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2 The General Properties
of Magnetodielectrics

University and college departments of physics traditionally do not include
advanced courses in magnetism in their curriculum. Therefore we offer the
reader this short review chapter presenting necessary data on magnetically
ordered dielectrics. This saves the reader the necessity of referring to many
books on magnetism [2.1-13].

2.1 Classification of Substances

by Their Magnetic Properties

All substances have.more or less pronounced magnetic properties in the
sense that their properties change to some degree under the influence of a
magnetic field. One main parameter quantifying this influence is the mag-
netic susceptibility x, the derivative of the magnetization M with respect
to the strength of the magnetic field H. All substances fall into one of four
groups according to the magnitude and sign of x:

2.1.1 Diamagnets

Diamagnets have a magnetic susceptibility which is negative and small com-
pared to unity |x| ~ 1079, Atoms with no magnetic moment of their own
are usually diamagnetic. Diamagnetism can be explained by the Lenz rule
according to which a current arising in the system of charges (electron shells
of atoms) placed into the magnetic field tends to reduce this field. Therefore
their resulting magnetic moment is directed opposite to the applied field.

2.1.2 Superconductors

From the viewpoint of their magnetic properties, superconductors constitute
a special group. They eject the magnetic field into which they are placed
when its strength is below some critical value. This phenomenon is called
the Meissner effect. It results in strong diamagnetism when y = -1/4w.
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2.1.3 Paramagnets

These are substances with a low positive susceptibility. They comprise ions
with uncompensated magnetic moments of electrons p that have a spin
nature: g = ppS where pp is the Bohr magneton, S is the spin of an atom
(ion). Such ions are termed paramagnetic. Examples of such paramagnetic
ions are elements with incomplete d-shells (elements of the Ferrum group:
Fe, Ni, Co, Mn), f-shells (rare earth elements Sm, Dy, Yb, Lu, Tm), etc.
The magnetic moment of the paramagnets is a result of two competing
factors, the external magnetic field and temperature. The first factor tends
to produce parallel orientation of the magnetic moment of ions: under the
influence of the second one the magnetic moment of ions becomes chaotic.
At high temperatures the resulting magnetic moment is small x ~ nu/T
(here n is the concentration of paramagnetic atoms with moment p, T is the
temperature in energy units). At room temperature y ~ 1073, This picture
is observed if the interaction between the magnetic moments of the ions
is sufficiently small compared with the temperature. If the temperature is
decreased the substance passes to a magnetically ordered state.

2.1.4 Magnetically Ordered Substances (Magnets)

These have many typically magnetic properties and are characterized in par-
ticular by an additional type of collective excitations, spin waves, whereby
the magnetic moments oscillate with respect to the ordered orientation.
Nonlinear properties of spin waves will be the main object of study in this
book. Spin wave properties are, with other magnetic properties, largely de-
termined by the type of magnetic ordering, or, in other words, by the mag-
netic structure of magnets. Let us consider the types of magnetic structure.

1 Ferromagnets — FM. According to modern classification these are sub-
stances in which the magnetic moments of all the atoms have parallel orien-
tation. This results in a macroscopic magnetic moment equal to the sum of
the magnetic momentum of all the atoms. Without the external magnetic
field such a fully ordered state often proves to be thermodynamically unsta-
ble and the FM breaks into domains, i.e. macroscopic regions in which the
moments of the electrons are parallel. The resultant moment of the sample
then approximates zero. Then the ferromagnet (e.g. iron) is said to be not
magnetized, or in the multidomain state. To attain a one-domain state, an
external magnetic field should be applied. Lest this state be broken without
the external magnetic field, the motion of the domain walls and the rota-
tion of magnetic moments inside the domains must be specially prevented.
For more details on the domain structure see {2.4, 9]. In the general case
magnetic ordering is accompanied by the appearance of several magnetic
sublattices, each of which is a group of ions with similar magnetic moments.
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To be more exact, magnetic ions of the same sublattice are translation-
ally wnvariant, i.e. can be replaced by each other via an integer number of
elementary translations of the crystal lattice. The number of magnetic sub-
lattices is in this case determined by the number of magnetic atoms (ions)
in an elementary cell allowing for the magnetic order. Such a magnetic cell
may comprise an additional elementary crystal cell. From this viewpoint
FMs are substances with a single magnetic sublattice.

2  Ferrimagnets. These are substances with several magnetic sublattices
(with magnetization M ;). Interaction between the sublattices results in an
orientation such that the total magnetic moment M = ). M is non-
zero. In the simplest case there are two collinear sublattices with differ-
ent magnetic moments M; # M, with antiparallel orientation so that
M = M; — M, # 0. For three or more sublattices the orientation is not
necessarily collinear. A classical example of a ferrimagnet is the Yttrium-
Iron Garnet (YIG) Y;3Fes0,, with twenty magnetic sublattices.

3 Antiferromagnets -~ AFM. Unlike the ferrimagnet, the sum of magnetic
moments of the AFM lattices is equal to zero. The simplest case of an AFM
has two equivalent antiparallel sublattices M| = —M,. Antiferromagnetic
ordering is typical, for instance in oxides MnQ, FeO, CoQ, and fluorides

MHF2 3 COF2 s FCFQ .

