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A nonadiabatic approximation is used in a calculation of the probabilities of transitions involving one- and 
two-electron states. An analysis is made of the field dependences of the frequency factor and of the activation 
energy of intercenter transitions. Necessary calculations are made of the parameters of a model of 
generation-recombination transitions in disordered silicon. 

Difficulties are frequently encountered in 
unambiguous interpretation of the characteristics of 
electron transitions occurring in generation-recom­
bination processes in semiconductors or in semi­
conductor structures with a complex spectrum of 
localized states in the band gap. This applies also 
to real surfaces of semiconductors, amorphous and 
polycrystalline semiconductors, semiconductors wity 
a high dislocation density, interfaces between a 
metal and a semiconductor and at a junction, etc. 
An analysis of the recent experimental data on 
generation-recombination processes shows that the 
main recombination channel in these materials usually 
includes intercenter electron transitions. 

Information on the spin states of carriers 
has extended greatly the scope of investigations of 
characteristics of electron transitions in such semi­
conductors. There are several models 1 -

3 that ac­
count for the dependence of the rate of recombina­
tion of nonequilibrium carriers on the spin states of 
free and localized electrons. The Kaplan-Solomon­
Matt modeP allows for the recombination of carriers 
via pair states and has been confirmed by direct 
experiments. 3 -

5 Figure 1 shows schematically the 
generation-recombination transitions in this model. 
It was reported in Ref. 6 that each of the centers 
in a pair in most of the investigated objects can be 
in one or two-electron states. 

There is much which is not yet clear about the 
origin and physics of two-electron states and little 

is known about the pair states themselves, such as 
the radius of the electron wave functions of the 
states, the distance between the partners· in a pair, 
and the methods suitable for the determination of 
the parameters of such states. 

We shall try to tackle most of the problems 
mentioned above in the present and following papers. 
The present paper reports calculations of transitions 
involving one-and two-electron states, gives an 
analysis of the field dependences of the frequency 
factor and the activation energy of intercenter 
transitions, and derives relationships necessary 
for the determination of the parameters of a model 
of generation-recombination transitions in disordered 
silicon. In the following paper we shall give the 
experimental data for partly disordered silicon and 
discuss them using the results given below: we shall 
estimate the radii of electron wave functions ( 4-7 
Jl..) and the separation between the pair partners 
(25-40 Jl..), and we shall also account for the field 
dependences of the frequency factor and the acti­
vation energy. 

1. ELECTRON STATES LOCALIZED AT STRUCTURE 
DEFECTS AND THE POLARON EFFECT 

We shall consider a structure defect in an 
ideal periodic lattice, for example, a vacancy in 
silicon. Among the various types of local vibra­
tions of atoms associated with this defect we shall 
select the "softest" mode and we shall label its con-
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FIG. 1. Schematic representation of the investigated electron 
transitions. 

figurational coordinate X. Following Holstein 7 
• 

8 

and Anderson/ we shall assume that the distrotion 
of the atomic system of a defect (which results, for 
example, because of the capture of an electron) 
is due to this softest mode. We shall try to obtain 
the simplest description of such a defect which has 
captured n = 0, 1, or 2 electrons and, following 
tradition, 7 -

1 1 we shall confine our treatment to 
the harmonic approximation for the energy of the 
atomic subsystem kX 2 /2 and to the linear approxima­
tion for the energy of its interaction with captured 
electrons -nQX, where Q is the deformation poten­
tial. The total energy of the system 

(1) 

includes also the one-electron energy n<: and the 
energy of the Coulomb repulsion Uc, which is "ac­
tivated" only if n = 2. 

Minimization of Eq. ( 1) with respect to X 
allows us to find the equilibrium energies of the 
system E(n) and the equilibrium displacements X0 

(n) 

(2) 

as well as the polaron shift W 

W=Q 2 f2k. 

If the polaron shift is sufficiently large, so 
that the Hubbard energy 

(3) 

U=E (2)- 2E(1)=-2W + U, (4) 

becomes negative, then two electrons are more 
likely to occupy one center than two different 
centers. 

