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0. Introduction

A central problem of theoretical physics is the construction of a theory of turbu-
lence. This book is the outcome of our continued efforts to solve this problem.
The aim of this book is to present several major ideas, which we shall outline in
this Introduction.

The basic idea of the book is that turbulence is a general physics problem
which requires a comprehensive approach. The problem of turbulence goes far
beyond the limits of hydrodynamics and the Navier-Stokes equation. In our view,
turbulence is a highly excited state of a system with many degrees of freedom
(in most cases a continuous medium) to be described statistically. This excited
state is extremely far away from thermodynamic equilibrium and is accompanied
by intensive energy dissipation. Such states can be found or created in plasmas,
magnets, or nonlinear dielectrics by applying strong electromagnetic fields to
them. Quite a few types of wurbulence can be observed in hydrodynamics.

Our book is devoted 1o developed turbulence, i.¢., 10 situations with tarbu-
lence involving many degrees of freedom. In hydrodynamics this corresponds
to extremely large Reynolds numbers. We will not elaborate on the genesis of
turbulence and about turbulence described by a low-dimensional attractor. We
believe that these topics have already been extensively covered in the literamre.

Developed turbulence in general refers to a system where the scales of pump-
ing and effectively damping motions (modes) differ dramatically. The nonlinear
interaction allows for an energy redistribution between different modes. The fun-
damental problem of the theory is therefore to find the siationary spectrum of the
turbulence, i.e., the law of energy distribution over the different scales. Since the-
oretical physics is mainly concerned with universal distributions, the stationary
spectrum is sought inbetween the scales of pumping and damping modes {source
and sink). In this range (the so-called inertial interval), one can expect the for-
mation of a universal distribution indepeadent of the specific characteristics of
the source and sink.

One can figure out two qualitatively different pictures of universal turbulence,
The first one, usually associated with the names of Richardson, Kolmogorov and
Obukhov, presupposes that the major physical process is a continuing fragmen-
tation that provides a relay encrgy transfer from the source to the sink. As a
result of the large number of fragmentation acts, the distribution “forgets™ the
details of the energy source. Hence, the turbulence spectrum depends on a single
characteristic of pumping: the energy dissipated per unit time and unit volume
P. Another picture of universal turbulence, called the structural one, appeared
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more recently. It is based on the concept of the generation of spatio-temporal
structures of universal form (solitons, collapses, etc.)

The main part of this book deals with the first of these two pictures of
turbulence. The central idea is the locality of the interaction, as proposed by
Kolmegorov in describing turbulence of incompressible fluids: only vortices of
spatial extensions of the same order strongly interact with each other. This pre-
sumes a constant energy flux P in k-space coinciding with the rate with which
the turbulent system dissipates energy. The locality ensures that the stationary
spectrum of the energy £, in the inertial interval may be expressed in terms of
the flux P and the current wave vector k only. Dimensional analysis yields

E, = AP35 0.1

where A is a constant. Expression (0.1) is called the Kolmogorov-Obukhov spec-
trum of turbulence of an incompressible fluid {0.1].

Kolmogorov's hypothesis lead to a lot of activities and to an immense scien-
tific literature, Experimenters essentially confirm the validity of (0.1). A rigorous
theoretical substantiation of the Kolmogorov spectrum is not yet available. This
is mainty due to the absence of a small parameter in the theory of hydrodynamic
turbulence. Vortex interaction in incompressible fluids is strong and there exists
no small parameter in the hydrodynamic equations. So if one tries to obtain the
equations for correlation functions, then some of the mathematical objects in the
theory lead not just to asymptotic series, but even 1o divergent ones, This is
reflected for by the fact that it is impossible to perform a consistent linearization
of the hydredynamic equations for an incompressible fluid against a stationary
homogeneous background (it yields only the trivial Tesult zero). Except for the
free boundary case, there are no homogeneous-background waves in hydrody-
namics, whose amplitudes may be taken to be sufficiently small, This is not the
case with other media: neither in plasma turbulence and waves on a fluid surface,
nor with intensive laser pulses propagating in a nenlinear dielectric, i.e., in all
cases in which the system has a consistent linear approximation that describes
small-amplitude waves with dispersion. In that case one can congider a situa-
tion in which the level of wave excitation is small and effects of the nonlinear
interaction are smaller than the linear effects caused by the wave propagation
velocity dispersion. Such a turbulence is called 4 weak turbulence and allows a
quite efficient theoretical description.

Thus, this book is divided into two volumes. The first volume - which you
are reading just now - describes weak wave turbulence; the second is dedicated
to strong turbulence, essentially to the vortex turbulence of incompressible fluids.

