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Properties of correlation functions of solutions of KPZ and
KS equations (that describe roughening) in the region of a
strong interaction of fluctuations are considered. We prove
analytically a possibility of existence of a scaling solution in
this region despite the “asymptotic freedom” situation oc-
curing near the marginal dimension d = 2 (corresponding to
growth of an interface in a real three-dimensional space). The
proof is based on the locality of the interaction of fluctuations
in k-space which can be demonstrated by passing to so-called
quasi-Lagrangian variables. The inequalities restricting pos-
sible values of scaling indices are found.
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Dynamic surface roughening occurs in a variety of
physical contexts, like flame propagation, growth of
solids, two fluid flows, etc. Two models of surface rough-
ening have attracted much attention due to their appar-
ent simplicity and very rich nonlinear phenomena. One
is the Kardar-Parisi-Zhang (KPZ) model [1] which con-
tains a random forcing. The second is the Kuramoto-
Sivashinsky (KS) equation [2,3] which is completely de-
terministic. In both models a motion of an interface in
d+1 dimensions is discussed. The most interesting case
is of course d = 2 since it corresponds to the motion of
the interface in three-dimensional space.

The equation for fluctuations of an interface displace-
ment h(t,x) (x being a point in d-dimentional space) in
the KPZ model is

∂h/∂t = λ|∇h|2 + ν0∇2h+ η , (1)

where η(t,x) is a white, Gaussian random noise which
satisfies

〈η(t1,x1)η(t2,x2)〉 = 2Tν0δ(t1 − t2)δ(x1 − x2) . (2)

Here T is a coefficient not related to the temperature but
designated by the same letter since formally it plays the
same role. For the KS model the equation of motion for
h is

∂h/∂t = λ|∇h|2 + ν0∇2h− µ∇4h . (3)

The quantity λ in the equations determines the strength
of the nonlinear interaction and ν0 is a parameter, which
is positive in (1) and negative in (3).

Note that in terms of the “velocity” field v = −∇h the
KPZ and KS equations turns into

∂vα/∂t+ 2λ(v · ∇)vα = φα , (4)

similar in form to the Navier-Stokes equation. For KPZ
model φα = ν0∇2vα − ∇αη and (4) turns into the so-
called noisy Burgers (NB) equation. The difference be-
tween the NB equation and the Navier-Stokes equation
is that the field v is potential in the former one and ro-
tational in the latter one.

The correlation functions of h in the KPZ and KS mod-
els possess a nontrivial structure since in the long-range
region it is determined by a strong nonlinear interaction.
The correlation functions may be investigated analyti-
cally in the framework of Wyld’s diagrammatic technique
[4,5]. The evaluation of the first terms of the perturbation
series in λ shows that d = 2 is the marginal dimension for
the KPZ or NB model, i.e. the logarithmic corrections
to the bare correlation functions appear. The analysis
of the NB or KPZ model in the framework of renormal-
ization group approach [6,7] leads to the conclusion that
“asymptotic freedom” behavior of the correlation func-
tions occurs. Therefore we encounter the situation of
strong coupling.

Computer simulations in dimensions d = 1 and d = 2
(see book [8] and references therein) show that the be-
havior of correlation functions in the long-wave region
is governed by scaling laws. The presence of a scaling
in the case of strong coupling is a surprising result and
needs a theoretical support. The problem is that known
exactly solvable two-dimensional models with strong cou-
pling demonstrate the appearance of a spontaneous gap
in the excitation spectrum [9,10], spoiling the scaling in
the long-range region. The same behavior of excitations
is assumed for the quantum chromodynamics describing
the strong interaction [11].

The aim of the letter is to present a theoretical foun-
dation of a scaling in the long-wave region both for KPZ
and KS models. We will examine scaling form of a cor-
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relation function n(t, r) = 〈h(t, r)h(0, 0)〉. In the Fourier
representation it takes the form

n(ω,k) =
n(k)

akz
f

(
ω

akz

)
, n(k) =

n0

ky
. (5)

Here n(k) is the simultaneous pair correlation function in
k-space, f is a dimensionless function of a dimensionless
argument, n0 and a being dimensional constants, and y
and z are the static and dynamic exponents, the values of
which are dependent on d (remember that the roughness
exponent χ is equal to (y − d)/2).