The strong polaron effect in disordered semi­
conductors is due to anomalously low rigidity k of 
stretched bonds. For our purpose it is important 
that stretched bonds appear at dislocations and, 
consequently, U centers with a large polaron ef-
fect may concentrate around dislocations. There­
fore, even in the case of relatively weakly deformed 
semiconductors in which the total number of such 
centers is small, the probability of their close dis­
tribution in the coordinate space may be high. This 
in turn may induce transitions between the U centers 
and consequently give rise to spin-dependent ef­
fects in the generation and recombination of car­
riers. 

2. NONADIABATIC ELECTRON TRANSITIONS 
BETWEEN U CENTERS 

In the range of parameters of interest to us 
the activation energy (or the barrier height) for a 
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transition of an electron between two U centers is 
much greater than the energy T. Therefore, these 
transitions are of multiphonon nature. The exci­
tation of the atomic subsystem can then be con­
sidered classically using the configurational co­
ordinates of the centers X 1 and X 2 of interest to 
us. We can say that mechanical vibrations of fre­
quencies not exceeding the Debye value are induced 
by the influence of temperature and the electron 
states in the defects adjust themselves adiabatically 
to the current states of the configurational coordi­
nates X 1 (t) and X 2 (t). For certain displacements 
corresponding to crossing of the electron terms we 
can expect a transition of an electron between centers 
and the frequency of such transitions is -y(X 1 , X 2 ). 

The value of -y can be found simply using quantum­
mechanical perturbation theory 1 2 

(5) 

Here, W+(X 1 , X2 ) and W_(X 1 , X2 ) are the energies 
of two centers before and after the transfer of an 
electron from the first to the second center at fixed 
values of the configurational coordinates X1 and X 2 ; 

the energy interval of the overlap r? is the matrix 
element in the Hamiltonian of the transition 

(6) 

If the probability of a transition during the 
time of one passage through a W+ = w_ resonance 
is low (nonadiabatic conditions), the interference 
between different passages through the resonance 
can be ignored and the total transition frequency 
is found by averaging -y ( X1 , X2 ) over different 
configurations of the system of two centers X1 and 
X 2 with a Boltzmann probability function 13 

(7) 

Here, X ~ and X 3 are the equilibrium displacements 
of the centers 1 and 2, respectively; Z is the parti­
tion function governed by the probability normaliza­
tion condition. We therefore have 

1 = l f (X,, X,) 1 (X1 , X 2) dX 1dX2 • 

(8) 

3. DEPENDENCE OF THE OVERLAP INTEGRAL ON 
THE CONFIGURATIONAL COORDINATES 

In calculation of the transition frequency -y 
it is usual to ignore the dependence of J on X1 and 
X2 (see, for example, Ref. 14). We shall show that 
this approximation may be incorrect. 

We shall consider a defect with a characteristic 
size a of the order of several lattice constants a 0 • 

At a distance r > a from the center of a defect 
the field of the defect vanishes so that the electron 
function '¥ falls on increase in r in a universal 
manner independent of the nature of the defect. 
In the effective mass approximation when an electron 
"sees" a crystal as a continuous medium, the func­
tion '¥ in the range r > a satisfies the free Schro­
dinger equation. In the spherically symmetric case, 
we have 12 

W ex> r-1 exp (-xr). (9) 

The localization radius r 0 = 1 I K of an electron 
depends only on the electron energy c: measured 
from the bottom of the conduction band: 

h2x2f2m = -<, • < 0. (10) 
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Calculations of the matrix element of the kinetic 
energy operator of an electron using the functions 
'¥(r) and 'f(R-r) of Eq. (9) gives the familiar 
asymptotic (for large values of R) dependence of 
the energy of an overlap integral on the distance 
between the centers R: 

(11) 

Here, c7 0~ e/2; in the case of deep centers in silicon 
we can assume that Joe::=:: 0.1-0.2 eV. 

We shall need this estimate later in an analysis 
of the experimental data. It is worth noting that 
K in Eq. ( 11) depends on E in accordance with 
Eq. (10), and that E represents the energy of a 
transition between the centers 1 and 2 in a state 
which is adiabatically adjusted to fit the current 
values of the configurational coordinates X1 and 
x2. In the case of the I 0' 2> -+ I 1' 1 > transition 
(with two electrons at the first center and none 
at the other in the initial state and with one electron 
per center in the final state), we have 

(12) 

We can see that the energy overlap integral 
depends exponentially (strongly) on X 1 and X 2 • 

Therefore, when integration with respect to X 1 

and X 2 in Eq. (8) is carried out, this dependence 
can generally be ignored. 