The first volume contains a consistent description of the theory of the devel-
oped weak turbulence in different media: fluids, gases, plasmas, and magnets. In
this volume we use the terms “wave” and “weak™ turbulence as synonyms.

In the theory of weak turbulence, the series that yield the equations for
correlation functions contain a small parameter {the nonlinearity level) and are
asymptotic, which substantiates the theory sufficiently well. In particular, it may
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be reliably established that at a low nonlinearity level, turbulence is a set of
waves whose phases are close to random. This makes it possible to express
higher correlators in terms of lower ones and to ignore higher equations in
the chain of equations for correlation functions. As a result, weak turbulence
may be described in terms of a closed kinetic equation for the pair correlator,
which is the mean square of the wave amplitude. Having established an effective
language for describing the phenomenon, Kolmogorov’s ideas are very efficiently
applied to construct a theory of weak turbulence. For stationary kinetic equations
V.E. Zakharov found exact power-type solutions identified with the Kelmogorov
spectra {0.2]. These sclutions correspond to a constant k-space flux of one of
the integrals of motion of the system, which often turns out to be the energy.
The theory of such spectra including the problems of their stability, formation
and matching with sources is quite comprehensive and well advanced. It has not
been systematically presented (except for the outline contained in the review by
Zakharov [0.3]). It has already been applied to the theory of wave turbulence on
fluid surfaces, the theory of “optical” tarbulence and is expected to find many
more physical applications. We believe that acquaintance with this theory is
indispensable to everyone who is seriously interested in the theory of turbulence.

In the limit of small nonlinearity, formation of the dynamic structures of the
soliton or collapse type is impossible. Therefore universal weak turbulence is
most frequently of the Kolmogorov type, and most of its manifestations may be
explained in terms of macroscopic characteristics, i.., fluxes of the integrals of
motion. Such an approach has the same relation to the “microscopic™ description
(in terms of pair correlators) as thermodynamics has to statistical physics. The
very possibility of a quasi-thermodynamic description in terms of mean values
arises from the fact that the statistics of a weakly turbulent wave field is close to
a Gaussian, the major contribution to the average characteristics stemming from
the set of most probable events,

The theory of weak turbulence invelves a large variety of specific types of
turbulence. In order to study this varicty from a unified viewpoint, one should
adopt a general approach to the description of various nonlinear media. Indeed,
according to the aforementioned principle of considering developed turbulence
as a universal phenomenon, we ought o invent a universal “language” for its
description. Such a language, in our opinion, is the Hamiltonian formalism, which
reveals the Hamiltonian structure concealed in the equations of the medium
[0.4]. The Hamiltonian theory of equations describing continuous media is an
interesting topic of modern mathematical physics.

Chapter 1 of this book can be treated as an e¢lementary introduction to the
theory and addresses in particular physicists: our approach being rather pragmatic
we intend to show that the dynamic equations for very different media written
in normal variables (cemplex wave amplitudes) scquire a standard form which
is quite convenient for application of statistical averaging methods.

Chapter 2 is devoted to the derivation of the averaged kinetic equations,
There are several averaging methods. In this volume we shall use only elementary
ones based on the hypothesis of phase randomness and on euristically decoupling
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correlators. [In the second volume we shall describe a more sophisticated diagram
technique; we shall pay much attention to substantiating the kinetic equation and
shall give two different derivations. We shall treat carefully the question of the
range of applicability of the kinetic equation, bearing in mind that it is easy
to make an error there. In particular, we shall discuss in detail the problem
of acoustic turbulence, ie., of the statistical description of waves with a linear
dispersion law, and clarify the rather sophisticated applicability conditions of the
kinetic equation in this case. The derivation of the kinetic equation demonstrates
most convincingly the advantages of the Hamiltonian: the kinetic equation has
a standard form, the structural functions entering it are simply expressed via the
Hamiltonian coefficients.} Classical and quantum kinetic equations are the main
mathematical objects of study in the first volume, their general properties being
discussed in Chap. 2.

Chapter 3 is the central one of this volume. The exact stationary solutions
of the kinetic equations are obtained and shown to be just the Kolmogoroy-
like spectra referred to in the title of the book. Thus, the Kelmogorov-Obukhov
hypothesis is converted into a strict theorem in the theory of weak turbulence.
The aforementioned property of interaction locality can be easily verified in that
theory for every specific case by calculating a single integral. A general locality
criterion (which is the condition for the existence of the Kolmogoerov spectrum)
is obtained. Solutions of the Kolmogorov type are obtained, not only for scale-
invariant isotropic media, but also for anisotropic media and for those clese to
scale-invariant ones. Boundary conditions for Kolmogorov solutions, i.e., for the
matching with sources and sinks are also given.

