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A nonadiabatic approximation is used in a calculation of the probabilities of transitions involving one- and
two-electron states. An analysis is made of the field dependences of the frequency factor and of the activation
energy of intercenter transitions. Necessary calculations are made of the parameters of a model of

generation—recombination transitions in disordered silicon.

Difficulties are frequently encountered in
unambiguous interpretation of the characteristics of
electron transitions occurring in generation—recom-
bination processes in semiconductors or in semi-
conductor structures with a complex spectrum of
localized states in the band gap. This applies also
to real surfaces of semiconductors, amorphous and
polycrystalline semiconductors, semiconductors wity
a high dislocation density, interfaces between a
metal and a semiconductor and at a junction, etc.
An analysis of the recent experimental data on
generation—recombination processes shows that the
main recombination channel in these materials usually
includes intercenter electron transitions.

Information on the spin states of carriers
has extended greatly the scope of investigations of
characteristics of electron transitions in such semi-
conductors. There are several models!~® that ac-
count for the dependence of the rate of recombina-
tion of nonequilibriuin carriers on the spin states of
free and localized electrons. The Kaplan—Solomon—
Mott model’ allows for the recombination of carriers
via pair states and has been confirmed by direct
experiments.3”% Figure 1 shows schematically the
generation—recombination transitions in this model.
It was reported in Ref. 6 that each of the centers
in a pair in most of the investigated objects can be
in one or two-electron states.

There is much which is not yet clear about the
origin and physics of two-electron states and little
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is known about the pair states themselves, such as
the radius of the electron wave functions of the
states, the distance between the partners in a pair,
and the methods suitable for the determination of
the parameters of such states.

We shall try to tackle most of the problems
mentioned above in the present and following papers.
The present paper reports calculations of transitions
involving one-and two-electron states, gives an
analysis of the field dependences of the frequency
factor and the activation energy of intercenter
transitions, and derives relationships necessary
for the determination of the parameters of a model
of generation—recombination transitions in disordered
silicon. In the following paper we shall give the
experimental data for partly disordered silicon and
discuss them using the results given below: we shall
estimate the radii of electron wave functions (4-7

) and the separation between the pair partners
(25-40 A), and we shall also account for the field
dependences of the frequency factor and the acti-
vation energy.

1. ELECTRON STATES LOCALIZED AT STRUCTURE
DEFECTS AND THE POLARON EFFECT

We shall consider a structure defect in an
ideal periodic lattice, for example, a vacancy in
silicon. Among the various types of local vibra-
tions of atoms associated with this defect we shall
select the "softest" mode and we shall label its con-
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FIG. 1. Schematic representation of the investigated electron
transitions.

figurational coordinate X. Following Holstein 758
and Anderson,’ we shall assume that the distrotion
of the atomic system of a defect (which results, for
example, because of the capture of an electron)

is due to this softest mode. We shall try to obtain
the simplest description of such a defect which has
captured n = 0, 1, or 2 electrons and, following
tradition,’"!! we shall confine our treatment to

the harmonic approximation for the energy of the
atomic subsystem kX?/2 and to the linear approxima-
tion for the energy of its interaction with captured
electrons —nQX, where Q is the deformation poten-
tial. The total energy of the system

W (X, n)=kX%2 - QX 4 ne -t Udy 1)

includes also the one-electron energy n€ and the
energy of the Coulomb repulsion Ug, which is "ac-
tivated" only if n = 2.

Minimization of Eq. (1) with respect to X
allows us to find the equilibrium energies of the
system E(n) and the equilibrium displacements X°

(n)

E(n)=ne —n*W 4 U 3,5, X"(n)=nX’ X°=QJk, (2)

as well as the polaron shift W
W = Q%/2k. (3)

If the polaron shift is sufficiently large, so
that the Hubbard energy

U=E@2) -2B()=—2W+ U, (4)

becomes negative, then two electrons are more
likely to occupy one center than two different
centers.