4. FREQUENCY OF 10, 2>-+ 11, 1> TRANSITIONS 
IN NONADIABATIC CONDITIONS 

We shall use the above framework to find the 
frequency of the y ( 0, 2 -+ 1, 1) transitions when 
in the initial state there are two electrons at the 
second center and the first is empty and in the final 
state each center has one electron. The nature 
of these centers may be different so that we shall 
distinguish the deformation potential Q and other 
phenomenological parameters of the centers by label­
ing them with the indices 1 and 2. It follows from 
Eqs. (1) and (2) that 

W_ (X1, X 2) = (k1Xr + k2Xi)/2- 2Q1 X1 + 2e1 + U,,, 

W'!. := W_(X~. Xg) =2•1 -4W1 + U,,, 

W+ (X1 , X2) = (k1 Xi + k1X¥J/2- Q1X1 - Q1X1 + e1 + e2 , 

(13a) 

(13b) 
(13c) 

According to Eqs. (7) and (13) the probability 
function is Gaussian 

(14) 

where 

Z = 2~tT/(k1 k1)'/a, X~= Q2{k,. 

Substituting Eqs. (11) and (13) into Eq. (5) 
and also Eqs. (14) and (5) into Eq. (8), we find 
the initial expression for the frequency of the 
10, 2>-+ 11, 1> transitions: 

1 = (<7ij •/klkz /!i•T) 

where 

We can find the integral with respect to X 2 

with the aid of the 6 function, and that with respect 
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to X1 by the saddle point methoa. The saddle point 
X 1 , X 2 is defined by the condition for the minimum 
of <1>: 

k1X 1 + k1X 1Q1{Q 1 = Q, [2- x (I) RT/1 I IJ, 
• 1 -Q1X1 =-Q1X1 +••+ U,2 =e (X., X1) =:f. 

(16a) 

(16b) 

We shall assume that, in accordance with Eq. 
(10), We have K(E) ex /=£and that E is given by 
Eq. (12). We shall calculate <1>

11 at the saddle point: 

<l>*=d'<I>fdXf=k1 [(W1 + Wi){TW2 -sRW1/i1J. 

Our calculations are valid if the separation 
between the centers is not too high, so that <1>

11 > 
0. This gives the condition 

(17) 

If we introduce a characteristic temperature 

.T*= Tt2 (W, + W2)flo2 (IV1 + W2)- x (!) RTW~.J, (18) 

then the condition (17) can be rewritten in the form 
T* > 0. Assuming that this condition is satisfied, 
we find from Eqs. (15)-(18) that the frequency of 
the activated I 0, 2> -+ 11, 1> transitions is 

1(0, 2-+1, 1)=(~tT*)'1•o72 (!)exp(-.lE6/T)f/iT(W1 +JV2)'/,, (19) 

Here, c7 (e:) is the energy overlap integral of Eqs. 
(11) and (10) at the saddle value of E of the tunnel­
ing electron energy of Eq. (12): 

where liEg is the activation energy of the investi­
gated 10, 2>-+ 11, 1> transitions. This energy is 

(21) 

where 

.lE= .,- •• - u,,+ 3W,- w, (22) 

is the difference between the equilibrium (in respect 
of the configurational coordinates X1 and X 2 ) ener­
gies of Eq. (2) of two electrons after a transition 
(in the j1, 1> state) and before a transition (in 
the jo, 2> state); liEr = l1Er1 + l1Er2 is the energy 
of a configurational barrier. This energy consists 
of the already known term l1Er1 of Ref. 15 and an 
additional term l1Er2 , which appears because of the 
energy dependence of the overlap integral 

(23a) 

(23b) 

This energy occurs in the exponential tempera­
ture dependence of the frequency of the reverse 
(recombination) transition ( j1, 1> -+ jO, 2>) 

1 (1, 1-+2, 0) = V"T* <7' (!) exp (-!::.E,{T)f!iT (1¥1 + W2 )'1•. (24) 