4 Antiferromagnets with weak ferromagnetism. Unlike pure AFMs the
sublattices of these substances are weakly uncollinear owing to a specific
relativistic Dzyaloshinsky—Moria interaction [2.9, 16]. Since such interaction
is significantly weaker than the exchange interaction, the resultant magnetic
moment M is much less than the magnetization of each sublattice.- Exam-
ples of such a structure are a—Fe;03, NiFy, MnCO, and CoCO,.

5 Helicoidal structures or helicomagnets. These substances are character-
ized by much more complicated ordering and cannot be described in terms
of magnetic sublattices. If there is one magnetic atom per elementary crys-
tal cell (in the paramagnetic phase) such structure may be represented, say,
as a “stationary wave of the magnetic moment”

iz =z Hje = peos(qR;) ,  pjy = psin(qR) . (2.1.1)

Here p; is the ion magnetization in the cell R;, ¢ is the wave vector of the
spiral incommensurable with the period of the reciprocal lattice. In the so-
called simple S-S spiral p, = 0, and the resultant magnetic moment of the
crystal is equal to zero. Such an ordering is antiferromagnetic. If p, # 0 the
spiral is called conical or ferromagnetic. There are more complicated spirals
in which p, depends periodically on the ion number. Helicoid magnetic
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structure at low temperature is typical for many rare earth metals. Such
structures have also been observed in alloys of MnAug, the compound Mnl;,
etc.

6 Magnetic glasses. This is a wide class of substances, which are of great
interest for theoreticians and promising for practical applications. Magnetic
glasses can be called congealed paramagnets with some magnetic structure
but without long-range magnetic ordering. Their sample average magnetic
moment is zero, but thermodynamic average of the magnetic moment of each
paramagnetic atom differs from zero. As in magnetically ordered substances,
magnetic glasses may support the propagation of long spin waves. There is
an extensive literature on magnetic glasses and emorphous magnets (see,
for example, [2.14]).

In conclusion of this section it must be noticed that the above classifi-
cation is fairly schematic since it is always difficult to fit reality into for-
mulae. For instance, there is no strict borderline between AFMs with weak
ferromagnetism and ferrimagnets, between helimagnets with the spiral pe-
riod in commensurable with the crystallographic period and multi-sublattice
AFMs. For more details on these problems - types of magnetic ordering, its
relation to crystal symmetry, etc. — see [2.9, 12], and the works by Laendau
[2.15] and Dzyalochinsky [2.16).

2.2 Nature of Interaction of Magnetic Moments

It is common knowledge that the strongest interaction determining the type
of magnetic structure is usually the ezchange interaction. It is electrostatic
in nature and is due to the Pauli principle which states that no two electrons
can exist in identical quantum states. The origin of the exchange interaction
can best be illustrated by the simple example of the hydrogen molecule.

2.2.1 Exchange Interaction in the Hydrogen Molecule

The Hamiltonian H of this system consists of the unperturbed Hamiltoni-
ans of the two atoms a and b, H, and H,, and the Hamiltonian of their
interaction

1
2
Mo = R Y R " R " Bl (221)
where R,; is the distance between the protons, Ri» denotes the distance
between the electrons, R, and Rp; is the distance between electron of the
atom @ and the proton of the atom b and vice versa. Since H,; does not
depend on the spin variables Sy, S, the multiplication form of the wave func-
tion of the molecule must be sought. In accordance with the Pauli principle
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the wave function ¥ must be antisymmetric under exchange of electrons.
As in the state with total spin of the system S = 1, the electron spins are
parallel, the spin term of ¥ will be symmetrical. Its coordinate term ¢ will
therefore be antisymmetric. Accordingly, in the state with antiparallel spins,
S = 0, the function ¢ will be symmetric. To first order in the perturbation
theory in the interaction Hamiltonian H,; we construct the functions of the
zeroth approximation ¢4 (R, Ry) using the wave functions of the hydro-
gen atoms @(R.;) composed of the i-th electron (1=1, 2) and c-th nucleus
(c=a,b):

[o(Rar)o(Ryz) £ o(Raz)p(Rs1 )]
2v/1 - §2 ’
where ¢ is the overlap integral. In this approximation the energy E, of

hydrogen molecule in the state with S = 1 and the energy FE_ of the molecule
with S = 0 have the following forms:

(ro:l:(Rl)RZ) =

(2.2.2)

By = /goi(Rl,Rg)Habdeng — [A(Rub) = B(Ra)] /(1 4+6%) , (2.2.3)

A(Rus) = / Hap *(Ra1)o?(Riz) ARy dR, |
(2.2.4)
B(Ru) = / Has ¢(Ray ) By ) Ruo)p( Byz) ARy dR,

Computation using these formulas shows that the function E; (R,;) > 0 and
decreases monotonically as the distance between the nuclei R,; increases
and the function E_(Rg;) has a sharp minimum under some R, = Ry.
It is important that F_(R,;) < 0. This means that two hydrogen atoms
can form a molecule only in a state with antiparallel spins. The quantum-
mechanical explanation of the homopolar chemical bond presented in our
book was given by Hestler and London in 1927 [2.17]. As can readily be
seen from (2.2.4), the function A(R4) determines the Coulomb energy of
two atoms on the assumption that the first electron “belongs” only to the
nucleus «, and the second one belongs to the nucleus b. As the distance
between the atoms increases this energy diminishes as 1/R,;. The function
B(Rgs) is a nondiagonal matrix element of the electrostatic energy Ha
between the state (al,b2| in which the first electron belongs to the atom a
and the second electron belongs the atom b, and the state |a2,b1) in which
the electrons exchange their positions. Since the function B(R,;) is non-zero
only due to the overlap of electron shells it decreases exponentially as the
distance increases.

