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It is shown that the scale invariant solutions of the KS and KPZ models of surface roughening are
identical for dimensions d <2, but may differ for dimensions ¢ = 2 in the strong coupling limit. For
d =2, these models posses two different scaling solutions, one with d-independent scaling exponents
y=z=2, and the other with d-dependent nontrivial exponents. The first of these solutions is realizable
in one of these models, but not the other. These conclusions are valid to all orders in renormalized per-

turbation theory.

PACS numbers: 68.35.Md, 68.35.Rh

The dynamics of growing interfaces is discussed in
d +1 dimensions, where d is the dimension of the inter-
face and 1 stands for time. The physics of growing inter-
faces becomes interesting (and complicated) when the d-
dimensional interface wrinkles and forms a self-affine
graph. There are many experimental examples of
dynamical wrinkling of interfaces, ranging from two-
phase flows in porous media [1] to bacterial colonies [2],
but only a few theoretical models were discussed in any
depth. The two models for surface roughening that have
attracted most attention are the Kardar-Parisi-Zhang [3]
(KPZ) and the Kuramoto-Sivashinsky [4,5] (KS) equa-
tions. The first one is driven by a random forcing and is
written as

dh(x,1)/8t =voVih (x,1) + |VR(x,0)|*+n(x,1). (1)

Here h(x,z) is the height of a growing interface and
n(x,t) is a white, Gaussian random noise. The second
model is completely deterministic, and is driven by in-
herent instabilities:

Ah(x,1)/8t =voVZh(x,1) —V*h(x,1)+|Vh(x,1)]?. )

In Egs. (1) and (2) v is a parameter, which is positive in
(1) and negative in (2). In both models x is a vector in
d-dimensional space. The KPZ equation was derived as a
continuum limit of models describing random particle ad-
ditions to a growing interface. The KS equation was de-
rived in the context of intrinsic instabilities, like flame
propagation. It is linearly unstable, and nonlinearly
chaotic, with bounded solutions roaming on a strange at-
tractor forever.

From the theoretical point of view an interesting ques-
tion is whether such models have scale invariant solutions
in the long wavelength limit, and whether such solutions
can be grouped in universality classes. Passing to Fourier
representation in space and time one considers the corre-
lation function of h(k,®), denoted by n(k,w):

(h(k,@)h* (k' 0'))=nk,w0)ék—k')é(o—0"). (3)

A scale invariant solution for n(k,w) is written as

_nk) )
n(k,w) Ty f T ]
4)
_ do _ n
n(k)—fn(k,w —Z;—F,

where vk? has the dimension of , and (n/k”) has the di-
mension of the simultaneous double correlator n(k). One
considers two models for surface roughening to be in the
same universality class if for k— 0 they have scale in-
variant solutions with the same scaling exponents y(d)
and z(d) in all dimensions d.

It has been suggested before [6] that Egs. (1) and (2)
are in the same universality class. From the point of view
of renormalized perturbation theory (and see below) this
is possible, whenever the renormalized correlator n(k,w)
is determined predominantly by the nonlinear term in the
equation of motion, which is the same for Eqgs. (1) and
(2). It has been shown recently [7] that the scale invari-
ant solutions of (1) and (2) are identical in 141 dimen-
sions, in which indeed the dominance of the nonlinear
term is realized, but they can be different in 2+ 1 dimen-
sions, where the linear terms retain their relevance [8]. It
thus becomes extremely interesting to ask how and where
the bifurcation in the solutions of these two models arises
as a function of dimensionality. The aim of this Letter is
to answer this question.

A convenient formal device to investigate the scale in-
variant solutions of equations like (1) and (2) is the re-
normalized perturbation theory a la Wyld [9]. In order
to employ this approach one introduces the Green’s func-
tion G(k,w), defined as the response of the nonlinear sys-
tem to a vanishingly small external perturbation §f(k’,
w'):

Gk,w)8(k—k')é(w—0") =(6h(k,0)/5f k' ®')) .
In terms of G(k,w) and the dressed correlator n(k,w)
one derives the Dyson-Wyld equations:

Gk o)=lo—in—2k,w)l ',
nk,w) =Gk, o) | [®k,0)+1n%].

(5a)
(5b)
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In these equations yx is the bare linear part, which is
ye=—vok? for Eq. (1) and yx=(volk2—k*) for Eq.
(2). The term n? is the strength of the noise in KPZ, and
is zero in the case of KS. The mass operators Z(k,w) and
®(k,w) are the “self-energy”” and ‘“intrinsic noise,” re-
spectively, which are infinite expansions in terms of
G(k,w) and n(k,w). The first diagrams appearing in the
expansion of X(k,w) and ®(k,w) are the same for KPZ
and KS. They are shown in Fig. 1. We reiterate that at
this level of description the only difference between KPZ
and KS as it appears in Egs. (5) is the form of yy, and
the existence of an external random forcing in the case of
KPZ.