We will show that under following conditions

z < 2; z < (d+ 4)/3; z > 0 (6)

there occures a concelation of both ultraviolet and in-
frared divergences between terms of different orders of
Wyld’s perturbation series for KPZ and KS models. Ear-
lier it was shown [12] that for d = 1 there is order by or-
der cancellation of logarithmic divergences. An absence
of diverging contributions to integral equations for n(k)
means a locality of interaction: a fluctuation of a given
wave vector is affected mainly by fluctuations of wave
vectors of the same order.

For the proof we shall use a quasi-Lagrangian (qL) vari-
able u suggested by L’vov in connection with the problem
of turbulence (see [13,14]):

v(t, r) = u(t, r−R(t)) , (7)

where

R(t) = 2λ

t∫

t0

dτu(τ, r0) . (8)

Here the function u(t, r) depends on auxilary parameters:
a marked time t0 and coordinates of a marked point r0.
An equation for the qL-variable can be derived by sub-
stituting (7) into the equation (4):

∂uα
∂t

+ λ∇α
(

(uβ − u0,β)2

)
= φ̃α . (9)

Here uα, φ̃ are qL-variables depending on t, r and also
on t0, r0, the relation between φ and φ̃ is similar to that
(7) between v and u. The value u0α in (9) is uα(r0).
This equation differs from the equation (4) in the term
u0α subtracting the “sweeping” in the marked point r0.

For our purpose it is convenient to use k-
representation. The equation of motion for uα(k) follows
from (9):

i
∂

∂t
uα(t,k) =

1

2

∫
ddq ddp

(2π)2d
Vαβγ(k; q,p)uβ(t,−q)uγ(t,−p) + φ̃α(t,k) , (10)

where

Vαβγ(k; q,p) = (2π)d2λkαδβγ

(
δ(k + q + p) (11)

− δ(k + q) exp(ip · r0)− δ(k + p) exp(iq · r0)

+ δ(k) exp(i(q + p) · r0)

)
.

The quantity Vαβγ is no other than the bare dynamic in-
teraction vertex. The main technical difference between
the quasi-Lagrangian description and the conventional
one is that the wave vector k is no longer preserved in
the dynamic vertex V since this vertex is not propor-
tional to δ(k + q + p). This is a result of the absence
of spatial homogeneity of the theory due to the explicit
dependence of the equation (10) on the coordinate r0.
Meanwhile (10) does not contain t0 explicitly, so homo-
geneity in time does remain.

The qL-variables are useful since we achieved the prop-
erty of locality of the vertex in the k-space: the vertex
V tends to zero if any wave vector (k, q or p) goes to
zero. To make it clear we have saved the last term in
(11) which really gives no contribution. Note that the
original “Eulerian vertex” (the first term in (11)) has an-
other asymptotic regimes: it does not tend to zero if q or
p goes to zero.

We can use the equation (10) as a starting point in de-
veloping the Wyld diagrammatic expansion. The natural
objects in the expansion are dressed propagatorsGαβ and
Fαβ . The former one called the Green’s function is de-
fined as an average susceptibility of the qL-velocity field
uα to a vanishingly small “force” δφα to be added to the
right-hand side of the equation (9):

Gαβ(t1 − t2, r1, r2) = 〈δuα(t1, r1)/δφβ(t2, r2)〉 . (12)

The second propagator is the double correlation function
of the qL-variables:

Fαβ(t1 − t2, r1, r2) = 〈uα(t1, r1)uβ(t2, r2)〉 . (13)

One can derive by the conventional way Dyson–Wyld
equations which are introduced by the following relations
[4,5]:

