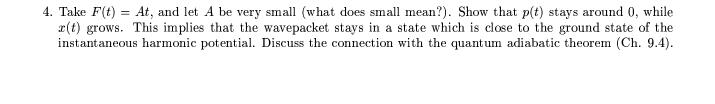
Project 1

I. GAUSSIAN WAVEPACKET IN A HARMONIC OSCILLATOR: PROPAGATION, AUTOCORRELATION FUNCTIONS AND SPECTRA.

- Program name: har_analytic.m,har_numeric.m
- What program does: Calculates correlation function C(t) and spectrum $\sigma(\omega)$ for a 'coherent state' Gaussian in a harmonic potential.
- Reference in text:
 - 1. Ch. 3.3, Gaussian wavepackets.
 - 2. Ch. 6.eoc.3, analytic form for the correlation function, C(t), of a 'coherent state' Gaussian in a harmonic potential, and the analytical Fourier transform of C(t), giving the spectrum, $\sigma(\omega)$.
 - 3. Ch. 14.eoc.1. Analytical solution for absorption and Raman spectroscopy for a Gaussian on a harmonic excited electronic state.

• Assignments:


- 1. Compare the analytic and numeric solutions with their analytic solution in ex. 6.eoc.3.
- 2. Change the displacement of the initial wavepacket. Explore the changes in C(t) and $\sigma(\omega)$ as a function of the displacement.
- 3. Measure the time scales of C(t) and compare the related frequency scales in $\sigma(\omega)$. Verify the relationships in fig. 6.1.
- 4. Compare your analytic expression for the short time C(t) in ex. 6.eoc.4a with the full analytic (and numerical) result. How valid is the short time expansion?

II. GAUSSIAN WAVEPACKET IN A HARMONIC OSCILLATOR WITH EXTERNAL FORCING.

- Program name: forcedHO.m
- What program does: Calculates the evolution of a coherent state Gaussian in a forced harmonic oscillator. More precisely, it gives the center of the Gaussian in p and x as a function of time for different forcing functions, F(t), by solving the eq. for z(t) in ex. 3.eoc.9b.
- References in text:
 - 1. Ch. 3.eoc.9, analytical solution for a Gaussian in a harmonic oscillator.
 - 2. Ch. 15 Strong Fields. This analytic example is not discussed there, but has served as a conceptual starting point for thinking about infrared multiphoton excitation in time-dependent language.
 - 3. Ch. 9.4 Quantum Adiabatic Theorem. This analytic example with F(t) slowly varying can be used to verify the quantum adiabatic theorem.

• Assignments:

- 1. Take $F(t) = \sin(\omega' t)$. Vary ω' and discuss the differences between
 - (a) $\omega' = \omega$;
 - (b) ω' a little detuned from ω (above and below);
 - (c) ω' a lot detuned from ω .
- 2. Take $F(t) = \sin(\omega t)$ (resonant forcing). At some time after the oscillator becomes excited, $\sin(\omega t)$ abruptly to $\sin(\omega t + \delta)$. Explore the effect of different values of δ and interpret.
- 3. Take F(t) = A. What is z(t)? Why? What is the dependence on the size of A?