We shall examine the scale invariant solutions of Egs.
(5) using first the lowest-order diagrams; after deriving
our results, we shall demonstrate their validity to all or-
ders. The main point to understand is that there can be
two different types of scale invariant solutions, that we
term “local” and “nonlocal.” The local solutions are ob-
tained when the contributions to a given k behavior come
mainly from fluctuations whose wave vector is of the or-
der of k. Nonlocal solutions are dominated by interac-
tions of fluctuations of a given k vector with short wave-
length fluctuations close to the ultraviolet (UV) cutoff.
Mathematically, the local solutions are obtained when all
the integrals in the series converge. The nonlocal solu-
tions are obtained in our case when the integrals diverge

q @ @
(k,0) = @v b g
Z(k,o q o v + /Jj t

.\/\/\N\/\/\

©

A
(I)(k,(l)) :% q q + \/V\—,\_\M/ j 4
q| AVaVaa

FIG. 1. The first diagrams in the infinite series expansion of
the self-energy T and the intrinsic noise strength ®. If the
series is cut after the diagrams denoted by 1, one gets the one-
loop approximation. The symbolic resummation of the series is
also shown. The structure of this symbolic diagram is used in
the argument extending our results to all orders in perturbation
theory.

in the UV. We discuss now these two classes of solutions in the lowest-order diagrams.
Consider the diagrams in Fig. 1 in d dimensions, and substitute the scaling form (4) for n(k,w), and for G (k,w) the

form G (k,w) =(1/vk?)g(w/vk?). The result is

1 ) n ot o
2Dk0)=— | k- (k+k)(k+k) k— d% dw, , (6)
Jw ! OREE S I I DRSS ELTEA EVTEWEN haiiad
1 n | @ n o+ w;
P k,0) == | k- (k—k;)]? —_ d% dw . 7
2f : : vk?”f vki | vik+k 2P | vik+k|? 4

The nonlocal solutions are obtained by asserting that the
integrals are dominated by the high end of the k, range,
i.e., ki~kmax>>k, and of @)~ @max~ kZax > @; then we
find

SO (k,0) ~ Cynk 2k max) /v, ®)
D (k,0) ~Cyn(kmax) /v, 9)
where

a=2+d—y—z, b=4+d—2y—z. (10)

The nonlocal solution required that a and b were positive.
On the other hand, if a and b were negative, the main
contribution to the integrals would arise from the local
region k|~ k. It is easy to see by power counting that the
result in that case must be

an
(12)

D (k,w)~Csnk 2%y,
®D(k,0) ~Can2k?/v.
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When the local solutions hold, one finds well-known
scaling relations [10]. Use the fact that £ (k,w) ~k?
together with (11) to derive

(13)

Of course, this single relation is not sufficient to evaluate
y and z in all dimensions. In 1+ 1 dimensions it is known
theoretically that y=2 and therefore z=%. In 2+1 di-
mensions there are only numerical results [11] which in-
dicate that y = 2.8, and therefore z has to be about 1.6.
On the other hand, in the nonlocal case, Egs. (8) and (9)
together with (5) lead to

2z +y=4+d.

_
0’+ (k)

Gkw)=—"—

— (14)
w—ivk

n(k,w) =

Accordingly, in this case y =z =2, independent of d. The
unknown constant v becomes an effective viscosity.
Equation (8) furnishes an estimate for v and n, in the
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one-loop approximation:

v(v—v0) =Cinkfax, n=Cyn’kbax/v?.

(15)

At this point we can find at which dimensions the non-
local solutions can exist. Substituting y=z=2 in Egs.
(10) we find a=b=d —2. Since it is necessary for a and
b to be positive to allow nonlocal solutions, we discover
that these solutions become allowed exactly at two di-
mensions, and continue to exist at all higher dimensions.
Exactly at two dimensions one expects logarithmic
corrections that were treated explicitly in Ref. [8]. For
d <2 only local scale invariant solutions are allowed for
both KPZ and KS.

Similarly, it is instructive to find the window of locality
as a function of dimension. Since local solutions are ob-
tained when a and b are negative, we can find the boun-
daries of existence of the local solution by solving simul-
taneously the scaling relation (13) together with a <0
and b <0. The results are the two constraints for z,

z2<2, z<(4+d)/3. (16)

It is easy to see that infrared locality requires z > 0. The
resulting window of locality is shown in Fig. 2, together
with the known results for z for KPZ at d=1 and d =2,
which both belong to the window of locality. In the same
figure we also indicate the trajectory of z(d) for the non-
local solution. It gets born exactly at d=2, and joins im-
mediately the z =2 line.