Chapter 4 deals with the stability problem and the formation of the Kol-
mogorov spectra. If is interesting that two absolutely different fypes of instabil-
ities can be dealt with. First, usual instability results in the exponential growth
of perturbations; all known spectra are stable with respect to such an instabil-
ity. Second, there may be a “structural instability™ first predicted by L’ vov and
Falkovich [0.5]. In the siructurally unstable case, a small anisotropy of the pump-
ing caused the stationary spectrum to be substantially anisotropic in the inertial
interval. Such an instability can be treated as a manifestation of self-organization
in the nonlinear systems. Thus the hypothesis about the local isotropy of the
developed-turbulence spectrum (suggested by Taylor [0.6] for hydrodynamics)
may be incorrect in the case of wave turbulence while the Kolmogorov hypoth-
esis about interaction locality may still be valid. We elaborate in detail on the
general stability theory for Kolmogorov specira of weak turbulence as developed
by Balk and Zakharov [0.7]. A substantial part of Sect. 4.2 is a translation of the
Russian paper [0.7]. We also discuss the different regimes of the nonstationary
behavior of wave turbulence systems.

Chapter 5 deals with physical applications of the general theory developed in
the preceding chapters. Due to the large variety of such applications it is impos-

sible to discuss every physical system with satisfactory completeness. However,
we give answers to the main questions:
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— existence of stationary spectra,

— connection between the flux and pump characteristics,
— behavior in the damping region,

— spectrum stability,

— nonstationary regimes.

Throughout this first volume the material is developed in detail since it is
addresses students and junior researchers. Some issues which we considered to be
rather specialized are printed in small letters. In a first reading these places may be
ignored. The first volume is to serve as a simple, yet comprehensive introduction
to the general theory of developed turbulence. As far as wave turbulence itself
is concerned, we briefly summarize the derivation of the theory in Chap. 6, the
Conclusion, by giving the recipe of investigation of any new wave system. The
reader will see that the recipe is fairly simple. By now the theory has been
elaborated to such an extent that answers to most questions may be expressed in
terms of the characteristics of a wave system obtained from dimensional analysis
or simple asymptotic estitnates. Thus, the Conclusion contains a methodological
guide for the first volume.

Coming to the end of the Introduction of this first volume, we briefly expose
the prospective contents of the second volume of our monograph.

Volume 2 will be devoted to strong turbulence and will be a natural contin-
vation of the first volume, yet containing a new formalism and new ideas. It
consistently elaborates on the necessary diagram technique (in doing so, it gives
a sufficiently rigorous derivation of the kinetic equation). For hydrodynamics,
this technique is developed both in the canonical Clebsch variables and in “nat-
ural” variables. The major part of the second volume is devoted to a consistent
statistical theory of turbulence of incompressible fluids. This theory proceeds
from the Navier-Stokes equation and the diagram approach to perturbations, in
which every term of an infinite series is matched with a certain diagram. Thus,
two essentially different types of vortex interaction are identified.

The first one is the sweeping interaction corresponding to the transfer of a
small k-vortex (with dimension 1/k) as a whole by the spatally homogencous
part of the field of large vortex velocities. This interaction is characterized by

the Doppler frequency kv,, where v, is the mean-square velocity of turbulent
pulsations associated with the spectrum (0.1)

vier | E(R)dk ~ (PLY?P (0.2)

ko

Here k¢ = 1/L is an “‘external” boundary of the inertial interval; L, the “energy-
containing” or external scale of turbulence coinciding in order of magnitude with
the characteristic dimension of the flown-over body. At & £ ko, the spectrum
E(k) is nonuniversal.
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The second type is the dynamic interaction of vortices of about the same
scale which leads to enerpy exchange between them and which is responsible
for the formation of the wrbulence spectrum. This interaction is characierized by
the frequency

(k) = P15 (0.3)

which we shall call the Kolmogorov frequency. This frequency, as well as the
spectrum (0.1), may be determined from dimensional analysis. In the inertial

interval the Doppler frequency kv, is seen to be larger than the Kolmogorov
frequency ~(k):

kvy ~ AR ED? .

