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1

Introduction to turbulence theory

The emphasis of this short course is on fundamental properties of developed

turbulence, weak and strong. We shall be focused on the degree of univer-

sality and symmetries of the turbulent state. We shall see, in particular,

which symmetries remain broken even when the symmetry-breaking factor

goes to zero, and which symmetries, on the contrary, emerge in the state of

developed turbulence.

1.1 Introduction

Turba is Latin for crowd and “turbulence” initially meant the disordered

movements of large groups of people. Leonardo da Vinci was probably the

first to apply the term to the random motion of fluids. In 20th century,

the notion has been generalized to embrace far-from-equilibrium states in

solids and plasma. We now define turbulence as a state of a physical system

with many interacting degrees of freedom deviated far from equilibrium.

This state is irregular both in time and in space and is accompanied by

dissipation.

We consider here developed turbulence when the scale of the externally

excited motions deviate substantially from the scales of the effectively dis-

sipated ones. When fluid motion is excited on the scale L with the typical

velocity V , developed turbulence takes place when the Reynolds number is

large: Re = V L/ν ≫ 1. Here ν is the kinematic viscosity. At large Re,

flow perturbations produced at the scale L have their viscous dissipation

small compared to the nonlinear effects. Nonlinearity produces motions of

smaller and smaller scales until viscous dissipation stops this at a scale much

smaller than L so that there is a wide (so-called inertial) interval of scales

where viscosity is negligible and nonlinearity dominates. Another example

is the system of waves excited on a fluid surface by wind or moving bodies
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2 Introduction to turbulence theory

and in plasma and solids by external electromagnetic fields. The state of

such system is called wave turbulence when the wavelength of the waves

excited strongly differs from the wavelength of the waves that effectively

dissipate. Nonlinear interaction excites waves in the interval of wavelengths

(called transparency window or inertial interval) between the injection and

dissipation scales.

Simultaneous existence of many modes calls for a statistical description

based upon averaging either over regions of space or intervals of time. Here

we focus on a single-time statistics of steady turbulence that is on the spatial

structure of fluctuations in the inertial range. The basic question is that of

universality: to what extent the statistics of such fluctuations is independent

of the details of external forcing and internal friction and which features are

common to different turbulent systems. This quest for universality is moti-

vated by the hope of being able to distinguish general principles that govern

far-from-equilibrium systems, similar in scope to the variational principles

that govern thermal equilibrium.

Since we generally cannot solve the nonlinear equations that describe

turbulence, we try to infer the general properties of turbulence statistics

from symmetries or conservation laws. The conservation laws are broken by

pumping and dissipation, but both factors do not act directly in the inertial

interval. For example, in the incompressible turbulence, the kinetic energy

is pumped by a (large-scale) external forcing and is dissipated by viscosity

(at small scales). One may suggest that the kinetic energy is transferred

from large to small scales in a cascade-like process i.e. the energy flows

throughout the inertial interval of scales. The cascade idea (suggested by

Richardson in 1921) explains the basic macroscopic manifestation of turbu-

lence: the rate of dissipation of the dynamical integral of motion has a finite

limit when the dissipation coefficient tends to zero. For example, the mean

rate of the viscous energy dissipation does not depend on viscosity at large

Reynolds numbers. Intuitively, one can imagine turbulence cascade as a pipe

in wavenumber space that carries energy. As viscosity gets smaller the pipe

gets longer but the flux it carries does not change. Formally, that means

that the symmetry of the inviscid equation (here, time-reversal invariance)

is broken by the presence of the viscous term, even though the latter might

have been expected to become negligible in the limit Re → ∞.

One can use the cascade idea to guess the scaling properties of turbulence.

For incompressible fluid, the energy flux (per unit mass) ϵ through the given

scale r can be estimated via the velocity difference δv measured at that scale

as the energy (δv)2 divided by the time r/δv. That gives (δv)3 ∼ ϵr. Of

course, δv is a fluctuating quantity and we ought to make statements on its
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moments or probability distribution P(δv, r). Energy flux constancy fixes

the third moment, ⟨(δv)3⟩ ∼ ϵr. It is a natural wish to have turbulence

scale invariant in the inertial interval so that P(δv, r) = (δv)−1f [δv/(ϵr)1/3]

is expressed via the dimensionless function f of a single variable. Initially,

Kolmogorov made even stronger wish for the function f to be universal (i.e.