This simple example shows that the pure quantum effect of electron
exchange leads to an interaction between the atoms determined by the total
spin of the atom S in spite of the fact that the Hamiltonian of the interaction
is independent of the spin variables. The two expressions (2.2.3) for the
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binding energy E+ in the state with total spin § = 0 and S = 1 may be
written uniformly using the spin variables S1,5;.

Ep=E—JS,S,, E=3E_/A+E /4, J=E_~E,. (225)

Here it has been considered that the values of the operator S;S; are given
by 3/4 in the singlet state (when S; = 1) and 1/4 in the triplet state (when
S = 0). The spin-dependent term in (2.2.5) is called the Hamailtonian of
ezchange interaction and is denoted as

Hex = —J 5187 . (2.2.6)

The function J(Rj2) is called the ezchange integral. If J < 0 (as in our
example) the antiparallel spin orientation is desirable, then the exchange
interaction is said to be antiferromagnetic. Under J > 0 parallel orientation
of spins is established and the exchange is called ferromagnetic.

The operator (2.2.6) is commonly known as the Heisenberg Hamiltonian,
though in this form it was first obtained by Dirac and first used in the theory
of magnetism by Van Flek. But it was Heisenberg who showed that interac-
tions resulting in magnetic ordering had quantum-mechanical nature due to
the Pauli principle. The original idea that spontaneous magnetization is due
to the specific interaction between the magnetic atoms was first suggested
by Weiss in 1907. His estimation of the temperature of transition based on
the magnetic dipole interaction, however, was 0.25 K, which is less than its
real value by a factor of 10*. But in spite of such a failure he prove to be
an incorrigible optimist, saing that “this difficulty must be treated not as
an argument against this theory of molecular field, but as an incentive for
looking for new ideas in the theory of the atomic structure”. Such ideas
were indeed formulated 20 years later!

2.2.2 Interatomic Exchange

As a rule, magnetic atoms have several valence electrons, therefore the
question of exchange interaction arises. This case differs from the above-
mentioned in the first place in the fact that binding energy includes only
interaction between the electrons

Hap = €*/R1a (2.2.7)

and in the second place due to the fact that the coordinate terms of various
quantum-mechanical states of electrons of a single atom m and n — ., (R)
and p,(R) are orthogonal. Therefore their overlap integral equals zero and
the expression (2.2.3) is reduced:

Ei=A+B. (2.2.8)

Then from (2.2.4, 5) follows a simple expression for J:
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J =3B = / p*(R1)(¢?/Ru2)p(Ry) dRy R, |
AR) =gm(R)G(R) .

Employing the Fourier transform we can obtain

e? [ lp(k)]?
J:ﬁ/ o dk (2.2.11)

Thus, the interatomic exchange is a ferromagnetic one, and it brings about
parallel spin orientation of the valence electrons of one atom. Hence follows
the well-known Hund rule: among all the states of an atom with the same
configuration (the number of valence electrons) the state with the maxi-
mum possible spin will have the lowest energy value. The exchange integral
(2.2.10) has no small factor (due to the overlap of the wave functions). Its
order of magnitude approximates the Coulomb energy of the two electrons
on the same center, i.e. it has an atomic scale of 1 eV. This contribution
to the energy is usually much greater than all the others and the magnetic
moments of the valence electrons may be considered rigidly connected to
one another. They are manifested in interatomic interactions as a single big
magnetic moment with respective atomic spin S > 1/2.

(2.2.10)

2.2.3 Interatomic Exchange of Large Spins

Consider the exchange interaction of two atoms in the state with a total
spin S, > 1/2 and Sy > 1/2. The wave functions are antisymmetric under
rearrangement of N electrons on the atom a and N electrons on the atom b.
Using these, a completely antisymmetric wave function must be constructed.
Here each of the allowed types of rearrangement symmetry of the space wave
function is associated with a certain value of the total spin S (for details see,
for instance, {2.12]). Consequently, each S is associated with its own energy
value of the two-atom system FE(S). The total spin of the system may take
254+ 1 values (for definiteness we take S, > S3) from S, — S} to S, +S) and
accordingly the energy of the two atoms can assume 25 + 1 values. They
can be described by an effective spin Hamiltonian having 2S5, + 1 constant:

E(S)=E—1J38,8, - J2(8,8,)% - ... - 1%9(8,8,)*% . (2.2.12)

This implies that the Hamiltonian of the exchange interaction of two multi-
electron atoms, generally speaking, can have no simple Heisenberg form
(2.2.6). It must be emphasized, though, that to the first approximation in
the overlap of the wave functions of atoms a and b (when only the inter-
atomic exchange of a simple electron pair is allowed for) all the J{Ebn) except
Ji;) are equal to zero (Nedlin [2.18]). For this reason, the Heisenberg ap-
proxXimation (2.2.6) can generally be used also for the exchange interaction
between multielectron atoms. Only in some rare cases the term proportional

to Jc(j) (called the biguadratic ezchange) has to be taken into account.
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2.2.4 Indirect Exchange Interactions

It must be noted that in magnetic dielectrics, paramagnetic ions usually are
not nearest neighbor, but are separated by a diamagnetic ion (oxygen, fluo-
ride). Therefore their wave functions do not overlap and the above discussed
direct exchange interaction is absent.