G = G0 +G0 ∗ Σ ∗G, F = G ∗ (Φ0 + Φ) ∗G∗ , (14)

where G0 and Φ0 are the bare values of the Green’s
function and of the noise function; the quantities
Σαβ(t, r1, r2) and Φαβ(t, r1, r2) are called self-energy
function and intrinsic noise function respectively. They
may be considered as a sum of one-particle irreducible
diagrams representing Σ and Φ in terms of the bare dy-
namic vertex and dressed propogators G and F .
——————————————————————
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The star “∗” in (14) designates summation over repeated
indices plus integration over the corresponding r, t vari-
ables. Let us examine the scaling solutions of the dia-
grammatic equations of the type (5) for the functions G,
F . Introduce scaling indices determining such a solution:
ω ∝ r−z1 , F ∝ ry1−d, where ω is a characteristic fre-
quency and r is a characteristic scale. The Dyson–Wyld
equation (14) for G shows that G ∝ r−d. If there are
no divergencies in the expressions for Σ and Φ we may
assert that the scaling solution exists since there will not
be any dimensional parameter in the theory. Then the
index of the vertex will not be renormalized, which leads
to the scaling relation

y1 + 2z1 = d+ 2. (15)

The locality of dynamic interaction causes the excellent
convergence of the integrals determining the contribu-
tions to Σ and Φ both in the ultraviolet and infrared
regions. The analysis of diagrams for the quantities Σ
and Φ in the one-loop approximation shows that such a
situation (the absence of divergencies) occers under the
following conditions:

z1 < 2; z1 < (d+ 4)/3; z1 > 0. (16)

The first two inequalities are the conditions of the ab-
sence of ultraviolet divergencies in the diagrams for Σ
and Φ respectively, and the latter one ensures the ab-
sence of infrared divergencies (in both Σ and Φ). In the
same way it is possible to understand (for more detail
see [13,14]) that because of the locality of the vertex V
(11) there are no infrared and ultraviolet divergencies in
higher order diagrams under the condititions (16).

Therefore we proved the existence of the scaling solu-
tion of the NB-equation but for the qL-variable u. To
find the structure of the correlation function of v (say
〈vα vβ〉) we should substite (7) and then expand u(r−R)
in R which gives 〈vα vβ〉 as a series of correlation func-
tions of u. The analysis of the terms of the series shows
that all terms have the same dimensionality and that
there are no divergences (in contrast with the turbulent
case [13,14]). Therefore the correlation function 〈v v〉
possesses the scaling behavior with the same exponents
as 〈uu〉. The analogous assertion is valid for all higher
order correlation functions of v.

Returning now to the correlation function 〈hh〉 of
the solutions of the KPZ or KS equations and recall-
ing v = −∇h we conclude that the solution (5) may be
realized and has the exponents y = y1 + 2, z = z1. As a
consequence of the relation (15) we find

y + 2z = d+ 4, (17)

and consequently that the restrictions imposed on z are
(6). Note that a relation of the type (17) was obtained

in [7] as a consequence of Galilean invariance but under
the assumption that scaling exists, whereas the aim of
our work was a proof of the existance of scaling.

Let us stress that our proof of interaction locality is
valid for any dimension d. Therefore in the region of
strong coupling the scaling behavior of correlation func-
tions of KPZ and KS models may be realized in the space
of any dimension under conditions (6). In the dimension
d = 1 one has y = 2, which is a consequence of a conser-
vation law following from the KPZ-equation (1) in this
dimension [6]. Therefore z = 3/2 as it follows from (17).

It is naturally to expect that because of locality of
interaction the structure of correlation functions in the
region of strong fluctuations will be determined only by
the form of nonlinearity. Therefore the correlation func-
tions for KPZ and KS models (having the same nonlinear
term) should coincide in the long-wave limit. This is ac-
tually observed for d = 1. However in d = 2 this is not
the case. It is related to the existance of different solu-
tion of the diagramme equations in d = 2 which does not
supply the locality of interaction [15]. The problem why
in d = 2 KS model does not possess scaling solution as it
happens with KPZ model remains open.
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