pumping independent). Nature is under no obligation to grant wishes of

even great scientists, particularly when it is in a state of turbulence. After

hearing Kolmogorov talk, Landau remarked that the moments different from

third are nonlinear functions of the input rate and must be sensitive to the

precise statistics of the pumping. As we show below, the cascade idea can

indeed be turned into an exact relation for the simultaneous correlation

function which expresses the flux (third or fourth-order moment depending

on the degree of nonlinearity). The relation requires the mean flux of the

respective integral of motion to be constant across the inertial interval of

scales. We shall see that flux constancy determines the system completely

only for a weakly nonlinear system (where the statistics is close to Gaussian

i.e. not only scale invariant but also perfectly universal). To describe an

entire turbulence statistics of strongly interacting systems, one has to solve

problems on a case-by-case basis with most cases still unsolved. Particularly

difficult (and interesting) are the cases when not only universality but also

scale invariance is broken so that knowledge of the flux does not allow one to

predict even the order of magnitude of high moments. We describe the new

concept of statistical integrals of motion which allows for the description

of system with broken scale invariance. We also describe situations when

not only scale invariance is restored but a wider conformal invariance takes

place in the inertial interval.

1.2 Weak wave turbulence

It is easiest to start from a weakly nonlinear system. Such is a system of

small-amplitude waves. Examples include waves on the water surface, waves

in plasma with and without magnetic field, spin waves in magnetics etc.

We assume spatial homogeneity and denote ak the amplitude of the wave

with the wavevector k. Considering for a moment wave system as closed

(that is without external pumping and dissipation) one can describe it as a

Hamiltonian system using wave amplitudes as normal canonical variables —

see, for instance, the monograph Zakharov et al 1992. At small amplitudes,

the Hamiltonian can be written as an expansion over ak, where the second-

order term describes non-interacting waves and high-order terms determine
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the interaction†:

H =

∫
ωk|ak|2 dk (1.1)

+

∫ (
V123a1a

∗
2a

∗
3 + c.c.

)
δ(k1 − k2 − k3) dk1dk2dk3 +O(a4) .

The dispersion law ωk describes wave propagation, V123 = V (k1,k2,k3) is

the interaction vertex and c.c. means complex conjugation. In the Hamilto-

nian expansion, we presume every subsequent term smaller than the previous

one, in particular, ξk = |Vkkkak|kd/ωk ≪ 1 — wave turbulence that satisfies

that condition is called weak turbulence. Here d is the space dimensionality.

The dynamic equation which accounts for pumping, damping, wave prop-

agation and interaction has the following form:

∂ak/∂t = −iδH/δa∗k + fk(t)− γkak . (1.2)

Here γk is the decrement of linear damping and fk describes pumping. For a

linear system, ak is different from zero only in the regions of k-space where

fk is nonzero. Nonlinear interaction provides for wave excitation outside

pumping regions.

It is likely that the statistics of the weak turbulence at k ≫ kf is close

to Gaussian for wide classes of pumping statistics. When the forcing fk(t)

is Gaussian then the statistics of ak(t) is close to Gaussian as long as non-

linearity is weak. However, in most cases in nature and in the lab, the

force is not Gaussian even though its amplitude can be small. It is an

open problem to find out under what conditions the wave field is close

to Gaussian with ⟨ak(0)a∗k′(t)⟩ = nk exp(−ıωkt)δ(k + k′). This problem

actually breaks into two parts. The first one is to solve the linear equa-

tion for the waves in the spectral interval of pumping and formulate the

criteria on the forcing that guarantee that the cumulants are small for

ak(t) = exp(−ıωkt − γkt)
∫ t
0 fk(t

′) exp(ıωkt + γkt) dt
′. The second part is

more interesting: even when the pumping-related waves are non-Gaussian,

it may well be that as we go in k-space away from pumping (into the inertial

interval) the field ak(t) is getting more Gaussian. Unless we indeed show

that, most of the applications of the weak turbulence theory described in

this section are in doubt. See also Choi et al 2005.

We consider here and below a pumping by a Gaussian random force sta-

tistically isotropic and homogeneous in space, and white in time:

⟨fk(t)f∗
k′(t

′)⟩ = F (k)δ(k+ k′)δ(t− t′) . (1.3)

† For example, for sound one expands the (kinetic plus internal) energy density ρv2/2 + E(ρ)

assuming v ≪ c and using vk = k(ak − a∗−k)(ck/2ρ0)
1/2, ρk = k(ak + a∗−k)(ρ0/2ck)

1/2.
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Angular brackets mean spatial average. We assume γk ≪ ωk (for waves to

be well defined) and that F (k) is nonzero only around some kf .

