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I t  is shown that the scale invariant solutions of the KS  and KPZ models of surface roughening are 
identical for dimensions d < 2, but may differ for dimensions d >  2 in the strong coupling limit. For 
d 2 2, these models posses two different scaling solutions, one with d-independent scaling exponents 
y = z - 2 ,  and the other with d-dependent nontrivial exponents. The first of these solutions is realizable 
i n  one of these models, but not the other. These conclusions are valid to all orders in renormalized per- 
turbation theory. 

PACS numbers: 68.35.Md, 68.35.Rh 

The dynamics of growing interfaces is discussed in 
d + l dimensions, where d is the dimension of the inter- 
face and 1 stands for time. The physics of growing inter- 
faces becomes interesting (and complicated) when the d-  
dimensional interface wrinkles and forms a self-affine 
graph. There are many experimental examples of 
dynamical wrinkling of interfaces, ranging from two- 
phase flows in porous media [I1 to bacterial colonies [21, 
but only a few theoretical models were discussed in any 
depth. The two models for surface roughening that have 
attracted most attention are the Kardar-Parisi-Zhang [31 
(KPZ) and the Kuramoto-Sivashinsky [4,51 (KS) equa- 
tions. The first one is driven by a random forcing and is 
written as 

Here h (x , t )  is the height of a growing interface and 
q(x,t)  is a white, Gaussian random noise. The second 
model is completely deterministic, and is driven by in- 
herent instabilities: 

In Eqs. (1) and (2) vo is a parameter, which is positive in 
(1) and negative in ( 2 ) .  In both models x is a vector in 
d-dimensional space. The KPZ equation was derived as a 
continuum limit of models describing random particle ad- 
ditions to a growing interface. The KS equation was de- 
rived in the context of intrinsic instabilities, like flame 
propagation. It is linearly unstable, and nonlinearly 
chaotic, with bounded solutions roaming on a strange at- 
tractor forever. 

From the theoretical point of view an interesting ques- 
tion is whether such models have scale invariant solutions 
in the long wavelength limit, and whether such solutions 
can be grouped in universality classes. Passing to Fourier 
representation in space and time one considers the corre- 
lation function of h (k, w ), denoted by n (k, w 1: 

A scale invariant solution for n(k ,w)  is written as 

where v k z  has the dimension of w, and (nlkY) has the di- 
mension of the simultaneous double correlator n(k).  One 
considers two models for surface roughening to be in the 
same universality class if for k -  0 they have scale in- 
variant solutions with the same scaling exponents y ( d )  
and z (d )  in all dimensions d. 

It has been suggested before 161 that Eqs. (1) and (2) 
are in the same universality class. From the point of view 
of renormalized perturbation theory (and see below) this 
is possible, whenever the renormalized correlator n(k,w) 
is determined predominantly by the nonlinear term in the 
equation of motion, which is the same for Eqs. (1) and 
(2). It has been shown recently 171 that the scale invari- 
ant solutions of (1) and (2) are identical in 1 + 1 dimen- 
sions, in which indeed the dominance of the nonlinear 
term is realized, but they can be diferent in 2+  1 dimen- 
sions, where the linear terms retain their relevance 181. It 
thus becomes extremely interesting to ask how and where 
the bifurcation in the solutions of these two models arises 
as a function of dimensionality. The aim of this Letter is 
to answer this question. 

A convenient formal device to investigate the scale in- 
variant solutions of equations like (1) and (2) is the re- 
normalized perturbation theory (; la  Wyld [91. In order 
to employ this approach one introduces the Green's func- 
tion G(k,w),  defined as the response of the nonlinear sys- 
tem to a vanishingly small external perturbation 6f(k1, 
m ' ) :  

G(k,o)6(k  - k1)6(w - w ' )  =(6h (k,w)/6f (k',wf)) . 

In terms of G ( k , o )  and the dressed correlator n(k,w) 
one derives the Dyson-Wyld equations: 
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In these equations y k  is the bare linear part, wh~ch 1s - 0 ,---, 
y t = - v ~ k * f o r E q . ( l ) a n d y t = ( l v o l k ~ - k ~ ) f o r E q .  z ~ k , u l ~ = ~ \ w  + L , ~  -,,-- &--.  I 

(2) The term r72  is the strength of the noise In  KPZ, and i 'i 
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is zero in the case of KS. The mass operators E(k,w) and -sJ-- 

Q(k,w) are the "self-energy" and "intrinsic noise," re- 7 (?, 
YJ lr-1 spectively, which are infinite expansions in terms of ,I 

G (k,w) and n (k ,o ) .  The first diagrams appearing in the - -LA-k ,. , = St --J*; 
expansion of Z(k,w) and @(k ,o )  are the same for KPZ 
and KS. They are shown in Fig. 1. We reiterate that at 
this level of description the only difference between KPZ % 

L- I 

and KS as it appears in Eqs. ( 5 )  is the form of y k ,  and 
Q(k , tu )  =! 