Nevertheless, exchange interaction arises in higher orders of the pertur-
bation theory due to the overlap integrals between the wave functions of the
paramagnetic and diamagnetic ions. One of the mechanisms of such an ex-
change suggested by Kramers in 1934 and Anderson in 1963 (see, e.g. [2.9,
11, 12]) is due to the mixing of states of the magnetic and nonmagnetic
ions. Indeed, electrons are not fully localized on the ions even in ion crys-
tals. Therefore there is a non-zero probability of the transition of one of the
electrons belonging to the diamagnetic ion ¢ (it will be denoted 1c) to the
neighboring paramagnetic ion a. Since the initial Hamiltonian of the system
is independent of spins, this transition will not be accompanied by an over-
turn of the spin. As a result, the spin of the electron 1c remains antiparallel
to the spin of the second, already unpaired electron of the ion ¢ (electron
2¢). Thus, two exchange interactions (namely the exchange of the unpaired
electron of the ion a with the incoming lc and the exchange of the electron
of the other paramagnetic ion b with the unpaired electron 2c in the ion c)
result in the dependence of the total energy of the three ions a—c—b on the
relative orientation of the spins S, and S;. This suggests that the exchange
interaction of the paramagnetic ions @ and b separated by the diamagnetic
ion ¢ does exist. Such interaction was named the super-ezchange or indirect
exchange. There are other mechanisms of indirect exchange corresponding
to different terms of the perturbation theory for the energy of the three ions
a — ¢ — b. (See, for instance, [2.12, 17, 20], etc.).

Obviously, the calculation of the exchange integrals for particular crys-
tals will be too cumbersome a task requiring computer processing, data
bases on ion spectroscopy for a reasonable choice of the initial wave func-
tions, etc. All this, of course, is beyond the scope of our work. Henceforth
the exchange integral J,; between the ions of the ions @ and b of the crys-
tal will be taken to be a phenomenological constant whose value could be
experimentally obtained. Studying nonlinear properties of the spin waves
in the present book we shall proceed from the Heisenberg approximation of
the exchange Hamiltonian of the magnetic:

Hex = Z JabSISZ . (2213)

All of the above should not be understood as the derivation of the for-
mula for H,,. We intended to illustrate the only following two facts: firstly,
that the exchange interaction has a simple nature: it is simply the part of
the Coulomb interaction between the electrons due to the Pauli principle;
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secondly, that the actual calculation of the exchange integrals in real crys-
tals is not only difficult but unnecessary for the investigation of nonlinear
properties of the spin wave.

2.2.5 Relativistic Interactions

The exchange interaction is the strongest, but not the only interaction be-
tween the magnetic ions of the magnets. Of fundamental importance are
also relativistic interactions: dipole-dipole interactions between the mag-
netic moments of the electrons and the spin—orbit interaction between the
spin and orbital moments of the electron. In the first place, these result in
an effective anisotropy energy which determines the energetically advanta-
geous directions of magnetization about the crystallographic axes. In the
second place, they lead to processes where the number of the spin waves
is not conserved. This results in the complete thermodynamic equilibrium
in the system. Later, these cases will be discussed in more detail. Now we
shall only write down and consider the expression for the energy of those
interactions. We start from the magnetic dipole-dipole interaction:

1
Hdd = 2/,L2B Z R_5 [(Sasb)RZb — 3(SaRab)(SbRab) . (2214)
ab ab

Here, as above, R, = R, — Ry is the distance between the atoms @ and b.
The energy of the dipole-dipole interaction calculated per atom is 45242/ a,
where a denotes the lattice constant. The corresponding value of the mag-
netic ordering temperature is of the order of 0.25 K. It is much less than
the experimentally observed Curie temperature due to exchange interaction,
which is normally between 10 and 1000 K.

A further type of relativistic interaction is the spin—orbit interaction
whose operator has the form:

My = MLS) . (2.2.15)

Here L and S designate the operators of the mechanical and spin atomic
moments, and A is the coupling parameter. The order of magnitude of
A~ (v/c)tE,, where v is the characteristic velocity of an electron in an
atom, c is the velocity of light, and E, is the atomic energy, of the order
of one Rydberg, i.e. 10 eV. Ordinarily, A ~ 1072 eV. The energy (2.2.15) is
determined by orientation of S relative to L. On the other hand, the energy
of an ion in the “crystal” electric field depends upon the orientation of L
relative to the lattice, since different L are associated with different wave
functions. Therefore, in the second order of the perturbation theory with re-
spect to the Hamiltonian (2.2.15) the energy of the ion becomes dependent
on its spin orientation about the crystallographic axes. It can be described
by the effective spin Hamiltonian
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H2 Z,\ms S; Li=a,y, 2. (2.2.16)

Here /\512-) ~ A2/, where A is the splitting energy of the levels with different

L by the crystal field. Since A ~ 1 eV, A ~ 107* eV ~ 1 K. If the
ground state of the ion is the singlet (I = 0), then the value of A?) is
lower still, because anisotropy arises due to the admixture of states with
L = 0 in the ground state. As a result, in various crystals A(?) ~ 0.01 -1 K,
which corresponds to the effective field of the crystallographic anisotropy
Ho ~ 0.1+ 10 kOe. In uniaxial crystals:

2D = M6+ Mgl

For A; < 0 the anisotropy field tends to orient spins along the z-axis. Then
the crystal is said to have the anisotropy of the “easy-azis type”. At Ay >0
the anisotropy orients the spins perpendicular to the z-axis. This is referred
to as anisotropy of the easy-plane type.

