

Exam 2014

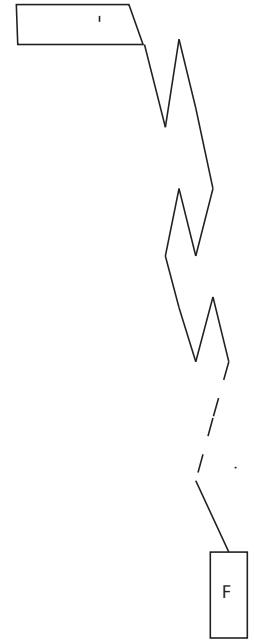
Problem 1:

Two different phases of the same solid have respectively the specific heats $c_1 = aT^3$ and $c_2 = bT^2$.

- a) Assuming that they both satisfy the third law of thermodynamics, find the entropies of the phases.
- b) Assuming that their internal energies (per particle) at zero temperature are the same and equal to e_0 , find how their energies depend on the temperature.
- c) Assuming that the densities are the same, find the temperature of the phase transition and determine which is the low-temperature phase.

Problem 2.

As a simplest model for rubber, consider a chain consisting of $N \gg 1$ segments, each of the length a . Every segment can rotate freely and be oriented either up or down. An upper end of the chain is fixed, at the lower end we have weight F .



- i) Determine the dependence of the mean chain length l on the temperature T .

How the length changes (increases or decreases) upon heating?

- ii) How the temperature changes (increases or decreases) upon adiabatic stretching?

To answer that, use

$$\left(\frac{\partial T}{\partial l}\right)_S = - \left(\frac{\partial l}{\partial T}\right)_F \left(\frac{\partial F}{\partial l}\right)_T \left(\frac{\partial T}{\partial S}\right)_l = - \left(\frac{\partial l}{\partial T}\right)_F \left(\frac{\partial F}{\partial l}\right)_T \frac{T}{C_l}. \quad (*)$$

- iii) Bonus question: prove (*).

Problem 3. Find the specific heat of N fermions at (low) temperature T in the three-dimensional potential $U = m\omega^2 r^2/2$.

Problem 4. Consider the 1d spin chain where spins can have values $1, 2, \dots, q$. The Hamiltonian is determined by the interaction of the nearest neighbors: $\beta\mathcal{H} = -K \sum_i \delta_{\sigma_i, \sigma_{i+1}}$. Here $\delta_{a,b} = 1$ when $a = b$ and zero otherwise.

- a) Do Renormalization Group decimation of every second site ($k = 2$) and find the RG recursion relations $g(K)$ and $K'(K)$.
- b) Find the fix points and describe their stability.
- c) Find the correlation radius for $q = 2$ and for arbitrary q . One can find the correlation radius either from RG or from transfer matrix using $r_c = \ln^{-1}(\lambda_1/\lambda_2)$.

Solutions

Solution 1:

a) Entropies are obtained by integrating dQ/T starting from $s(0) = 0$:

$$s_1(T) = \int_0^T \frac{c_1 dT}{T} = \frac{aT^3}{3}, \quad s_2(T) = \frac{bT^2}{2}.$$

b) Since $de = Tds + \mu dN$ then for $dN = 0$ we have $de = Tds(T) = c(T)dT$ and

$$e_1 = e_0 + \frac{aT^4}{4}, \quad e_2 = e_0 + \frac{bT^3}{3}.$$

c) Since the densities are the same, only chemical work needs to be considered so that $\mu = e - Ts$. Phase transition happens when $\mu_1 = aT^4(1/4 - 1/3) = \mu_2 = bT^3(1/3 - 1/2)$ which gives

$$T = \frac{2b}{a}.$$

At low temperatures, $\mu_1 > \mu_2$ so the second phase is realized there.

Solution 2: The problem is equivalent to that of a two-level system, non-interacting spins in an external field etc. The number of up/down segments respectively is $N_+ = N/2 + l/2a$, $N_- = N/2 - l/2a$. The energy of the system is the potential energy of the weight $E = -Fl$. The entropy of the system is $S = \ln(N!/N_+!N_-!)$. We now write the free energy $\mathcal{F}(l) = E(l) - TS(l)$ and requiring $\partial\mathcal{F}/\partial l = 0$ we find $l = Na \tanh(Fa/T)$. The length *decreases* with the temperature since

$$\left(\frac{\partial l}{\partial T} \right)_F < 0. \quad (1)$$

The change of temperature under adiabatic stretching is determined by $(\partial T/\partial l)_S$. It can be found using the identity $\partial(l, F)/\partial(T, S) = 1$, which is the version of $\partial(V, P)/\partial(T, S) = 1$ for our system:

