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Direct Numerical Simulations of the Kraichnan Model: Scaling Exponents and Fusion Rules
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We present results from direct numerical simulations of the Kraichnan model for passive scalar
advection by a rapidly varying random scaling velocity field for intermediate values of the velocity
scaling exponent. These results are compared with the scaling exponents predicted for this model by
Kraichnan. Further, we test the recently proposed fusion rules which govern the scaling properties of
multipoint correlations, and present results on the linearity of the conditional statistics of the Laplacian
operator on the scalar field. [S0031-9007(97)04512-2]

PACS numbers: 47.27.Gs, 05.40.+j, 47.11.+j, 47.27.Jv

As one of the simplest realizations of a model withvelocity field. For physically realizable fields may vary
turbulent statistics with nontrivial scaling exponents, thebetween 0 and 2.
Kraichnan model [1] of advection by a white-in-time  Our aim is to express the statistical properties of the
scaling velocity field has attracted much recent attentiorscalar field in terms of the parametgr. The statistics is
[2—6]. The model is analytically tractable, in the sensecharacterized by the-point correlators, defined as
that its statistical description may be reduced to a set n
of closed form differential equations for the-order Fulrira,....rp) = <]_[ T(r,~)>. (5)
correlation functions. The model concerns the equation i=1

of motion for a passively advected scalar figlddriven  One expects the correlators to be homogeneous func-

by a velocity fieldu: tions of their arguments, F,(Ary, Ara, ..., Ar,) ~
9 Ao Fo(ry,ra,...,r,), and one hopes to determine the
P T(x,t) + u(x,1) - VT (x,t) = «V*T(x,1) + f(x,1),  dependence of the scaling exponetitson Z,. In this

model, the rapid temporal decorrelation of the velocity

(1) allows one to derive a set of closed equations for these
where k is the molecular diffusivity. The velocity field correlation functions [1]:
is taken to be a Gaussian, white-in-time, incompressible 2n 92
homogeneous scaling random field. Statistical stationarity [—K Z V2 + Z hij(ra —rp) 7:|}‘2n
is achieved through the forcing, which is also taken @ oy 07 ,i07p,j
to be delta correlated in time, statistically homogeneous _ Z Do(ry — 15)F
and isotropic, and to exhibit only large-scale spatial 0 e plS =2,
components. The parameter of interest in this model ) ) .
is the scaling exponent;, characterizing the so-called WhereJ, is a function of the2n variablesry,r,.. .. ra,
eddy diffusivity tensors;;(R) which contains the relevant a@nd 2,2 is a function of the2n — 2 variables

(6)

a>pB

information about the random velocity fieldr, 1): ri.ry,....ry except forr, andrg. @ is the forcing
o correlation and may be eliminated using the two-point
hij(R) = [ dr{ui(r + R,t + 1) — u;(r,t + 7)] equation. Only thenth order moments are considered
0 as by isotropy odd moments vanish. Fer= 1 these
X [uj(r + R, 1) — uj(r,1)]). (2) equations are readily solvable, leading to the exact result
The notation(- - ) refers to ensemble averaging. Under HL=2—-4. @)

the conditions that the velocity field exhibits fast temporal . . .
decorrelation, scaling, and incompressibility;(R) takes ~Forn =2 the equations are difficult to solve analytically

the d-dimensional form [1] for arbitrary values of;, and to date only certain limits
have been treated. The limit & — 0, {, — 0 (in that
hij(R) = h(R)[L‘H 8ij — _ Rin} order) has been examined perturbatively in [4]. This
d—1 d—1 R? limit is not realizable in direct numerical simulations due

(3) to numerical instabilities caused by small diffusivities;
& moreover fields with scaling exponents approaching zero
h(R) = H(f) ., 0< g <2, (4)  become increasingly spatially rough and are very difficult
to produce and treat reliably numerically. In [5] the
In the last equation the scaling d@f(R) is expressed perturbative small parameter wés/d, with d the spatial
normalized with respect tal, the outer scale of the dimension, which requires either the difficglt — 0 limit
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or the numerically inaccessible case of large dimension. The model has been studied by direct numerical simu-
The regime of;, — 2 has also been treated perturbativelylations in [9] with{;, = 1.5. These simulations have been
in [7]. The only theory which treats the intermediate criticized for the method of generation of the velocity
span of physical fields requires a closure that is nofield; two fixed scaling fields were swept past each other
rigorous [3,6], and it is with the prediction arising from in orthogonal directions at a constant rate. In doing so one
this theory that we will be able to make a comparison.may lose isotropy in a way that can influence the apparent
Further we test in detail some of the more general scalingumerical values of the measured exponents. In our simu-
predictions afforded by the fusion rules for fluid dynamicslations we have evolved a scalar field in two dimen-
developed in [8] and the particular statistical assumptionsions on al024> grid. The scaling velocity field was
with respect to conditional statistics utilized in the theoryimplemented by Fourier transforming a set lofvector
of [3,6] in obtaining predictions for the scaling exponents.coefficients which were each chosen randomly from a

The crucial assumption arises in the context of theGaussian distribution scaled to a standard deviation pro-
equation for the:th order structure functions, defined portional tok~!~4/2, The direction of thektth component

_ _ . u;, was chosen such that- u;, = 0. To reduce compu-

Su(R) = (TG + B) = T tation we have used an isotropized version of the method
R!-4 aiRd’lh(R) % S>n(R) = Jon(R). (8) employed in [9]; namely, we generate two fixed realiza-

R tions and shift them with respect to one another in order to

The function/,,(R) derives from the dissipative term and Obtain rapid variation. At each time step the two fields are
is given by independently shifted by a step of random size dinelc-