Note that the window of locality (16) was obtained us-
ing the lowest-order diagrams. Using scaling indices in
this window to compute higher-order diagrams results in
divergences. However, these divergences can be eliminat-
ed by changing variables to so-called “quasi-Lagrangian
variables”; see Ref. [12]. As a result the window of local-
ity remains unchanged when higher-order diagrams are
taken into account.

Finally, we need to discuss the role of the higher-order
diagrams for the nonlocal solutions. Consider, for exam-
ple, the higher-order diagrams for the imaginary part of
Z(k,w), Z"(k,w). All these diagrams end with a vertex
proportional to (k;-k) where k; is some internal integra-
tion variable; see Fig. 1. Accordingly, we can resum the
series symbolically (to an unknown result) that must have
the structure shown in Fig. 1, i.e., again with a last vertex
proportional to (k;-k). Therefore, for small k, the ex-
pansion of X"(k,w) in k starts at least with O(k), without
0(k%). However, ="(k,w) is even in k, since the term
proportional to k must vanish for kK =0, by symmetry.
Indeed, the integrand inside the diagram is odd with
respect to all the inner k; vectors in the limit k =0. Thus
the expansion of X(k,w) begins with k2. For small k

(k,w) =vk?, a7

where v is the resummed effective viscosity. We shall
show now that the estimate (15) for v and » remains un-
changed at any finite order.
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FIG. 2. The schematic trajectories of the static exponent z
for the local and nonlocal solutions as a function of dimen-
sionality d. Between d=1 and d=2 the trajectories of KPZ
and KS are glued together: Only local solutions exist. Exactly
at d =2 the nonlocal solution with z=2 for all d > 2 gets born.
The figure shows the window of locality bounded from below by
z=0 (below this line there exist ir divergences). The window is
bounded from above by the line z=(4+d)/3 for d <2 and by
z=2 for d >2. The known results for the local and nonlocal
values of z are shown as dots and as a square at d=1 and d =2,
respectively.

Since for the nonlocal solution the main contribution
from every diagram comes from the UV region k; ~k max,
power counting (cf. Fig. 1) leads to the estimate
2@ (k,0) =2 (k,0)A""", where A is an expansion
parameter,

A= lkmaxln/v?, c=4+d—y—2z:=d—2. 18)

Using the estimate (15) one finds that A=~1. Similar-
ly, one can show (cf. Fig. 1) that

O (k,0) =dP(Kk,0)A" '=0?P(k,0).

Thus the nonlocal solution (14) is self-consistent with the
diagrammatic perturbation theory order by order.

It is easy to see that the nonlocal solution at d =2 is
only available to one, but not the other model. The proof
follows exactly the one for d=2 in Ref. [8], and it shows
that the sign of the bare value of the parameter vq distin-
guishes the two equations. Thus if the nonlocal solution
is realized by KS, it cannot be realized by KPZ, and vice
versa. The numerical evidence [8] in two dimensions
points towards the KS model as the one that realizes the
nonlocal solution. We conjecture that KS indeed realizes
the nonlocal solution z=y=2 for all dimensions higher
than two.

We also know from numerical simulations [13] that at
d=2 and d=3 KPZ realizes the local scaling solution.
We have no proof, however, that this excludes the possi-
bility that KS would also have a local solution. In fact,
from the point of view of the theory, it remains an open
question whether KS can or cannot realize the local solu-
tion at 4 = 2. It is our feeling that if indeed it would turn
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out that the numerical evidence about KS realizing the
nonlocal solution is correct, then the theoretical reason
for the exclusion of the local solution for this model may
be related to the matching of the local solution in the ir
region to the UV part of the spectrum. In KS the UV
spectrum is characterized by a local maximum at the
fastest growing mode, followed by a fast decay due to the
hyperviscosity term.

In summary, we showed that KPZ and KS have two
types of strong coupling scaling solutions, with different
scaling exponents. The window of locality in the z-d
plane has been calculated. The nonlocal solution does not
exist below two dimensions. Above two dimensions, both
solutions exist, but the nonlocal one can be realized by
one model but not the other. We have no proof that the
local solution cannot be realized by KS, and therefore at
this point we can only refer to numerical simulations to
suggest that KS realizes the nonlocal solutions at dimen-
sions d =2 and higher.
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FIG. 2. The schematic trajectories of the static exponent z
for the local and nonlocal solutions as a function of dimen-
sionality d. Between d=1 and d=2 the trajectories of KPZ
and KS are glued together: Only local solutions exist. Exactly
at d=2 the nonlocal solution with z=2 for all 4 > 2 gets born.
The figure shows the window of locality bounded from below by
z=0 (below this line there exist ir divergences). The window is
bounded from above by the line z={(4+d)/3 for d <2 and by
z=2 for d > 2. The known results for the local and nonlocal
values of z are shown as dots and as a square at d=1 and d=2,
respectively.