The dependence c7 (e) gives rise to several 
effects. Firstly, in the numerator of the preexpo­
nential factor we find that temperature is modified 
to T -+ T* > T. Secondly, it follows from Eq. 
(20) that the energy of a tunneling electron in-
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creases and so does the overlap integral o1 (s). 
Finally, the configurational barrier described by 
the system ( 23) becomes higher. If we use -y 0 

to denote the frequency of a transition ignoring the 
dependence j (•)., but only allowing for this factor, 
we obtain 

1. F [ w,w.r ( w~ )] 
jo-->i=&ur' y exp (xR) 2 ''(W,+·W,) 2- !'(W,+w,) . (25) 

This relationship is valid in the case of generation 
and recombination transitions. In its derivation we 
have assumed that the relative change in the elec­
tron energy 6~;: is small and we have used the expan­
sion K(£ + o£) = K(€)[1-6£/2£]. 

These calculations are valid if the separation 
between the centers is not too large so that T* > 
0. In the opposite case the energy E does not 
correspond to a minimum, but to a maximum of the 
argument of the exponential function ~ in Eq. (15). 
This means that in the case of large distances be­
tween the centers the intercenter transitions are 
characterized bythese large fluctuations X 1 and 
X2 when "E ~ 0, i.e. , that the energy of a tunneling 
electron approaches the bottom of the conduction 
band and the electron localization radius at a center 
r 0 ~ 1/x ~ 1/~becomes greater than the separa­
tion between the centers. In this case the exponen­
tial smallness of the overlap integral o1 exp( -KR) 
disappears from the expressions for the transition 
frequency and this is compensated by an additional 
smallness in the temperature exponent. 

5. NONADIABATIC INTERCENTER TRANSITIONS 
IN AN ELECTRIC FIELD 

a) Mechanisms responsible for the dependence of 
the transition frequency on the applied electric 
field 

An electric field & homogeneous in space and 
constant in time should affect the frequency of 
intercenter transitions for a number of reasons. 

1. First of all, the energy of an electron 
En localized at a center with a coordinate rn ac­
quires a correction 6En. It follows from Eqs. (20)­
(22) that this alters the energy of the configurational 
barrier llEr and the activation energy llEg: 

AE;-'> AE9 + oE0 , 

8Er=lh fo• + 4W,- 4W1 - 2U,2]/4 (W1 + W,), 

8e=e8R, 

where 

R=r,- r2 . 

(26a) 

(26b) 

(26c) 

(26d) 

(26e) 

In order to estimate the value of 6 E, which 
can be done quite easily in experiments, we shall 
assume that .S has the usual value in a reverse­
biased p-n junction in Si: I .S I "' 10 5 V /em; we 
shall also assume that the distance between the 
centers is IR I ::: 100 X. Then, the change in the 
activation barrier height alters the transition fre­
quency at room temperature by a factor exp( 6E/T), 
i.e. , by three-four orders of magnitude. 
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2. Moreover, the applied electric field alters 
the state of an electron at a center and, conse­
quently, its energy En measured from the bottom 
of the conduction band. If the field is fi, , the 
expression for the energy given by Eq. ( 1) must 
be supplemented by -j3ne I g I X, where the numeri­
cal coefficient j3 is of the order of unity. The 
actual value of j3 depends on the configurational 
coordinate X. Therefore, in the expression ( 1) 
for the electric field we now have Q -> Q + j3e .S. 
In the case of a vacancy in Si (Ref. 16) we find 
that Q ::: 1 eV/X. In a field I.SI "10 5 V/cm, we 
obtain e 1 g I = 1.3·10- 3 eV/X, i.e., el ~;I /Q "' 10- 2

-

10-3. It follows from Eq. (3) that the change in 
the polaron shift in the field is oW = 2W j3e I G I /Q. 
The value of W is of the order of 0. 2-0.3 e V, so 
that we have 6W " 10- 3 eV. The difference between 
the values of W between the two centers gives rise 
to an additiona [compared with Eq. ( 26b) ) change 
in the activation energy, which should be compared 
with the energy T. The estimates made above 
show that, with the exception of the temperature 
range T < 10 K, we can ignore the influence of 
the electric field on W. 