If the nearest neighbors of the ion have cubic symmetry then Az = 0 and
'Hgf) = const. Then there is no crystallographic anisotropy in the second
order of the perturbation theory in the spin—orbit interaction (2.2.15). It
arises only in the fourth order. In this case

gf? = Z’\Ejils'sjsksl ) (2.2.17)

ikl

where A®) ~ M/A% <« X2) « A The corresponding field of the cubic
anisotropy will be less still than the field of a uniaxial anisotropy: H, is
of the order of single to tens of Oersteds. Depending on the sign of some
combination of constants in (2.2.17) the easy axis will be either the direction
[111] or [100].

In conclusion it must be noted that allowing for the overlap of the wave
functions of the ions as well as for the spin—orbit interaction results in
the effective Hamiltonian of the form of (2.2.16) where spins belong to the
neighboring atoms « and b, i.e. Hp 2~ S,;;Ss;. As has already been noted,
such an interaction can lead to weakly noncollinear sublattices [2.20].

2.3 Energy of

2.3 Energy of Ferromagnets

in the Continuum Approximation

Recall that in the spin system of the magnetodielectrics the strongest in-
teraction is the exchange interaction which provides for the very existence
of magnetic order. The main part of this interaction is described by the
Heisenberg Hamiltonian Hey (2.2.13). In the dynamics of long spin waves
the dipole-dipole interaction Hqq (2.2.14) is also of great importance. The
interaction of the magnetic moments of electrons with a homogeneous ex-
ternal magnetic field H must also be taken into account:

Hm =—2up > (HS,) . (2.3.1)

In the previous section it has been shown that the spin-orbit interaction
results in the emergence of the effective energy of the magnetic anisotropy.
In uniaxial crystals (see (2.2.16)):

HE =A@ Z(Sa,z)2 . (2.3.2)
In ferromagnets with cubic symmetry (see (2.2.17)): .
HE = XD S| (Se)!+ (S + (S (233)

These expressions contain only the terms of the second and fourth orders of
the perturbation theory in the spin-orbit interaction. Sometimes still weaker
terms of sixth order are taken into account. In uniaxial hexagonal crystals
such terms bring about the anisotropy in the basal plane perpendicular to
the 6-fold rotational axis of symmetry.

The total Hamiltonian of the ferromagnet spin system contains, generally
speaking, all the above-mentioned terms:

H="Hex +Haq + Hm + Hq . (2.3.4)

This expression does not contain the interaction of the spin subsystem of a
crystal with its other subsystems — phonons, excitons, etc.

We now turn to a discussion of the classical approximation for the ferro-
magnetic energy assuming the magnetic moments of electrons on the neigh-
boring sites to be almost parallel. Formally, the procedure must be as fol-
lows. First, the classical expression for the ferromagnetic energy must be
written, which corresponds to the Hamiltonian (2.3.4). Second, the notion
of the averaged density of the magnetic moment M (+) must be introduced.
To this end the magnetic moment of the electron must be “spread” over
the unit cell. Third, we must change from a summation over the sites to an
integration over space.
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This procedure can be most easily performed for the part of the Hamil-
tonian containing a single summation over sites. It is from (2.3.1-3) that the
well-known expressions for W,,, and W, are most readily obtained:

(2)
Wm — _/HM(r)dr R W‘SZ) = u]- /Mz("')d"' s (235a,b)

48ph

W - K, f (M) 4 MA(r )+ M) dr | Ky = (Mol /168) (2.3.6)

M (7) here denotes the density of the magnetic moment, K4 is the cubic
constant of the 4-th order anisotropy, and vy designates the volume of the
unit cell. The transformation of (2.2.13) for the exchange energy proves
somewhat more complicated. Here only the final expression for W, will be
shown. The reader can do the necessary calculations independently, or can
see it, for instance, in [2.8]. The result is

ik an 6Mj . 1
Wex = 7 a.’l?i a.’l?k dr y Qg = % ; J(T"_)Ti('n)’i‘k('n) . (237)

Here rj(n) is the i-projection (z = z,y, z) of the r -coordinate of the mag-
netic atoms m in the lattice. Expressions (2.3.5-7) were derived under the
assumption that the distance ! over which the exchange interval is essen-
tially changed is small in comparison with the distance at which an essential
change M (r) takes place.