$$\left(\frac{\partial T}{\partial l} \right)_S = \frac{\partial(T, S)}{\partial(l, S)} = \frac{\partial(T, S)}{\partial(l, S)} \frac{\partial(l, F)}{\partial(T, S)} = - \frac{\partial(F, l)}{\partial(F, T)} \frac{\partial(F, T)}{\partial(l, T)} \frac{\partial(l, T)}{\partial(l, S)} = - \left(\frac{\partial l}{\partial T} \right)_F \left(\frac{\partial F}{\partial l} \right)_T \frac{T}{C_l} > 0. \quad (2)$$

The last inequality follows from (1) and from the stability conditions $C_l > 0$ and $(\partial l/\partial F)_T > 0$.

Solution 3. For 3d harmonic oscillator, the energy levels are $\epsilon_n = \hbar\omega(n + 3/2)$ and their degeneracy $g_n = 2C_{n+1}^2 = n(n+1) \approx n^2$ or equivalently the density of states $g(\epsilon) = \epsilon^2$ (compare with home exercise 2.1). Therefore, the number of particles and the total energy are respectively

$$N = \sum_0^\infty g_n f(\epsilon_n) \approx (\hbar\omega)^{-3} \int_0^\infty \epsilon^2 f(\epsilon) d\epsilon \approx (1/3)(\mu/\hbar\omega)^3 [1 + (\pi T/\mu)^2], \quad (3)$$

$$E = \sum_0^\infty \epsilon_n g_n f(\epsilon_n) \approx (\hbar\omega)^{-3} \int_0^\infty \epsilon^3 f(\epsilon) d\epsilon \approx (\mu^4/4)(\hbar\omega)^{-3} [1 + 2(\pi T/\mu)^2]. \quad (4)$$

Here we used the Fermi-Dirac distribution $f(\epsilon) = [1 + e^{\beta(\epsilon - \mu)}]^{-1}$ and the low-temperature approximation $\int_0^\infty F(\epsilon) f(\epsilon) d\epsilon \approx \int_0^\mu F(\epsilon) d\epsilon + F'(\mu)\pi^2 T^2/6$. From (3) we find $\mu_0 = \mu(T=0) = \hbar\omega(3N)^{1/3}$ and $\mu(T) \approx \mu_0(1 - \pi^2 T^2/3\mu_0^2)$. We substitute it into (4) and obtain

$$E(T) = E_0 + N\pi^2 T^2/2\mu_0 \quad C = \frac{\pi^2 T}{3^{1/3} \hbar\omega} N^{2/3}. \quad (5)$$

Solution 4: a) Consider three spins, $\sigma_1, \sigma_2, \sigma_3$ and sum over the values of the spin σ_2 :

$$\sum_{\sigma_2=1}^q e^{K(\delta_{\sigma_1\sigma_2} + \delta_{\sigma_2\sigma_3})} = \begin{cases} q - 1 + e^{2K} & \text{if } \sigma_1 = \sigma_3, \\ q - 2 + 2e^K & \text{if } \sigma_1 \neq \sigma_3. \end{cases} \quad (6)$$

Now require that this is equal to $e^{g+K'\delta_{\sigma_1\sigma_3}}$ and obtain

$$e^g = q - 2 + 2e^K, \quad e^{K'} = \frac{q - 1 + e^{2K}}{q - 2 + 2e^K}. \quad (7)$$

b) The fix points correspond to $K' = K$. $K = 0$ is a stable point and $K = \infty$ is an unstable one.
 c) From RG one writes $r_c(K') = r_c(K)/2$. To solve this equation we need to find such function $x(K)$ so that $x(K') = x^2(K)$, then $r_c \propto \ln^{-1}(x)$. That function is $x = 1 + q/(e^K - 1)$ - one way to find it is to introduce first $e^K - 1 = z$ so that $z' = z^2/(2z + q)$. Alternatively, one can use the transfer matrix, which in this case has eigenvalues $\lambda_1 = e^K + q - 1$ and $\lambda_2 = e^K - 1$. Correlations decay with the distance r as $(\lambda_2/\lambda_1)^r$ so that the correlation length is

$$r_c = \ln^{-1}(\lambda_1/\lambda_2) = \ln^{-1}[1 + q/(e^K - 1)].$$

One can check that for $q = 2$ everything coincides with that of 1d Ising model.

It is called Potts model, see Kardar, Fields, Problems 6.2a, 6.3c.