/-"-- : f z \  
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the existence of an external random forcing i n  the case of i 
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We shall examine the scale invariant solutions of Eqs. , '7 
( 5 )  using first the lowest-order diagrams; after deriving flrXJ-- 

-- \~'/ , - - 

our results, we shall demonstrate their validity to all or- k 2 -  ,- , = 
5 1 1  *p- 

ders. The main point to understand is that there can be L/) ----, ([ 

two different types of scale invariant solutions, that we 
term "local" and "nonlocal." The local solutions are ob- p - 1 ~ .  1 ,  ~h~ first diagrams i n  the  infini te  series of 
tained when the contributions to a given k behavior come the self-energy and the intrinsic noise strength Q. ~f the  
mainly from fluctuations whose wave vector is of the or- series is cut after the diagrams denoted by 1 ,  one gets the one- 
der of k .  Nonlocal solutions are dominated by interac- loop approximation. The symbolic resummation of the series is 
tions of fluctuations of a given k vector with short wave- also shown. The structure of this symbolic diagram is used i n  

length fluctuations close to the ultraviolet (UV) cutoff, the argument extending our results to all orders in perturbation 
Mathematically, the local solutions are obtained when all theory, 

the integrals in the series converge. The nonlocal solu- 
tions are obtained in our case when the integrals diverge 
in the UV. We discuss now these two classes of solutions in the lowest-order diagrams. 

Consider the diagrams in Fig. 1 in d dimensions, and substitute the scaling form (4) for n(k,w),  and for G(k,w) the 
form G (k. w) =(l /vkZ)g(w/vk') .  The result is 

The nonlocal solutions are obtained by asserting that the 1 
integrals are dominated by the high end of the kl range, When the local solutions hold, one finds well-known 
i.e., k I -k,,,>> k, and of wl -om,,-k',,, >>o; then we scaling relations [lo]. Use the fact that ~ ( ~ ) ( k , w )  -k' 
find together with (1 1) to derive 

where 

The nonlocal solution required that a and b were positive. 
On the other hand, if a and b were negative, the main 
contribution to the integrals would arise from the local 
region k 1 - k. It is easy to see by power counting that the 
result in that case must be 

Of course, this single relation is not sufficient to evaluate 
y and z in all dimensions. In 1 + I dimensions it is known 
theoretically that y = 2  and therefore := t .  In 2+  1 di- 
mensions there are only numerical results 11 l l  which in -  
dicate that y = 2.8, and therefore z has to be about 1.6. 
On the other hand, in the nonlocal case, Eqs. (8) and (9) 
together with (5) lead to 

(, Accordingly, in this case y =: =2, independent of d. The 
unknown constant v becomes an effective viscosity. 

(1 2) Equation (8) furnishes an estimate for v and n, in  the 
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one-loop approximation: 

At this point we can find at  which dimensions the non- 
local solutions can exist. Substituting y = z  =2 in Eqs. 
(1 0) we find a =b = d  - 2. Since it is necessary for a and 
b to be positive to allow nonlocal solutions, we discover 
that these solutions become allowed exactly at two di- 
mensions, and continue to exist at all higher dimensions. 
Exactly at two dimensions one expects logarithmic 
corrections that were treated explicitly in Ref. 181. For 
d < 2 only local scale invariant solutions are allowed for 
both KPZ and KS. 

Similarly, it is instructive to find the window of locality 
as a function of dimension. Since local solutions are ob- 
tained when a and b are negative, we can find the boun- 
daries of existence of the local solution by solving simul- 
taneously the scaling relation (1 3) together with a < 0 
and b < 0. The results are the two constraints for z ,  

It is easy to see that infrared locality requires z > 0. The 
resulting window of locality is shown in Fig. 2, together 
with the known results for z for KPZ at d = l  and d = 2 ,  
which both belong to the window of locality. In the same 
figure we also indicate the trajectory of z(d)  for the non- 
local solution. It gets born exactly at d-2, and joins im- 
mediately the z = 2  line. 

Note that the window of locality (16) was obtained us- 
ing the lowest-order diagrams. Using scaling indices in 
this window to compute higher-order diagrams results in 
divergences. However, these divergences can be eliminat- 
ed by changing variables to so-called "quasi-Lagrangian 
variables"; see Ref. [121. As a result the window of local- 
ity remains unchanged when higher-order diagrams are 
taken into account. 