3. Generally speaking, a field G alters the 
position of the center of gravity of an electron 
cloud at a center and, consequently, the effective 
distance between the centers. However, this ef­
fect is negligible: llR " e I c I /k for I 6 I " 10 6 

V/cm and k ::: 10 eV/X. Even when 1/K "'a 0 "'5 
X the relative change in the overlap integral is less 
than 10-2 • 

4. Finally, we must bear in mind that the electric 
field has a direct influence on the overlap integral 
when the distance between the centers is fixed. 
This important effect will be discussed in the next 
subsection. 

b) Dependence of the overlap integral on the applied 
electric field 

The application of an electric field influences 
the wave function '¥( r ) of an electron tunneling 
between the investigated centers. In the space be­
tween the centers the function '¥( T) satisfies the 
following Schrodinger equation (z is the electric field 
direction) : 

-h2ATf2m = (E- e 1 8 1 z) \V, (27) 

We shall seek the solution '¥( r) in the semi­
classical approximation 

'V(r)=exp(·-S(r)), S=hS,+n 2S 1 • ( 28) 

Hence, in the axially-symmetric case we find that 
S0 is described by 

(oS,fdz) 2 + (dS.,fdp)' = (1- 2e 181 mz) x2 = x2 (z). (29) 

Here, p is thetransverse coordinate and 1/K is the 
localization radius of an electron in the absence of the 
field (10). Equation (29) is the Hamiltonian-Jacobi 
equation for the time-independent part of the Euclid­
ean action S0 of a classical particle moving (in 
imaginary time) under the influence of a constant 
force. The path of such motion can be found in 
a trivial manner by integrating the Lagrange func­
tion with respect to time and along a classical path, 
which gives the action, and then express S0 in 
terms of the coordinates of the initial z = 0, p = 0, 
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and final z, p points of motion. This gives 

So (p, z) = (:Je JG'J m)-' I (<2 (z/2) + e I 6 I mr)'1•- (•2 (o/2)- e 1 <~o'l mr)'I,J, 

(30) 
where 

x2 (z/2) = x' - •I S I mz, r 2 = z2 + p2
. 

The validity of this solution can readily be confirmed 
by direct substitution in Eq. (29). We shall analyze 
the resultatnt expression ( 30) for S 0 expanding it 
as a series in r: 

So= x (:/2) r 11- r 2/24zij -- ... J, Z 0 = 1.2 (z/2)/e I<!; 1m. (31) 

Here, z 0 is the distance along the z axis from the 
point with the coordinate z/2 to the turning point, 
where K 2 

( z) = 0. It should be noted that the ex­
pansion of Eq. ( 31) converges well: even at the 
limit of validity at r = z 0 the two terms in Eq. 
( 31) ensure that the precision is 1. 5 · 10-'; however, 
if r :;: 2z 0 , then to within 10- 2 we need to con­
sider only the first term of the expansion, i.e. , we 
can assume that S 0 = K

2 (z/2)r. In this approxima­
tion the influence nf the applied electric field on 
the argument of the exponential function reduces 
to renormalization of the localization radius K -+ 

K(z/2) = (K
2-e I C: I mz)1h. This result can be 

interpreted as follows: we can calculate the semi­
classical shift of the phase of S 0 at a point at a 
certain coordinate z 1 , r 1 = I d + z i by replacing in 
Eq. ( 29) K 

2 
( z) with the average value of this 

quantity along a classical path, i.e., by replacing 
it with K

2 (Z 1 /2). The resultant equation can be 
solved in a trivial manner. In the spherical case 
we have S 0 = K

2 (z 1 /2) r, which agrees with the 
first term of the expansion in Eq. ( 31) . 