As long as we assume the statistics of the wave system to be close to Gaus-

sian, it is completely determined by the pair correlation function. Here we

are interesting in the spatial structure which is described by the single-time

pair correlation function ⟨ak(t)a∗k′(t)⟩ = nk(t)δ(k + k′). Since the dynamic

equation (1.2) contains a quadratic nonlinearity then the time derivative of

the second moment, ∂nk/∂t, is expressed via the third one, the time deriva-

tive of the third moment ix expressed via the fourth one etc; that is the

statistical description in terms of moments encounters the closure problem.

Fortunately, weak turbulence in the inertial interval is expected to have the

statistics close to Gaussian so one can express the fourth moment as the

product of two second ones. As a result one gets a closed equation (see e.g.

Zakharov et al 1992):

∂nk

∂t
= Fk − γknk + I

(3)
k , I

(3)
k =

∫
(Uk12 − U1k2 − U2k1) dk1dk2 ,(1.4)

U123 = π[n2n3 − n1(n2 + n3)]|V123|2δ(k1 − k2 − k3)δ(ω1 − ω2 − ω3) .

It is called kinetic equation for waves. The collision integral I
(3)
k results

from the cubic terms in the Hamiltonian i.e. from the quadratic terms in

the equations for amplitudes. It can be interpreted as describing three-wave

interactions: the first term in the integral (1.4) corresponds to a decay of a

given wave while the second and third ones to a confluence with other wave.

The inverse time of nonlinear interaction at a given k can be estimated

from (1.4) as |V (k, k, k)|2n(k)kd/ω(k). We define the dissipation wavenum-

ber kd as such where this inverse time is comparable to γ(kd) and assume

nonlinearity to dominate over dissipation at k ≪ kd. As has been noted,

wave turbulence appears when there is a wide (inertial) interval of scales

where both pumping and damping are negligible, which requires kd ≫ kf ,

the condition analogous to Re ≫ 1. This is schematically shown in Fig. 1.

The presence of frequency delta-function in I
(3)
k means that in the first

order of perturbation theory in wave interaction we account only for resonant

processes which conserve the quadratic part of the energy E =
∫
ωknk dk =∫

Ekdk. For the cascade picture to be valid, the collision integral has to

converge in the inertial interval which means that energy exchange is small

between motions of vastly different scales, the property called interaction

locality in k-space (see the exercise 1.1 below). Consider now a statistical

steady state established under the action of pumping and dissipation. Let

us multiply (1.4) by ωk and integrate it over either interior or exterior of

the ball with radius k. Taking kf ≪ k ≪ kd, one sees that the energy flux
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Fig. 1.1. A schematic picture of the cascade.

through any spherical surface (Ω is a solid angle), is constant in the inertial

interval and is equal to the energy production/dissipation rate ϵ:

Pk =

∫ k

0
kd−1dk

∫
dΩωkI

(3)
k =

∫
ωkFk dk =

∫
γkEk dk = ϵ . (1.5)

That (integral) equation determines nk. Let us assume now that the

medium (characterized by the Hamiltonian coefficients) can be considered

isotropic at the scales in the inertial interval. In addition, for scales much

larger or much smaller than a typical scale (like Debye radius in plasma

or the depth of the water) the medium is usually scale invariant: ω(k) =

ckα and |V (k,k1,k2)|2 = V 2
0 k

2mχ(k1/k,k2/k) with χ ≃ 1. Remind that

we presumed statistically isotropic force. In this case, the pair correlation

function that describes a steady cascade is also isotropic and scale invariant:

nk ≃ ϵ1/2V −1
0 k−m−d . (1.6)

One can show that (1.6), called Zakharov spectrum, turns I
(3)
k into zero (see

the exercise 1.1 below and Zakharov et al 1992).