Note that the expression (2.3.7) for the exchange energy has a great
generality. To a great extent it is independent of model assumptions: spin
magnitude, dependence of the exchange integral on the distance between
atoms, etc. It may be treated as a phenomenological expression for the non-
homogeneous exchange energy. Indeed if it is assumed, first, that this energy
is independent of magnetization orientation about the crystallographic axis,
second, that inversion is an element of crystal symmetry and, third, that
there exists a quadratic dependence of the energy on magnetization, then
from symmetry considerations the expression (2.3.6) can be obtained. The
proof of this simple statement will not be given here. The reader can find
it in [2.8]. We shall only note that the first of the above assumptions is
general and follows from the invariance of the exchange interaction with
respect to the rotation of all spins. The second assumption is based on the
fact that such inversion is characteristic of most magnetically ordered di-
electrics. As for the last assumption, strictly speaking it is correct only for
the case S = 1/2 when the exchange interaction operator has the Heisenberg
form (2.2.13). Under S > 1/2 the approximation (2.2.13) sometimes proves
inadequate and the additional term must be allowed for, i.e., the so-called
“biquadratic ezchange” whose operator is given by (2.2.12). There is a cor-
responding additional term in the energy of the inhomogeneous exchange:

—_—— e
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Q; oM, IM,
W(“):%/M——Mm—md 3.
ex 2 ! Oz; Oz " (2 3 8)
a; ——I—ZJ(Z)(a)aa (2.3.9
ik — 8#4 Ak - .. )
B a

The expression (2.3.9) is obtained under the assumption that only the “near-
est neighbor” interactions are essential. Than J(®(a) is biquadratic excange
integral J(®)(r) (2.2.12). For the general case the expression (2.3.8) can be
obtained from symmetry considerations, thus taking the exchange interac-
tion to be invariant with respect to the rotations of M and the presence of
inversion.

Now we consider the energy of dipole—dipole interactions. The following
macroscopic energy corresponds to the Hamiltonian Hgq (2.2.14):

v2 1
de = ?0 R_5 [(Ma ' Mb)sz - 3(Ma : Rab)(Mb : Rab)] (2310)
a#b ab

Passing to integration in (2.3.10) is not so trivial, though the resulting
expression for Wyq is simple:

1 4w M*?
O*r 1
= _gr (). 2.3.12
o =0 Y Sr g (R) (2:3.12)

Here H,, is the static magnetic field due to the magnetic moment M (7).
Explicit and detailed derivation of these expressions is presented in [2.8].
Therefore here we shall discuss only the physical meaning of these expres-
sions. The first term in (2.3.11) is a well-known expression of the magnetic
energy under continuous space distribution of the magnetic dipoles. The oth-
ers term account for the discrete structure of the magnets. They are due to
the difference between the true value of the magnetic field in dipole locations
and the averaged value H,,. The second term in (2.3.11) approximately al-
lows for this difference, as it is done in the calculation of Lorentz-Lorenz
correction to the permittivity of the crystal(see [2.18]). Specifically, in cal-
culating the magnetic field H acting upon the dipole, the dipole is taken to
be inside the spherical cavity (the Lorentz sphere) in the continuum with a,
continuous distribution of the magnetization M. It can be shown (see, e.g.,

[2.3]) that
H=H, +4rM/3 . (2.3.13)

Taking this into account, it becomes clear that the first two terms in (2.3.11)
are simply the energy of the dipole interaction —M - H /2. Finally, the last
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term in (2.3.11) allows for the difference between the real crystal discrete-
ness and the approximate model using the Lorentz sphere. From symmetry
considerations in cubic crystals a;; = aé;;. On the other hand, it follows
from (2.3.12) that Tr{a;;} = 0, and, as a result, ¢ = 0. This means that for
cubic crystals the results of the approximate model with the Lorentz sphere
are exact. In uniaxial crystals at the same time a;; = a;6;k , a; # az = ay,
and the last term in (2.3.11) does not become zero. It can be represented
as:

_Lz‘”/MZ(r)dr — “7 /M2(1')d1' : (2.3.14)

The form of the first term coincides here with the expression (2.3.5) for
W(EZ) and therefore represents the dipole-dipole contribution to the energy
of crystallographic anisotropy. Henceforth this term will be considered to
have been accounted for in (2.3.5) by corresponding renormalization of the
coefficient A?). The remaining terms in (2.3.11) and (2.3.14) proportional
to M?(r) represent the constant contribution to the energy W which does
not depend on the orientation of M and is of no interest for us. Therefore
in (2.3.11) we can retain only the first term.

For this term to be expressed only in terms of magnetization the follow-
ing equations of magnetostatics must be solved

curlH =0 , divB=0. (2.3.15)
We will be interested in the following two cases:

1. The Plane Wave: M(r) = (M) + [m;, exp(tkr) +c.c.] , the wavelength
of the spin wave 27 /k being much less than the sample size.

2. The sample is shaped as an ellipsoid and M(r) = M = const. As is
well known, (2.3.15) has exact solutions in both cases. In the first case

H(r) = [Hp(k)exp(ikr) +cc], H(k)= —4rk(k -my)/k* .