In the next order of the classical expansion 
( 28) we have to calculate S 1 , which determines the 
preexponential factor in the expression for the wave 
function. Since in (;'~cO this factor is independent 
of K, the influence of the field on the preexponen­
tial factor cannot be great; even if we do not ap­
proach too closely the turning point, this influence 
can be ignored compared with the field dependence 
of the argument of the exponential function for K. 
In this way we obtain the following approximation 
for '¥( r ), which replaces Eq. (9): 

lj/ (r)"" exp [-S, (p. z)]fr. (32) 

The saddle-point method is used to calculate 
the overlap integral containing the functions (32). 
The classical path is called the saddle path when 
it joins the points with the coordinates r 1 and r 2 

at which the centers are located. The argument 
of the exponential function in the integrand ex '¥ 
(r-r 1 )'¥*(r-r 2 ) contains a sum of the Euclidean 
actions and this sum is independent of the position 
of the point r on the classical path and is given by 
S0 (z_, P-) of Eq. (30) if z_ and P- are the com~ 
ponents of the vector fl=r2-r1 : z = z2 -z 1 , "ll" = 
p 1 - p 2 • This gives the argument of the exponential 
function in the overlap integral: J"' exp[-S0 (z, p)]. 
If R is less than the distance from the point (r1+r2)/2 
to the turning point, then - as demonstrated above­
we can limit the expansion (31) to the first term: 
S0 (z_p_) = "KR, K" = K(Z-/2). If we recall that Eqs. 
(30) and (31) are obtained on the assumption that 
r 1 = 0, it becomes clear that z_/2 = (z 1 + z 2 )/2. 
In calculation of the preexponential factor in ;J we 
ignore the dependence K(Z) and take K(z) at this 
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point: K = K". Consequently, J is described by an 
expression similar to Eq. ( 11) : 

Ol (R) = Olo ('~-) exp (-'I.R), (33) 

where olo (V) "'1'i 2 K
2 /4m. Therefore, in our ap­

proximation the influence of an electric field on 
the overlap integral reduces to the dependence 
K(e:); x should be calculated from Eq. (10) in terms 
of the tunneling electron energy ~ of Eq. (20) meas­
ured from the bottom of the conduction band at the point 
with the coordinate r=(r1 +r,)/2 . Using Eqs. (10), 
(20), and (2), we obtain an expression which de­
scribes the change in the energy e: in an electric 
field 6: 

f--><+T*&zf2T, 8z=e8R. ( 34) 

This change in £ results, in accordance with Eq. 
( 23), in an additional [compared with Eq. ( 26) I 
change in the height of the configurational barrier: 

where 

c) Influence of the applied electric field on the 
frequency of intercenter transitions 

We shall estimate the general change in the 
frequency of the carrier-generation transition 

(35) 

I 0, 2> -> 11, 1> due to the total change in the 
argument of the exponential function in an electric 
field. The change is due to the field dependence 
of the activation energy and of the configurational 
barrier [ Eqs. ( 26) and ( 34) I and of the overlap 
integral [Eqs. (33) and (34) I: 

1 (8)/1 (O),=exp (8z (A+ EfT+ C)+ (oz)'(D+ FfT)J. (36) 

The term A is due to the change in the over­
lap integral in a field and is obtained by expand­
ing K( e:) as a series using Eqs. ( 34) and ( 18): 

A= s (W1 + W 2) ?.R/(21' (W1 + W2)- TW~xR(. 
(37) 

The term B is due to the field dependence of the 
activation energy liEg of Eq. (26): 

(38) 

Here, U 2 is the Hubbard energy. The term C 
is related to the additional change in the barrier 
liEr represented by Eq. ( 35): 

c (39) 

The term D is due to the change in the over­
lap integral and F caused by the change in the con­
figurational barrier [Eq. (26)]: 

( 40) 

F=-i/4 (W, + W,). (41) 

If we limit the treatment to the effects which 
are linear functions of the distance between the 
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centers, then 

A =>.R/2'. B = U2/(lV, + W.). (42) 
C=O, D=>.R/16!2 , F=-1fT(W1 +W•)-

The main qualitative conclusion that follows 
from Eqs. ( 36) and ( 42) is that the application of 
an electric field has different effects on the tempera­
ture-dependent part of the exponential function 
(terms B and F) and on the temperature-independent 
part which is a linear function of R (terms A and 
D "' KR). If 6F:: < 0, the energy barrier height 
decreases and the probability of thermal fluctua­
tions necessary for the transition increases. How­
ever, the tunneling probability falls. If the distance 
between the centers is not too large, the former 
effect predominates and the transition frequency 
increases on application of the field. It is easy 
to separate experimentally these two effects by 
determination of the temperature dependences of 
the transition frequency in different electric fields. 
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