The strong polaron effect in disordered semi-
conductors is due to anomalously low rigidity k of
stretched bonds. For our purpose it is important
that stretched bonds appear at dislocations and,
consequently, U centers with a large polaron ef-
fect may concentrate around dislocations. There-
fore, even in the case of relatively weakly deformed
semiconductors in which the total number of such
centers is small, the probability of their close dis-
tribution in the coordinate space may be high. This
in turn may induce transitions between the U centers
and consequently give rise to spin-dependent ef-
fects in the generation and recombination of car-
riers.

2. NONADIABATIC ELECTRON TRANSITIONS
BETWEEN U CENTERS

In the range of parameters of interest to us
the activation energy (or the barrier height) for a
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transition of an electron between two U centers is
much greater than the energy T. Therefore, these
transitions are of multiphonon nature. The exci-
tation of the atomic subsystem can then be con-
sidered classically using the configurational co-
ordinates of the centers X; and X, of interest to
us. We can say that mechanical vibrations of fre-
quencies not exceeding the Debye value are induced
by the influence of temperature and the electron
states in the defects adjust themselves adiabatically
to the current states of the configurational coordi-
nates X ;(t) and X ,(t). For certain displacements
corresponding to crossing of the electron terms we
can expect a transition of an electron between centers
and the frequency of such transitions is v(X ;, X ;).
The value of y can be found simply using quantum-
mechanical perturbation theory !?

By (Xy, Xp)=2r|J PU{W_ (X, Xo) — W, (X1, Xo)]. (5)

Here, Wi(X,, X,) and W_(X;, X;) are the energies
of two centers before and after the transfer of an
electron from the first to the second center at fixed
values of the configurational coordinates X, and X,;
the energy interval of the overlap ¢ is the matrix
element in the Hamiltonian of the transition

£ =7 (a1 + 0§dy). (6)

If the probability of a transition during the
time of one passage through a W4 = W. resonance
is low (nonadiabatic conditions), the interference
between different passages through the resonance
can be ignored and the total transition frequency
is found by averaging y(X,, X,) over different
configurations of the system of two centers X, and
X , with a Boltzmann probability function®?

F(Xy, Xo)=Z=Voxp [(W_ (X}, X§) — W_(Xy, X))/T]. (D

Here, X¢ and XJ are the equilibrium displacements
of the centers 1 and 2, respectively; Z is the parti-
tion function governed by the probability normaliza-
tion condition. We therefore have

Y= S f (X1, Xo) 7 (X1, Xp)dX,dX,.

(8)

3. DEPENDENCE OF THE OVERLAP INTEGRAL ON
THE CONFIGURATIONAL COORDINATES

In calculation of the transition frequency vy
it is usual to ignore the dependence of < on X, and
X, (see, for example, Ref. 14). We shall show that
this approximation may be incorrect.

We shall consider a defect with a characteristic
size a of the order of several lattice constants a,.
At a distance r > a from the center of a defect
the field of the defect vanishes so that the electron
function V¥ falls on increase in r in a universal
manner independent of the nature of the defect.
In the effective mass approximation when an electron
"sees" a crystal as a continuous medium, the func-
tion ¥ in the range r > a satisfies the free Schro-
dinger equation. In the spherically symmetric case,
we have!?

T oo r-texp (—ur). (9

The localization radius r, = 1/« of an electron
depends only on the electron energy ¢ measured
from the bottom of the conduction band:

h2x2/2m = —¢, & <0. (10)
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Calculations of the matrix element of the kinetic
energy operator of an electron using the functions
y(r) and ¥(R—r) of Eq. (9) gives the familiar
asymptotic (for large values of R) dependence of
the energy of an overlap integral on the distance
between the centers R:

& (R) =, exp (—R). (11)
Here, 7,~¢/2; in the case of deep centers in silicon
we can assume that oJe= 0.1-0.2 eV.

We shall need this estimate later in an analysis
of the experimental data. It is worth noting that
« in Eq. (11) depends on ¢ in accordance with
Eq. (10), and that ¢ represents the energy of a
transition between the centers 1 and 2 in a state
which is adiabatically adjusted to fit the current
values of the configurational coordinates X, and
X,. In the case of the |0, 2> - |1, 1> transition
(with two electrons at the first center and none
at the other in the initial state and with one electron
per center in the final state), we have

ey — Qo Xo + Uo=:1 — 01 X;. (12)

We can see that the energy overlap integral
depends exponentially (strongly) on X, and X,.
Therefore, when integration with respect to X,
and X, in Eq. (8) is carried out, this dependence
can generally be ignored.