In the second case Hy,; = —4xNjy My, Tr{N;;} =1, where N;; is the
tensor of demagnetizing factors, depending on the shape of the ellipsoid.
Using these results the energy of the dipole~dipole interaction (2.3.11) can
be expressed in terms of M. To this end, represent M (r) as an expansion
in terms of plane waves

M(r) = (M) +> m(k)exp(ik - 7) . (2.3.16)
ke

Here we take M (k) = 0 at k = 0, and the mean magnetization value in the
sample is given by the formula
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(M) = Vis /M(r)dr , (2.3.17)

where V5 is the volume of the sample. Substituting the expansion (2.3.16)
into the formulae to (2.3.11) and using the expression for H(r) and for
H,, ; we obtain

Waa = 27V Nip (M) (M) + 22V S [k - m(k)][k - m(—k)]/k? . (2.3.18)
k

Recall that this expression was derived under the assumption that the mini-
mum linear dimension of the sample is much greater than 27 /k. This means
that we do not allow for the Walker modes which are magnetostatic eigen-
modes of magnetization oscillations with characteristic dimension on the
order of the sample size (see, for instance, Sect. 11 in [2.8]). The only Walker
mode taken into account by the first term in (2.3.18) is the uniform preces-
sion of magnetization (UP). This limitation of (2.3.18) is, however, not very
important since in most experiments treated any modes below the Walker
modes (except for UP) are not excited.

Summing up the present section we may say that the energy of the
ferromagnet W is the sum

W =W, +W, + Wex + Wyqa , (2320)

where W,, is the energy of interaction with the external field, W, is the
energy of magnetic anisotropy, Wey is the exchange energy and Wyq is the
energy of the dipole-dipole interaction, with expressions given by respec-
tively by (2.3.5-9, 18). These expressions will be used for the calculation of
the spin waves’ dispersion law and the functions characterizing their inter-
action.

2.4 Magnetic and Crystallographic Structure
of Some Magnets

We shall not give a detailed description or classification of magnetic crys-
tals. The reader is referred to the specialized treatises [2.22], reviews [2.11],
chapters in books [2.9]. In the present book we give only the structures of
those magnets that are most often employed in experiments.
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2.4.1 Crystals with Spinel Structure

Such crystals are of special interest, since they were used for the first veri-
fication of the Néel theory of ferromagnetism, which generalized the Weiss
theory of the molecular field to the case of several magnetic sublattices. The
spinel structure is typical of dioxides of transition metals having the chemi-
cal formula A?*B370,. Here A%t and B** stand for two- and three-charge
ions of the metals. Spinels are also formed by almost densely packed oxygen.
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The ions of a metal are located in octahedral and tetrahedral interstices
surrounded respectively by six and four oxygen ions (Fig. 2.1). The unit cell
of the spinel consists of eight basic formula units (AB204) and comprises
32 oxygen atoms forming 16 octahedric and 8 tetrahedric interstices. They
are designated respectively by the letters d and a. The cell a is a cube of
edge length ay = 8.5A) consisting of eight octants (small cubes ag/2 on
edge) of two types, differing in the arrangements of their ions. The octants
of different types have a common edge. In the so-called normal spinels the
cations A are located in the tetrahedral sites and the cations B are in the
octahedral sites. This is characteristic, for instance, of the ferrites ZnFe, Oy,
CdF6204.

In the inverted spinels the cations A and half of the cations B are located
in octahedrons and the other half of the cations B are in tetrahedrons. This
refers, for example, to manganese, lithium, and nickel ferrites. The ferrite
MgFe, 0, has an intermediate (between the normal and the inverted spinels)
type of cation localization.

If both metals A and B are paramagnetic the spinel is as a rule ferrimag-
netic with predominating intersublattice exchange [Jag| > |Jaal,|/88],
with the antiferromagnetic sign. In this case the magnetizations of the sub-
lattices A and B are antiparallel.

Normal spinels ZnFe, O, and CdFe,O4 where the magnetic ions occupy
only equivalent (octahedric) positions are antiferromagnetic. This is due to
the antiferromagnetic sign of the B-B exchange subdividing the ensemble
of the sites B into two magnetic sublattices.
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2.4.2 Crystals with Garnet Structure

The Yittrium-Iron Garnet (YIG) is a wonderful phenomenon. Its role in
the physics of magnets is comparable to the part germanium played in the
physics of semiconductors and quartz in acoustics of crystals. This can be ex-
plained by the following. Firstly, it has a high Curie temperature T, = 560 K
which enables one to experiment at room temperature. On the other hand,
although the unit cell consists of 80 atoms, each of which must assume its
unique “correct” position, the technology of YIG crystal growing has been
developed so well that the sound damping decrement is less than in quartz
crystals. Finally it has the narrowest known line of ferromagnetic resonance
and the smallest damping decrement of the spin waves. All this makes it
indispensable not only in SHF engineering but also in the experimental
physics of magnets studying new effects and phenomena.
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Fig. 2.2. (left) The elementary cell of YIG: (1), (2) and (3) are the positions a, ¢ and d
respectively, (4) are the oxygen ions

Fig.2.3. (middle) One half of the CsMnF3 elementary cell (A and B are the Mn ions);
(right) an elementary cell of Fe;O3 and CryOs: (1), (2), (3) and (4) are the ions of Fe or
Cr

The YIG unit cell is a half-cube ap = 12.38 A on edge consisting of 4
identical octants, i.e. small cubes ag/2 on edge comprising one formula unit
(Fig. 2.2). The arrangement of atoms in the octant has no cubic symmetry.
In the unit cell, however, the orientation of octants makes it practically cubic
of the O, symmetry group. The apices and centers of every octant are occu-
pied by Fe3* cations surrounded by octahedrons (the so-called a-site). Their
coordinates in the first octant can be written as (0,0,0); (0,1/2, 1/2);
(1/2,0,1/2); (1/2,1/2,0); (1/2,1/2,1/2); (1/4,1/4,1/4). A unit cell
comprises 8 a-sites. There are also 12 tetrahedral sites (12d) occupied by



52 2 The General Properties of Magnetodielectrics

Fe?" anions and 12 dodecahedral sites (12¢), occupied by Y anions. Their co-
ordinates in the first octant of the site (12d) are (3/8, 0, 1/4); (1/4, 3/8, 0);
(0, 1/4, 3/8); andin the site (12¢) (1/8, 0, 1/4); (1/4, 1/8, 0); (0, 1/4, 1/8).