If the dispersion relation ω(k) does not allow for the resonance condition

ω(k1) + ω(k2) = ω(|k1 + k2|) then the three-wave collision integral is zero

and one has to account for four-wave scattering which is always resonant,

that is whatever ω(k) one can always find four wavevectors that satisfy

ω(k1)+ω(k2) = ω(k3)+ω(k4) and k1+k2 = k3+k4. The collision integral
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that describes scattering,

I
(4)
k =

π

2

∫
|Tk123|2[n2n3(n1 + nk)− n1nk(n2 + n3)]δ(k+ k1 − k2 − k3)

×δ(ωk + ω1 − ω2 − ω2) dk1dk2dk3 , (1.7)

conserves the energy and the wave action N =
∫
nk dk (the number of

waves). Pumping generally provides for an input of both E and N . If there

are two inertial intervals (at k ≫ kf and k ≪ kf ), then there should be

two cascades. Indeed, if ω(k) grows with k then absorbing finite amount of

E at kd → ∞ corresponds to an absorption of an infinitely small N . It is

thus clear that the flux of N has to go in opposite direction that is to large

scales. A so-called inverse cascade with the constant flux of N can thus be

realized at k ≪ kf . A sink at small k can be provided by wall friction in the

container or by long waves leaving the turbulent region in open spaces (like

in sea storms). Two-cascade picture can be illustrated by a simple example

with a wave source at ω = ω2 generating N2 waves per unit time and two

sinks at ω = ω1 and ω = ω3 absorbing respectively N1 and N3. In a steady

state, N2 = N1 +N3 and ω2N2 = ω1N1 + ω3N3, which gives

N1 = N2
ω3 − ω2

ω3 − ω1
, N3 = N2

ω2 − ω1

ω3 − ω1
.

At a sufficiently large left inertial interval (when ω1 ≪ ω2 < ω3), the whole

energy is absorbed by the right sink: ω2N2 ≈ ω3N3. Similarly, at ω3 ≫
ω2 > ω1, we have N1 ≈ N2, i.e. the wave action is absorbed at small ω.

The collision integral I
(3)
k involved products of two nk so that flux con-

stancy required Ek ∝ ϵ1/2 while for the four-wave case I
(4)
k ∝ n3 gives

Ek ∝ ϵ1/3. In many cases (when there is a complete self-similarity) that

knowledge is sufficient to obtain the scaling of Ek from a dimensional rea-

soning without actually calculating V and T . For example, short waves

on a deep water are characterized by the surface tension σ and density

ρ so the dispersion relation must be ωk ∼
√
σk3/ρ which allows for the

three-wave resonance and thus Ek ∼ ϵ1/2(ρσ)1/4k−7/4. For long waves on a

deep water, the surface-restoring force is dominated by gravity so that the

gravity acceleration g replaces σ as a defining parameter and ωk ∼
√
gk.

Such dispersion law does not allow for the three-wave resonance so that

the dominant interaction is four-wave scattering which permits two cas-

cades. The direct energy cascade corresponds to Ek ∼ ϵ1/3ρ2/3g1/2k−5/2 or

Eω = Ekdk/dω ∼ ϵ1/3ρ2/3g2ω−4. The inverse cascade carries the flux of N

which we denote Q, it has the dimensionality [Q] = [ϵ]/[ωk] and corresponds

to Ek ∼ Q1/3ρ2/3g2/3k−7/3.
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Fig. 1.2. Two cascades under four-wave interaction.

Under a weakly anisotropic pumping, stationary spectrum acquires a small

stationary weakly anisotropic correction δn(k) such that δn(k)/n0(k) ∝
ω(k)/k (see exercise 2.2). The degree of anisotropy increases with k for

waves with the decay dispersion law. That is the spectrum of the weak tur-

bulence generated by weakly anisotropic pumping is getting more anisotropic

as we go into the inertial interval of scales. We see that the conservation of

the second integral (momentum) can lead to the non-restoration of symme-

try (isotropy) in the inertial interval.

Since the statistics of weak turbulence is near Gaussian, it is completely

determined by the pair correlation function, which is in turn determined by

the respective flux (or fluxes). We thus conclude that weak turbulence is

perfectly universal: deep in the inertial interval it “forgets” all the properties

of pumping except the flux value.

1.3 Strong wave turbulence

Weak turbulence theory breaks down when the wave amplitudes are large

enough (so that ξk ≥ 1). We need special consideration also in the particu-

lar case of the linear (acoustic) dispersion relation ω(k) = ck for arbitrarily

small amplitudes (as long as the Reynolds number remains large). Indeed,

there is no dispersion of wave velocity for acoustic waves so that waves mov-

ing at the same direction interact strongly and produce shock waves when

viscosity is small. Formally, there is a singularity due to coinciding argu-

ments of delta-functions in (1.4) (and in the higher terms of perturbation

expansion for ∂nk/∂t), which is thus invalid at however small amplitudes.