4. FREQUENCY OF [0, 2> » |1, 1> TRANSITIONS
IN NONADIABATIC CONDITIONS

We shall use the above framework to find the
frequency of the y(0, 2 » 1, 1) transitions when
in the initial state there are two electrons at the
second center and the first is empty and in the final
state each center has one electron. The nature
of these centers may be different so that we shall
distinguish the deformation potential @ and other
phenomenological parameters of the centers by label-
ing them with the indices 1 and 2. It follows from
Egs. (1) and (2) that

W_ (X1, Xg) = (5,X7 4 £, X3)/2 — 205Xy - 26, + U, (138)
W =W_ (X}, X}) =2, —4Wy+ Up, (13b)
W, (X1, Xp)= (.1 X] + k2 X3)/2 — Q1 X1 — Q2 X+ &1 + o (13c¢)

According to Egs. (7) and (13) the probability
function is Gaussian

f =21 exp |— (ks (X3 — 2K + kyX])/2T| (14)

where
Z = 20T/(krka) %y XY= Qufks.

Substituting Egs. (11) and (13) into Eq. (5)
and also Eqs. (14) and (5) into Eq. (8), we find
the initial expression for the frequency of the
|0, 2> » |1, 1> transitions:

1= (73 VEiEy [12T)
X Sexp (—2 (Xy, Xo))¥(Q1Xy— Q1X3— ey eg+ Uyy) X dX,,
where

@ =22 () R+ (W_ (X1, Xa) — WO/T.

We can find the integral with respect to X,
with the aid of the § function, and that with respect
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to X, by the saddle point method. The saddle point
X ,, X , is defined by the condition for the minimum
of ¢:

(16a)
kX 4 £y X001/Qs= Q1 [2 — x (§) BT/| E]),

a— X =—0:Xs+ 2+ Up=2 (X, Xy =t. (16b)

We shall assume that, in accordance with Eq.
(10), we have «(e) « /Y—¢ and that ¢ is given by
Eq. (12). We shall calculate ¢" at the saddle point:

¥ = d20/d X} = ky [(W, + W3)/TW, — sRWy/s?).

Our calculations are valid if the separation
between the centers is not too high, so that ¢" >
0. This gives the condition

R < 8 (Wy+ Wy). (17)

If we introduce a characteristic temperature

T*=Te2 (W, + Wo)/[e (W, + W) —  (5) RTW3), (18)
then the condition (17) can be rewritten in the form
T* > 0. Assuming that this condition is satisfied,
we find from Eqs. (15)-(18) that the frequency of
the activated |0, 2> » |1, 1> transitions is

1(0, 21, 1) = (=" 72 (8) exp (—AE,/T)/AT (W1 4 W5)". (19)
Here, 7 (¢) is the energy overlap integral of Eqgs.
(11) and (10) at the saddle value of € of the tunnel-
ing electron energy of Eq. (12):

1
t= Gy (Waa+ Wa e+ U —4W) + 2WaWaTR/ 2|, (20)

where AEg is the activation energy of the investi-
gated [0, 2> » |1, 1> transitions. This energy is
AE,=E — bE,, (21)
where
AEm=¢;— g — U+ 3Wo— Wy (22)

is the difference between the equilibrium (in respect
of the configurational coordinates X, and X,) ener-
gies of Eq. (2) of two electrons after a transition
(in the |1, 1> state) and before a transition (in
the |0, 2> state); AEp = 4Eu + AEy, is the energy
of a configurational barrier. This energy consists
of the already known term AE,; of Ref. 15 and an
additional term AEy,, which appears because of the
energy dependence of the overlap integral

AB,y == [ey — tg — U e — 2W, + 2W,]2/4 (W + Wy), (23a)

