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Exam 2014
Problem 1:
Two different phases of the same solid have respectively the specific heats c1 = aT 3 and c2 = bT 2.

a) Assuming that they both satisfy the third law of thermodynamics, find the entropies of the phases.

b) Assuming that their internal energies (per particle) at zero temperature are the same and equal to e0,
find how their energies depend on the temperature.

c) Assuming that the densities are the same, find the temperature of the phase transition and determine
which is the low-temperature phase.

Problem 2.
As a simplest model for rubber, consider a chain consisting of N ≫ 1 segments,
each of the length a. Every segment can rotate freely and be oriented either up
or down. An upper end of the chain is fixed, at the lower end we have weight F.

i) Determine the dependence of the mean chain length l on the temperature T.

How the length changes (increases or decreases) upon heating?

ii) How the temperature changes (increases or decreases) upon adiabatic stretching?
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iii) Bonus question: prove (*).

F

Problem 3. Find the specific heat of N fermions at (low) temperature T in the three-dimensional potential
U = mω2r2/2.

Problem 4. Consider the 1d spin chain where spins can have values 1, 2, . . . q. The Hamiltonian is
determined by the interaction of the nearest neighbors: βH = −K

∑
i δσi,σi+1

. Here δa,b = 1 when a = b
and zero otherwise.

a) Do Renormalization Group decimation of every second site (k = 2) and find the RG recursion relations
g(K) and K ′(K).

b) Find the fix points and describe their stability.
c) Find the correlation radius for q = 2 and for arbitrary q. One can find the correlation radius either

from RG or from transfer matrix using rc = ln−1(λ1/λ2).
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Solutions
Solution 1:
a) Entropies are obtained by integrating dQ/T starting from s(0) = 0:

s1(T ) =

∫ T

0

c1dT

T
=

aT 3

3
, s2(T ) =

bT 2

2
.

b) Since de = Tds+ µdN then for dN = 0 we have de = Tds(T ) = c(T )dT and

e1 = e0 +
aT 4

4
, e2 = e0 +

bT 3

3
.

c) Since the densities are the same, only chemical work needs to be considered so that µ = e− Ts. Phase transition happens
when µ1 = aT 4(1/4− 1/3) = µ2 = bT 3(1/3− 1/2) which gives

T =
2b

a
.

At low temperatures, µ1 > µ2 so the second phase is realized there.

Solution 2: The problem is equivalent to that of a two-level system, non-interacting spins in an external field etc. The number
of up/down segments respectively is N+ = N/2+ l/2a, N− = N/2− l/2a. The energy of the system is the potential energy of
the weight E = −Fl. The entropy of the system is S = ln(N !/N+!N−!). We now write the free energy F(l) = E(l)− TS(l)
and requiring ∂F/∂l = 0 we find l = Na tanh(Fa/T ). The length decreases with the temperature since(
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The change of temperature under adiabatic stretching is determined by (∂T/∂l)S . It can be found using the identity
∂(l, F )/∂(T, S) = 1, which is the version of ∂(V, P )/∂(T, S) = 1 for our system:(
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The last inequality follows from (1) and from the stability conditions Cl > 0 and (∂l/∂F )T > 0.

Solution 3. For 3d harmonic oscillator, the energy levels are ϵn = ~ω(n + 3/2) and their degeneracy gn = 2C2
n+1 =

n(n + 1) ≈ n2 or equivalently the density of states g(ϵ) = ϵ2 (compare with home exercise 2.1). Therefore, the number of
particles and the total energy are respectively

N =

∞∑
0

gnf(ϵn) ≈ (~ω)−3

∫ ∞

0

ϵ2f(ϵ) dϵ ≈ (1/3)(µ/~ω)3
[
1 + (πT/µ)2

]
, (3)

E =

∞∑
0

ϵngnf(ϵn) ≈ (~ω)−3

∫ ∞

0

ϵ3f(ϵ) dϵ ≈ (µ4/4)(~ω)−3
[
1 + 2(πT/µ)2

]
. (4)

Here we used the Fermi-Dirac distribution f(ϵ) = [1 + eβ(ϵ−µ)]−1 and the low-temperature approximation
∫∞
0

F (ϵ)f(ϵ) dϵ ≈∫ µ

0
F (ϵ) dϵ+ F ′(µ)π2T 2/6. From (3) we find µ0 = µ(T = 0) = ~ω(3N)1/3 and µ(T ) ≈ µ0(1− π2T 2/3µ2

0). We substitute
it into (4) and obtain

E(T ) = E0 +Nπ2T 2/2µ0 C =
π2T

31/3~ω
N2/3 . (5)

Solution 4: a) Consider three spins, σ1, σ2, σ3 and sum over the values of the spin σ2:
q∑

σ2=1

eK(δσ1σ2+δσ2σ3 ) =

{
q − 1 + e2K if σ1 = σ3,
q − 2 + 2eK if σ1 ̸= σ3.

(6)
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Now require that this is equal to eg+K′δσ1σ3 and obtain

eg = q − 2 + 2eK , eK
′
=

q − 1 + e2K

q − 2 + 2eK
. (7)

b) The fix points correspond to K ′ = K. K = 0 is a stable point and K = ∞ is an unstable one.
c) From RG one writes rc(K ′) = rc(K)/2. To solve this equation we need to find such function x(K) so that x(K ′) = x2(K),

then rc ∝ ln−1(x). That function is x = 1 + q/(eK − 1) - one way to find it is to introduce first eK − 1 = z so that
z′ = z2/(2z + q). Alternatively, one can use the transfer matrix, which in this case has eigenvalues λ1 = eK + q − 1 and
λ2 = eK − 1. Correlations decay with the distance r as (λ2/λ1)

r so that the correlation length is

rc = ln−1(λ1/λ2) = ln−1[1 + q/(eK − 1)] .

One can check that for q = 2 everything coincides with that of 1d Ising model.
It is called Potts model, see Kardar, Fields, Problems 6.2a, 6.3c.