Still, some features of the statistics of acoustic turbulence can be understood

even without a closed description. We discuss that in a one-dimensional case

which pertains, for instance, to sound propagating in long pipes. Since weak

shocks are stable with respect to transversal perturbations (Landau and Lif-
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shits 1987), quasi one-dimensional perturbations may propagate in 2d and

3d as well. In the reference moving with the sound velocity, the weakly com-

pressible 1d flows (u ≪ c) are described by the Burgers equation (Landau

and Lifshits 1987, E et al 1997, Frisch and Bec 2001):

ut + uux − νuxx = 0 . (1.8)

Burgers equation has a propagating shock-wave solution u=2v{1+exp[v(x−
vt)/ν]}−1 with the energy dissipation rate ν

∫
u2x dx = 2v3/3 independent of

ν. The shock width ν/v is a dissipative scale and we consider acoustic

turbulence produced by a pumping correlated on much larger scales (for ex-

ample, pumping a pipe from one end by frequencies much less than cv/ν).

After some time, it will develop shocks at random positions. Here we con-

sider the single-time statistics of the Galilean invariant velocity difference

δu(x, t) = u(x, t) − u(0, t). The moments of δu are called structure func-

tions Sn(x, t) = ⟨[u(x, t)−u(0, t)]n⟩. Quadratic nonlinearity relates the time

derivative of the second moment to the third one:

∂S2

∂t
= −∂S3

3∂x
− 4ϵ+ ν

∂2S2

∂x2
. (1.9)

Here ϵ = ν⟨u2x⟩ is the mean energy dissipation rate. Equation (1.9) describes

both a free decay (then ϵ depends on t) and the case of a permanently acting

pumping which generates turbulence statistically steady at scales less than

the pumping length. In the first case, ∂S2/∂t ≃ S2u/L ≪ ϵ ≃ u3/L (where

L is a typical distance between shocks) while in the second case ∂S2/∂t = 0

so that S3 = 12ϵx+ ν∂S2/∂x.

Consider now limit ν → 0 at fixed x (and t for decaying turbulence).

Shock dissipation provides for a finite limit of ϵ at ν → 0 then

S3 = −12ϵx . (1.10)

This formula is a direct analog of (1.5). Indeed, the Fourier transform of

(1.9) describes the energy density Ek = ⟨|uk|2⟩/2 which satisfies the equation

(∂t − νk2)Ek = −∂Pk/∂k where the k-space flux

Pk =

∫ k

0
dk′

∫ ∞

−∞
dxS3(x)k

′ sin(k′x)/24 .

Note that the shock dissipation dissipation rate 2v3/3 gives the mean dis-

sipation rate per unit length ϵ = 2v3/3L so that (1.10) corresponds to

S3 = ⟨δu3⟩ = (2v)3x/L.

It is thus the flux constancy that fixes S3(x) which is universal that is

determined solely by ϵ and depends neither on the initial statistics for decay



10 Introduction to turbulence theory

nor on the pumping for steady turbulence. On the contrary, other structure

functions Sn(x) are not given by (ϵx)n/3. Indeed, the scaling of the structure

functions can be readily understood for any dilute set of shocks (that is when

shocks do not cluster in space) which seems to be the case both for smooth

initial conditions and large-scale pumping in Burgers turbulence. In this

case, Sn(x) ∼ Cn|x|n + C ′
n|x| where the first term comes from the regular

(smooth) parts of the velocity (the right x-interval in Fig. 1.3) while the

second comes from O(x) probability to have a shock in the interval x. The

scaling exponents, ξn = d lnSn/d lnx, thus behave as follows: ξn = n for

n ≤ 1 and ξn = 1 for n > 1. That means that the probability density

shock

x

u

Fig. 1.3. Typical velocity profile in Burgers turbulence.

function (PDF) of the velocity difference in the inertial interval P (δu, x) is

not scale-invariant, that is the function of the re-scaled velocity difference

δu/xa cannot be made scale-independent for any a. Simple bi-modal nature

of Burgers turbulence (shocks and smooth parts) means that the PDF is

actually determined by two (nonuniversal) functions, each depending of a

single argument: P (δu, x) = δu−1f1(δu/x) + xf2(δu/urms). Breakdown of

scale invariance means that the low-order moments decrease faster than the

high-order ones as one goes to smaller scales, i.e. the smaller the scale the

more probable are large fluctuations. In other words, the level of fluctuations

increases with the resolution. When the scaling exponents ξn do not lie on

a straight line, this is called an anomalous scaling since it is related again

to the symmetry (scale invariance) of the PDF broken by pumping and not

restored even when x/L → 0.

