average indT(r ,r1R) is a general property of a
wider variety of turbulent advection problems. From our dis-
cussion, it is clear that other results on conditional statistics
can be derived in a similar fashion.

Before we proceed to the implications of~13!, we present
the experimental evidence of its validity. In Fig. 3 we present
results from the same data set that was used above. We show
the conditional average as a function ofDT(r ,r1R) for
various values ofR. The line passing through the data points
is not a fit, but rather the line required by Eq.~13!. We note
that points belonging to different values ofR fall on the same
line, indicating that indeed the conditional average is a func-
tion of DT(r ,r1R) times a function ofR, and that we iden-
tified correctly the function ofR as J2 /S2(R). To test the
generality of this result we analyzed a second data set from
the convective hard turbulence regime of the well-
documented experiment by Libchaber and co-workers@2,3#.
The experiment was performed in a cylindrical box of he-
lium gas heated from below and the Rayleigh number can be
as high as 1015. The box has a diameter of 20 cm and a
height of 40 cm. The temperature at the center of the box
was measured as a function of time and we use the same
Taylor hypothesis to analyze the conditional average. The
results are shown in Fig. 4. Although we see larger statistical
scatter at the ends of the plot, the basic assertion of linearity
with the correct slope is confirmed.

As explained, the linearity of the conditional average in
DT @Eq. ~13!# was not derived from first principles. To stress
the theoretical interest in such a derivation we consider
briefly another form ofJ2n(R) that is obtained by moving
around one of the gradients in~5!. Up to a term that is neg-
ligible for R in the inertial range we can write

J2n~R!524n~2n21!k^u“T~r !u2@DT~r ,r1R!#2n22&.

Accepting Eq.~11! with C2n51 we can write

FIG. 2. Detailed test of the coefficientC2n; see the text for
details. The symbols are the same as in Fig. 1. The small systematic
decrease ofC2n with n may be due to insufficient accuracy at the
tails of the probability distribution that become more important at
large values ofn. The separationR was measured in units of sam-
pling time, using the Talor hypothesis. The inertial interval is ap-
proximately 10,R,1000.

FIG. 3. Conditional average in Eq.~13! as measured from Ref.
@1# normalized by the measured value of2J2/4S2(R) as a function
of DT(R) for three different values ofR measured in units of the
sampling time. The differentR values are designated by triangles
(R516), squares (R5128), and circles (R51024), respectively.
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24k^u“T~r !u2@DT~r ,r1R!#2n22&

5J2S2n~R!/~2n21!S2~R!. ~14!

The LHS can be written, similarly to~12!, in terms of the
conditional averagêu“T(r )u2uDT(r ,r1R)&. It is obvious,
however, that now wecannotassume that this quantity fac-
torizes into a function ofDT times a function ofR. If it did,
the dependence onDT must have been (DT)2 in order to
give usS2n(R) on the RHS of~14!. But we can never obtain
in this way the explicit 1/(2n21) factor. This underlines the
fact that the factorization in~13! is far from being obvious or
trivial. Currently, we do not know the deep reason why the
conditional averages of¹2T afford factorization. We pose
this as an important issue for further theoretical research.

Finally, we comment on the implications of these findings
for the exponentszn . As discussed above, if we know the
functional form ofJ2n and the coefficient, we can use the
balance equation~4! to compute the scaling exponents, pro-
vided that we know the nonlinear termD2n . In the context
of the Kraichnan model the latter is known exactly, and the
balance equation leads to a quadratic equation for the expo-
nentszn , with the solution

z2n5
1
2 @z22d1A~z21d!214dz2~n21!#. ~15!

These are the exponents that were conjectured by Kraichnan.
We note that these exponents are in disagreement with the
calculations of Refs.@12,15#, which attempted to compute
the exponents by perturbative methods using as a small pa-
rameter either 22z2 or the inverse dimension 1/d. If it turns
out indeed that~15! is the correct nonperturbative result, one
needs to carefully rethink the meaning of these perturbative
calculations.
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FIG. 4. Same as Fig. 3 but computed from Refs.@2,3#.
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