AE,, = (xR)2 WEW,T2/e4 (W, + Wy)®. (23b)

This energy occurs in the exponential tempera-
ture dependence of the frequency of the reverse
(recombination) transition ( |1, 1> » |0, 2>)

1(1, 152, 0)=VxT* 92 (2) exp (—AE,/T)/AT (Wy + W;)a. (24)
The dependence o (¢} gives rise to several
effects. Firstly, in the numerator of the preexpo-
nential factor we find that temperature is modified
to T » T* > T. Secondly, it follows from Eq.
(20) that the energy of a tunneling electron in-
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creases and so does the overlap integral o (%)
Finally, the configurational barrier described by
the system (23) becomes higher. If we use vy,

to denote the frequency of a transition ignoring the
dependence 7 (¢)., but only allowing for this factor,
we obtain

K W \W.T w3
wri=wl o [wrrt ww Ty (- wwm ) ) (29)

This relationship is valid in the case of generation
and recombination transitions. In its derivation we
have assumed that the relative change in the elec-
tron energy d&c is small and we have used the expan-
sion k(€ + 8€) = k(€)[1—6e/2¢].

These calculations are valid if the separation
between the centers is not too large so that T* >
0. In the opposite case the energy e does not
correspond to a minimum, but to a maximum of the
argument of the exponential function ¢ in Eq. (15).
This means that in the case of large distances be-
tween the centers the intercenter transitions are
characterized bythese large fluctuations X ; and
X, when € » 0, i.e., that the energy of a tunneling
electron approaches the bottom of the conduction
band and the electron localization radius at a center
ro « 1/x « 1//T€] becomes greater than the separa-
tion between the centers. In this case the exponen-
tial smallness of the overlap integral o exp(—«R)
disappears from the expressions for the transition
frequency and this is compensated by an additional
smallness in the temperature exponent.

5. NONADIABATIC INTERCENTER TRANSITIONS
IN AN ELECTRIC FIELD

a) Mechanisms responsible for the dependence of
the transition frequency on the applied electric
field

An electric field § homogeneous in space and
constant in time should affect the frequency of
intercenter transitions for a number of reasons.

1. First of all, the energy of an electron
ep localized at a center with a coordinate ry, ac-
quires a correction $ep. It follows from Egs. (20)-
(22) that this alters the energy of the configurational
barrier AEp and the activation energy 4Eg:

AE, > AE, 1 3E,, (26a)
AE,— AE,+3E,, (26b)
BE, == bz [Be 4 AWy — 4Wy — 2U /6 (W, + Wa), (26¢)
3E,=BE, - Be, (26d)
3e = ¢8R, (26¢)
where
R=r—r,

In order to estimate the value of ée, which
can be done quite easily in experiments, we shall
assume that & has the usual value in a reverse-
biased p-n junction in Si: | & | = 10° V/cm; we
shall also assume that the distance between the
centers is [R | » 100 &. Then, the change in the
activation barrier height alters the transition fre-
quency at room temperature by a factor exp(de/T),
i.e., by three-four orders of magnitude.
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2. DMoreover, the applied electric field alters
the state of an electron at a center and, conse-
quently, its energy e, measured from the bottom
of the conduction band. If the field is & , the
expression for the energy given by Eq. (1) must
be supplemented by —gne | & IX, where the numeri-
cal coefficient B is of the order of unity. The
actual value of B depends on the configurational
coordinate X. Therefore, in the expression (1)
for the electric field we now have @ » @ + pge &.
In the case of a vacancy in Si (Ref. 16) we find
that Q = 1 eV/R. In a field [&]| = 10° V/em, we
obtain e| & | = 1.3-107¢ eV/&, i.e., e|&|/Q = 1072-
1073, It follows from Eq. (3) that the change in
the polaron shift in the field is §W = 2Wge| & {/Q.
The value of W is of the order of 0.2-0.3 eV, so
that we have sW =~ 1073 eV, The difference between
the values of W between the two centers gives rise
to an additiona [compared with Eq. (26b)] change
in the activation energy, which should be compared
with the energy T. The estimates made above
show that, with the exception of the temperature
range T < 10 K, we can ignore the influence of
the electric field on W.