5 - tion. The fields are renewed after around every 500 time

Jon(R) = k(V-T (x) [6rT (x)]"" "), (9)  steps to reduce any temporal correlation that this method

might induce. We checked that the results are insensitive
to a more frequent refreshment of these fields. The spatial
discretization is second order, and the time evolution was
performed using an explicit Euler scheme. The forcing
was implemented by stimulating at every time step one of
the nine smallest wave numbers with an amplitude cho-
sen from a Gaussian distribution. Our initial conditions
for the scalar field (for a given value d@f,) were Gauss-
J2,(R) = nC2,J252,(R)/S>»(R) forn > 1. (10) ian random with the 2nd order scaling exponent distinct
. ) ) from the expected result df — ¢, and truncated irk
This result can be derived without reference t0 (8)gnace. Typically, saturation to statistical steady state re-
using the fusion rules derived in [6]. In either way thequired about thirty million time steps on the CRAY J90.
coefficientsC,,, are undetermined. Kraichnan proposedWe have converged results for three valuegofi.e., 0.6,
[3] that Cy, = 1 for all n. In this case one obtains from 1 o anq 1.2, The diffusivity in every run was chosen to
(8) a quadratic equation determining tjgs: obtain the longest possible inertial range while retaining
1 stability in the small scales.
fon = D) [ = d + V(& + d) + 460 - 1)]. In Fig. 1 we present a typical realization of the scalar
(11) field for £, = 1.0. It shows significant development of

As has b inted out in 131 thi tion b small scale structures. In Fig. 2 we present the structure
s has been pointed out in [3] this assumption bears ?unctionsS,,(R) as a function ofR for the three values

strong relation to the conditional statistics of the Laplaciarb]c Zy, computed using spatial averaging over single reali-

of the flel?.thOrll_e rlnay rewrltg%[{,(R) dm te:rr]ns OfI the ¢ zations after statistical stationarity was reached, and then

ggerage N fTe ap a;']anl Corlh' lone SonT e. value of gime averaging over one hundred snapshots taken at inter-
ifference off” across the length scal® 5xT (x): vals of ten thousand time steps. This figure shows that we

where 6gxT(x) = T(x + R) — T(x). One may deter-
mine directly thatJ,(R) = 4€, the mean dissipation
(independent oR).

In order to obtain the scaling exponens of the nth
order structure functions, one needs to evalugteRr). In
light of (4) and the exact result (7) one sees thatmust
have a scaling form which agrees with

Jon(R) = —2nk f dSrTP(SRT)[SgTT" ! have one and a half decades of scaling, or “inertial range.”
Figure 3 displays the dependence &f on n for the
X (V2T (x)| ST (x)). (12) three values of¢,. Also shown is the prediction of

Kraichnan Eq. (11) for these values. It is evident that
One way to ensure thab,(R) has the scaling (10) is for for the three parameter values tested we have close
the conditional average to satisfy agreement. In Fig. 3 we display also the odd values for
2 _ = the exponents. These were calculated from the field b
(VT) [ 85T (x)) = CET(x)/xS2(R). (13) taking gbsolute values; strictly this is not covered by they
Hence a linear behavior of the conditional average of theheory but one sees here that they smoothly interpolate
Laplacian is intimately connected with the determinationthe law for the even orders. We remark that although
of the scaling exponents. the grid is relatively small the structure functions display
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FIG. 1. Typical realization of the scalar field. n

) . . IG. 3. The scaling exponents as a function ofs = 2—10
well-developed scaling ranges for orders as high as l4:0r three values of{,. The numerical data (error bars) are

The relatively good statistics resulted from averagingcompared to the analytic prediction Eq. (11) (dotted line).
over many snapshots. We checked however that also the

single-time realizations appear to be well self-averaged.

Note that for;, = 1.0 the agreement between the nu-
merically computed value of, and Eq. (7) is best. We
believe that the reason for this is simply due to the diffi-
culty of creating a velocity field with precise scaling on A ensitive to this discrepancy
finite grid. It is interesting that in fact the scaling in the The quality of the predictidn (11) can be independently
passive scalar field appears cleaner than that which can lgg

. . . sted by verifying that the coefficients, are close to
obtained by the Fourier transform method described abov&nity’ and that the conditional average (13) is indeed

In grids of this size. If we check our apparent real SPaCinear with the rightR-dependent prefactor. To this end
we computed from the simulation the quantitisgR) of

scaling exponents for the velocity field we find that the
minimum error between the inpu, in k space and
the observed one occurs preciselylat= 1. However

the higher order scaling exponents do not seem to be as

L L B B Eqg. (9). J, was confirmed to be constant throughout the
i inertial range. In Fig. 4 we preseit(R) as a function of
B | 4_ [ ‘2 T T T T T T T T T T T T T '// ]
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log,, R FIG. 4. J,(R) as a function of the fusion rule prediction

nJ>S,(R)/2S5,(R) with C,, = 1 for £, = 1.2. An independent
FIG. 2. Log-log plot of the structure function$,(R) as a measurement of, is exhibited in the inset. The other values
function of R for n = 2,4,6,8, 10. of ¢, show equivalently good agreement.
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very well supported by the numerical data. As a result it
is no surprise that the measured scaling exponents agree
very closely with their predicted values. Because of the
limitations of the computational techniques one cannot of
course state that precise agreement is observed. It is our
conviction however that the conditional average is very
close to being linear; a persistent failure to prove the
linearity mathematically may indicate that this property
is not exact. It seems however very worthwhile to probe
this question further to understand the close agreement
between simulations and (11).
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