The oxygen anions occupy the common sites. The sites of all the 40 atoms
in a unit cell (of Y3Fe3TFe2T015) are considered, e.g., in [2.12]. Thus, there
are two non-equivalent sites of paramagnetic ferrum anions in YIG, ie. a
and d. Therefore, in a rough approximation YIG is sometimes considered a
ferrimagnet with 2 sublattices. This approximation, however, has no field of
applicability (Kolokolowv et al. [2.21, 22]). At T' < 150 K only one branch of
the spin wave spectrum is excited and YIG can be considered a ferromag-
netic. At large T' the excitations of at least four or more spectrum branches
must be taken into accouns.

In addition to YIG there are rare earth ferrogarnets R3Fe;Q,9, where
R = Sm, Dy, Yb, Lu, Tm. Their rare earth sublattices are also magnets and
the number of magnetic sublattices is larger than in YIG.

2.4.3 Crystals with Hexagonal Structure

Such crystals are characterized by the space group Dj, . First we shall de-
scribe the antiferromagnet (AFM) CsMnF3, which has been the object of
very interesting experiments by Prosorove, Kotyuzhansky et al. studying
the parametric excitation of the spin waves. Its unit zell contains 6 formula
units. Mn ions occupy two non-equivalent sites A (2 ions) and B (4 ions) cen-
trally positioned in octahedrons formed by fluorine ions (see Fig. 2.3). Site
A: (0, 0, 1/2). Sites B are : (1/3,2/3, 1); (1/3, 2/3, —i); (2/3,1/3,1/2 +
2); (2/3,1/3, —i). Thus, the Mn layers A and B alternate as ABBABBA.
In every plane the ordering is ferromagnetic; moments are in the plane. The
moments of all neighboring planes are antiparallel. Thus, CsMnF;3 is a pure
AFM, unlike its compounds RbNiF3, TINiF;, CsFeF; which have the same
structure, but are ferrimagnets. In these crystals intensive antiferromagnetic
A-B exchange and a weak ferromagnetic B-B exchange are observed. There-
fore these crystals may be treated as quasi-two-dimensional ones formed by
triples, i.e. by groups of three strongly coupled BAB-planes: (BAB)(BAB)...
All the moments are in the basal plane; magnetic ordering of the planes is
of the type (+—+)(+—+)(+—)... . In the structure under consideration, the
crystallographic surrounding of each magnetic ion has a six-fold symmetry
axis. Anisotropy in the basal plane arises only in the sixth order of pertur-
bation theory in the spin-orbit interaction and thus appears rather small:
H =1 Oe. Also, uniaxial anisotropy (of the easy-plane type) arising in the
second order of perturbation theory is rather big — the field of anisotropy is
of the order of 10 kOQe.

By —
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2.4.4 Crystals with Rhombohedral Structures

The two most remarkable representatives are a—Fe; Q3 and CryO3.
Dzyaloshinsky’s theory, stating the connection of weak ferromagnetism aris-
ing in AFMs with magnetic ordering symmetry was verified employing these
crystals by authors of [2.12, 17]. The space group of these crystals is DS;.
The unit cell comprises two formula units, i.e. four magnetic ions located on
the axis of the 3-fold rotation symmetry (Fig. 2.3, right). They are antifer-
romagnetically ordered. Under a certain sequence of alternating spin signs
in a unit cell weak ferromagnetism is possible, only when the moments are
in the basal plane [2.12]. These conditions exist in MnCOQj; at temperatures
950 > T > 250 K. Indeed, this substance has been experimentally proven
to have a weak ferromagnetic moment within the above mentioned temper-
ature range. As for Cro0j3;, the spin alternation in it 1s of another kind and
in full accordance with the theory that it contains no magnetic moment
a—Fe; O3 (AFM with anisotropy of the easy—plane type) is also a rhombo-
hedric crystal. Its Néel temperature is 32 K. This magnetic is employed in
experiments on the parametric excitation of spin waves. Unlike CsMnF; it
is characterized by weak ferromagnetism.

No detailed description of the other magnetic structures will be given.
We shall only name some crystals of perovskite structure (CaTiOz) whose
composition can be represent as ABX where X is oxygen or fluorine, and A
and B designate metals [2.12]. These are YFeO3, KMnF3, RbCoF;. Magnetic
crystals with a structure of rock salt are worth mentioning, i.e. AFM MnO,
FeO, Co0, NiO, and ferromagnets EuQ, EuS, EuSe (at T < 2.8 K). It must
be emphasized that in the long list of the named crystals only the three
europium compounds are simple ferromagnets with one magnetic lattice.