3. Generally speaking, a field & alters the
position of the center of gravity of an electron
cloud at a center and, consequently, the effective
distance between the centers. However, this ef-
fect is negligible: AR _ = e|& [/k for | &| = 108
V/cm and k = 10 eV/A. Even when 1/« = ag, = 5

the relative change in the overlap integral is less
than 1072,

4. Finally, we must bearin mind that the electric
field has a direct influence on the overlap integral
when the distance between the centers is fixed.

This important effect will be discussed in the next
subsection.

b) Dependence of the overlap integral on the applied
electric field

The application of an electric field influences
the wave function ¥(r ) of an electron tunneling
between the investigated centers. In the space be-
tween the centers the function Y¥( r) satisfies the
following Schrodinger equation (z is the electric field
direction):

—h2AT[2m = (E — 6|8 |7) V. (27)

We shall seek the solution ¥(r) in the semi-
classical approximation

WV (r)=exp (—S5 (1)), §=18,+ #2S;. (28)
Hence, in the axially-symmetric case we find that
S, is described by

(08,/02)2 + (05.,/0p)2 = (1 — 2¢ | & | mz) x2 = +2 (). (29)

Here, p is.thetransverse coordinate and 1/k is the
localization radius of an electron in the absence of the
field (10). Equation (29) is the Hamiltonian—Jacobi
equation for the time-independent part of the Euclid-
ean action S, of a classical particle moving (in
imaginary time) under the influence of a constant
force. The path of such motion can be found in

a trivial manner by integrating the Lagrange func-
tion with respect to time and along a classical path,
which gives the action, and then express S, in
terms of the coordinates of the initial z = 0, p = 0,
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and final z, p points of motion. This gives

So (e )= (3e| S |m)[(22(3/2) + | & | mr)h — (x2 (3/2) — e | & | mr)2],
(30)
where

%2 (2/2) =22 —e| & | mz, ri=z2+4 k.

The validity of this solution can readily be confirmed
by direct substitution in Eq. (29). We shall analyze
the resultatnt expression (30) for S, expanding it
as a series in r:

Se=1(z/2) r{1 —r¥24z} — ...], z,=7%%(z/2)/e| S| m. (31)
Here, z , is the distance along the z axis from the
point with the coordinate z/2 to the turning point,
where «?(z) = 0. It should be noted that the ex-
pansion of Eq. (31) converges well: even at the
limit of validity at r = z, the two terms in Eq.

(31) ensure that the precision is 1.5-10™; however,
if r < 2z,, then to within 10”7 we need to con-
sider only the first term of the expansion, i.e., we
can assume that S, = «?(z/2)r. In this approxima-
tion the influence of the applied electric field on
the argument of the exponential function reduces

to renormalization of the localization radius « -
k(z/2) = (x*—e | & | mz)f. This result can be
interpreted as follows: we can calculate the semi-
classical shift of the phase of S, at a point at a
certain coordinate z ,, r, = Vp: + z2 by replacing in
Eg. (29) «2(z) with the average value of this
quantity along a classical path, i.e., by replacing
it with «?(Z,/2). The resultant equation can be
solved in a trivial manner. In the spherical case
we have S, = «2(z,/2) r, which agrees with the
first term of the expansion in Eq. (31).

In the next order of the classical expansion
(28) we have to calculate S;, which determines the
preexponential factor in the expression for the wave
function. Since in &-:0 this factor is independent
of «, the influence of the field on the preexponen-
tial factor cannot be great; even if we do not ap-
proach too closely the turning point, this influence
can be ignored compared with the field dependence
of the argument of the exponential function for «.
In this way we obtain the following approximation
for ¥(r ), which replaces Eq. (9):

W (F) = exp [—Su (p. D)/ (32)

The saddle-point method is used to calculate
the overlap integral containing the functions (32).
The classical path is called the saddle path when
it joins the points with the coordinates r; and r,
at which the centers are located. The argument
of the exponential function in the integrand « V¥
(r—r ;)¥*(r—r,) contains a sum of the Euclidean
actions and this sum is independent of the position
of the point T on the classical path and is given by
Se(z-, p-) of Eq. (30) if z_ and p. are the com-
ponents of the vector HR=r,—r;: z2 = z2,—2,, 7 =
p1—p,. This gives the argument of the exponential

function in the overlap integral: o oo exp[—S,(z, p)].