Finally, we need to discuss the role of the higher-order 
diagrams for the nonlocal solutions. Consider, for exarn- 
ple, the higher-order diagrams for the imaginary part of 
Z(k,w), ZU(k,w). All these diagrams end with a vertex 
proportional to (kj. k) where k j  is some internal integra- 
tion variable; see Fig. l .  Accordingly, we can resum the 
series symbolically (to an unknown result) that must have 
the structure shown in Fig. 1, i.e., again with a last vertex 
proportional to (k,.k). Therefore, for small k, the ex- 
pansion of Z"(k,w) in k starts at  least with O(k) ,  without 
O(kO) .  However, Z"(k,w) is even in k, since the term 
proportional to k must vanish for k =O, by symmetry. 
Indeed, the integrand inside the diagram is odd with 
respect to all the inner k, vectors in the limit k -0. Thus 
the expansion of Z(k,w) begins with k *. For small k 

where v is the resummed effective viscosity. We shall 
show now that the estimate (15)  for v and n remains un- 
changed at any finite order. 
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FIG. 2. The schematic trajectories of the static exponent z  
for the local and nonlocal solutions as a function of dimen- 
sionality d. Between d = l  and d=2 the trajectories of KPZ 
and K S  are glued together: Only local solutions exist. Exactly 
at d=2 the nonlocal solution with z S 2  for all d  > 2  gets born. 
The figure shows the window of locality bounded from below by 
z=O (below this line there exist ir divergences). The window is 
bounded from above by the line z - (4+d) /3  for d  < 2  and by 
z=2  for d  > 2. The known results for the local and nonlocal 
values of z are shown as dots and as a square at d = l  and d = 2 ,  
respectively. 

0 0 

Since for the nonlocal solution the main contribution 
from every diagram comes from the UV region kj  -kmax, 
power countin (cf. Fig. 1) leads to the estimate 
~ " " ) ( k ,  w) -- Tk2'(k,o)A"-I, where A is an expansion 
parameter, 

A =  [km,,]Cn/v2, c = 4 + d - y - 2 z = d - 2 .  (18) 

l n f r a  Red D ~ v e r s e n c e s  

Using the estimate (1 5 )  one finds that A = - 1. Similar- 
ly, one can show (cf. Fig. 1) that 

L-- . 
Thus the nonlocal solution (14) is self-consistent with the 
diagrammatic perturbation theory order by order. 

It is easy to see that the nonlocal solution at d 2 2 is 
only available to one, but not the other model. The proof 
follows exactly the one for d = 2  in Ref. [81, and it shows 
that the sign of the bare value of the parameter vo distin- 
guishes the two equations. Thus if the nonlocal solution 
is realized by KS, it cannot be realized by KPZ, and vice 
versa. The numerical evidence [81 in two dimensions 
points towards the KS model as the one that realizes the 
nonlocal solution. We conjecture that KS indeed realizes 
the nonlocal solution z = y = 2  for all dimensions higher 
than two. 

We also know from numerical simulations [I 31 that at  
d = 2  and d = 3  K P Z  realizes the local scaling solution. 
We have no proof, however, that this excludes the possi- 
bility that KS would also have a local solution. In fact, 
from the point of view of the theory, it remains an open 
question whether KS can or cannot realize the local solu- 
tion at d  2 2. It is our feeling that if indeed it would turn 
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out that the numerical evidence about KS realizing the 
nonlocal solution is correct, then the theoretical reason 
for the exclusion of the local solution for this model may 
be related to the matching of the local solution in the ir 
region to the UV part of the spectrum. In K S  the UV 
spectrum is characterized by a local maximum at the 
fastest growing mode, followed by a fast decay due to the 
hyperviscosity term. 

In summary, we showed that K P Z  and KS have two 
types of strong coupling scaling solutions, with different 
scaling exponents. T h e  window of locality in the z-d 
plane has been calculated. The  nonlocal solution does not 
exist below two dimensions. Above two dimensions, both 
solutions exist, but the nonlocal one can be realized by 
one model but not the other. We have no proof that the 
local solution cannot be realized by KS, and therefore a t  
this point we can only refer to  numerical simulations to 
suggest that  K S  realizes the nonlocal solutions at  dimen- 
sions d = 2  and higher. 
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FIG. 2. The schematic trajectories of the static exponent r 
for the local and nonlocal solutions as a function of dimen- 
sionality d. Between d - l  and d - 2  the trajectories of KPZ 
and KS are glued together: Only local solutions exist. Exactly 
at d - 2  the nonlocal solution with z - 2  for all d  > 2  gets born. 
The figure shows the window of locality bounded from below by 
r -0 (below this line there exist ir divergences). The window is 
bounded from above by the line z - ( 4 + d ) / 3  for d < 2  and by 
2-2  for d >  2. The known results for the local and nonlocal 
values of r are shown as dots and as a square at d-I  and d - 2 ,  
respectively. 