The existence of two types of interaction with different k-dependences implies
that the theory of mrbulence is not scale-invariant; not even in the inertial interval
with kL > 1. The theory explicitly contains the external scale L. The presence
of a large kL-parameter does not simplify the theory, since the weaker dynamic
~{k)-interaction cannot be discarded. Indeed, it is exactly this interaction that
determings the turbulence spectrum. At the same time, the stronger sweeping
interaction, which manifests itself as a real physical effect, is of purely kinematic
character and bears no relationship to the problem of energy distribution over
the scales. This makes the scarch for scale-invariant energy spectra in the inertial
interval rather difficult. Thus, o construct a consistent theory of hydrodynamic
turbulence, one has 10 overcome two major difficulties, The first is associated
with the strong interaction and the absence of a small parameter in the theory.
The second is due to the existence of two types of interaction and the absence
of scale invariance.

To our understanding the second difficulty was overcome by Belinicher and
L'vov [0.8]. They constructed the statistical theory of developed homogeneous
turbulence of incompressible fluids in a coordinate system moving with the ve-
locity of the fluid (in a spatial point r). The transition to this new variable, the
so-called quasi-Lagrangian velocity, eliminates any transfer of %-vortices in the
region of 1/k scale around the reference point r. Elimination of sweeping in a
limited region only, turns out to suffice to completely eliminate from the theory
its “masking” effect on the dynamic interaction of vortices in the cascade process
of energy transfer to small scales. We shall present an analysis of expressions for
diagrams of the perturbation theory to an arbitrary order and shall show that the
integrals converge both in the infrared and the ultraviolet regions. This proves
the Kolmogorov-Obukhov hypothesis about the locality of the dynamic interac-
tion of vortices: the main contribution to the change in the k-vortex energy is
made by kj-vortices of the same scale (k; of the order of k) and localized in
the 1/k-region in the vicinity of the given vortex [0.8]. In the limit kL — oo,
one can obtain the scale-invariant solution of the Dyson-Wyld diagram equations

which corresponds to the known Richardson-Kolmogorov-Obukhov picture of
developed universal turbulence.
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As far as the first difficulty is concerned it has not yet been overcome. For this
reason, the mathematical objects of the diagram perturbation theory are formal
series depending on an external parameter.

The problem of the unambiguous correspondence of the observed physical
values to the formal series in the theory of developed hydrodynamic turbulence
is, however, open for discussion. Many important problems remain uninvesti-
gated, such as uniqueness and stability of the obtained solution, transition of a
nonuniversal solution in the energy-containing interval to the scale-invariant so-
lution in the inertial interval, etc. Thus, there are ample opportunities for further
research.

It should be noted, however, that the traditional descriptions of turbulence,
including the diagram technique, suggest that the statistics of strong turbulence
does not differ much from Gaussian statistics. By now we know that even weak
turbulence can contain a non-Gaussian component. Strong turbulence may be
essentially non-Gaussian which implies that some rather specific spatio-temporal
configurations may contribute unproportionally large to various mean values. This
property of wurbulence has to do with the known “intermittency™ phenomenon.
Thus, the energy dissipation density at each moment in time may be distributed
in space in a rather inhomogencous manner, in contrast to the implicit assump-
tion of dissipation homogeneity made in the Richardson-Kolmogorov-Obukhov
picture. Numerical and laboratory experiments show that in many physical sit-
uations (both in hydrodynamics and in the strong turbulence of plasmas), there
are clear-cut short-living zones of dissipation. We associate these zones of higher
energy emission with collapses, i.e., the points where the solutions of the original
equations describing the medium have singularities.

Let us illustrate this by an example. Quite a universal physical model is the
nonlinear Schrodinger equation

D(r,t
% + AT+ T|PT =0, 0.4)
which describes, in particular, the propagation of intensive quasi-monochromatic
wave packets in nonlinear dielectrics and the resulting “optical” turbulence. So-
lutions of (0.4) at T > 0 (implying mutual wave attraction) may become singular
with time. This corresponds to self-focusing of light in a nonlinear dielectric.

It should be noted that in the case of repulsion (T < 0), no singularities can evolve, and
the qualitative picture of turbulence musi be absolutely different. Meanwhile, in weak turbulence
description in the low nenlinearity limil, one can obtain from (0.4) the kinelic eguation which

contains Lhe quantity {T'|. Thus, in the weak turbulence limil, the sign of the interaction coefficient
is insignificant,

The high-frequency part of the spectrum is determined just by the structure
of the singularities formed. Therefose the theory of structure turbulence should
obvicusly be built up in an abselutely different way rather than in terms of cor-
relation functions in k-space. In that case, it seems natural to return to treating
the different dynamic processes in r-space. From a set of realizations one should
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choose those making the major contribution to the mean characteristics, and aver-
age over this subset of spatio-temporal siructures to obtain the wanted statistical
characteristics. We shall present a sketch of such a theory using acoustic rbu-
Ience &s an example. The question which remains open is, how relevant are the
collapsing structures to the classical turbulence of incompressible fluids?