If R is less than the distance from the point (r,+ry)/2
to the turning point, then — as demonstrated above —
we can limit the expansion (31) to the first term:
So(z-p-) = %R, ¥ = «(z-/2). If we recall that Eqgs.
(30) and (31) are obtained on the assumption that
r, = 0, it becomes clear that z_/2 = (z , + z,)/2.

In calculation of the preexponential factor in o we
ignore the dependence «(z) and take «k(z) at this
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point: « = ¥. Consequently, o7 is described by an
expression similar to Eq. (11):
7 (R) =~ &, (%) exp (—.R), (33)
where o, (%) = A 2«k2/4m. Therefore, in our ap-
proximation the influence of an electric field on
the overlap integral reduces to the dependence
k(e); x should be calculated from_Eq. (16) in terms
of the tunneling electron energy e of Eq. (20) meas-
ured from the bottom of the conduction band at the poin
with the coordinate r=(r;-+r,;)/2 Using Eqgs. (10),
(20), and (2), we obtain an expression which de-
scribes the change in the energy e in an electric
field &:

g5 ¢ 4 T*e2T, b:=eSR. (34)

This change in ¥ results, in accordance with Eq.
(23), in an additional [compared with Eq. (26)]
change in the height of the configurational barrier:

AE, —» AE, +3F, 4+ 8 E,, (35)
where

+RW3 T 8
2 (W, -+ W) o

3W,W,T*T l:
8E, = T(W, + Wa)

c¢) Influence of the applied electric field on the
frequency of intercenter transitions

We shall estimate the general change in the
frequency of the carrier-generation transition
[0, 2> > |1, 1> due to the total change in the
argument of the exponential function in an electric
field. The change is due to the field dependence
of the activation energy and of the configurational
barrier [Egs. (26) and (34)] and of the overlap
integral [Eqs. (33) and (34)]:

Y (8)/x (0) = oxp [52 (A + BJT + C) 4 (32)2 (D 4 F/T)). (36)
The term A is due to the change in the over-
lap integral in a field and is obtained by expand-
ing «(e) as a series using Egs. (34) and (18):
A=z (W, + Wy) 2R/|2e2 (W, + W,) — TW3R]. 37)
The term B is due to the field dependence of the
activation energy AEg of Eq. (26):
B = (—2W; + Ug)/(W, + W) = Uyf/(W, 4 Wy). (38)
Here, U, is the Hubbard energy. The term C

is related to the additional change in the barrier
AEy represented by Eq. (35):

—3WETW, (RR)*

C= T (W; 3 Wo) — T (=R) W3l & (W, - Wo)e ° (39)

The term D is due to the change in the over-
lap integral and F caused by the change in the con-
figurational barrier [Eq. (26)]:

D =xRs (Wy + Wa)/16 [t (W, 4 Wy) — TWH.R], (40)

F=—1/4 (W, + Wy). (41)

If we limit the treatment to the effects which
are linear functions of the distance between the
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centers, then
A==7R/2:, B==Uy/(Wy+ W),
€=0, D=17R/168%, F=—1|T (W,+ Wy).

(42)

The main qualitative conclusion that follows
from Eqs. (36) and (42) is that the application of
an electric field has different effects on the tempera-
ture-dependent part of the exponential function
(terms B and F) and on the temperature-independent
part which is a linear function of R (terms A and
D « «xR). If §¢ < 0, the energy barrier height
decreases and the probability of thermal fluctua-
tions necessary for the transition increases. How-
ever, the tunneling probability falls. If the distance
between the centers is not too large, the former
effect predominates and the transition frequency
increases on application of the field. It is easy
to separate experimentally these two effects by
determination of the temperature dependences of
the transition frequency in different electric fields.
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