As an alternative to the description in terms of structures (shocks), one

can relate the anomalous scaling in Burgers turbulence to the additional

integrals of motion. Indeed, the integrals En =
∫
u2n dx/2 are all conserved

by the inviscid Burgers equation. Any shock dissipates the finite amount of

En at the limit ν → 0 so that similarly to (1.10) one denotes ⟨Ėn⟩ = ϵn and
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obtains S2n+1 = −4(2n + 1)ϵnx/(2n − 1) for integer n. We thus conclude

that the statistics of velocity differences in the inertial interval depends on

the infinitely many pumping-related parameters, the fluxes of all dynamical

integrals of motion.

Note that S2(x) ∝ |x| corresponds to E(k) ∝ k−2, since every shock

gives uk ∝ 1/k at k ≪ v/ν, that is the energy spectrum is determined by

the type of structures (shocks) rather than by energy flux constancy. That

is Burgers turbulence demonstrates the universality of a different kind: the

type of structures that dominate turbulence (here, shocks) is universal while

the statistics of their amplitudes depends on pumping. Similar ideas were

suggested for other types of strong wave turbulence assuming them to be

dominated by different structures. Weak wave turbulence, being a set of

weakly interacting plane waves, can be studied uniformly for different sys-

tems ( Zakharov et al 1992). On the contrary, when nonlinearity is strong,

different structures appear. Broadly, one distinguishes conservative struc-

tures (like solitons and vortices) from dissipative structures which usually

appear as a result of finite-time singularity of the non-dissipative equations

(like shocks, light self-focussing or wave collapse).

For example, an envelope of a spectrally narrow wave packets is described

by the Nonlinear Schrödinger Equation ,

iΨt +∆Ψ+ T |Ψ|2Ψ = 0 . (1.11)

This equation also describes Bose-Einstein condensation (then it is usually

called Gross-Pitaevsky equation). Weak turbulence is determined by |T |2
and is the same both for T < 0 (wave repulsion) and T > 0 (wave attraction).

Inverse cascade tends to produce a uniform condensate Ψ(k = 0) = A. At

high levels of nonlinearity, different signs of T correspond to dramatically

different physics. At T < 0 the condensate is stable, it renormalizes the

linear dispersion relation from ωk = k2 to the Bogolyubov form ω2
k = k4 −

2TA2k2. That dispersion relation is close to acoustic at small k, it allows

for three-wave interactions. The resulting over-condensate turbulence is a

mixture of phonons, solitons, kinks and vortices, I shall comment briefly on

its properties at the end of the course. On the contrary, the condensate and

sufficiently long waves are unstable at T > 0; that instability leads to wave

collapse at d = 2, 3 with the energy being fast transferred from large to small

scales where it dissipates (Dyachenko et al 1992). No analytic theory is yet

available for such strong turbulence.

Nonlinearity parameter ξ(k) generally depends on k so that there may

exist weakly turbulent cascade until some k∗ where ξ(k∗) ∼ 1 and strong

turbulence beyond this wavenumber, that is weak and strong turbulence
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can coexist in the same system. Presuming that some mechanism (for in-

stance, wave breaking) prevents appearance of wave amplitudes that cor-

respond to ξk ≫ 1, one may suggest that some cases of strong turbulence

correspond to the balance between dispersion and nonlinearity local in k-

space so that ξ(k) =const throughout its domain in k-space. That would

correspond to the spectrum Ek ∼ ω3
kk

−d/|Vkkk|2 which is ultimately uni-

versal that is independent even of the flux (only the boundary k∗ depends

on the flux). For gravity waves on a water surface, this gives Ek ∼ ρgk−3

or Eω ∼ ρg3ω−5. That spectrum was presumed to be due to wave profile

having cusps (another type of dissipative structure leading to whitecaps in

stormy sea, Phillips 1977). However, cusp passing through a point corre-

sponds to the second time-derivative of surface elevation to be proportional

to delta function which gives Eω ∝ ω−4 (the same ω-dependence as for the

weak turbulence obtained in Sec. 1.2), while Ek ∝ k−3 is a spectrum of long

parallel cusps, in both cases, the magnitude of the spectrum is not universal

but is determined by the density of cusps (Kuznetsov 2004). It is unclear if

flux-independent spectra are realized.

1.4 Incompressible turbulence

Incompressible fluid flow is described by the Navier-Stokes equation

∂tv(r, t) + v(r, t) · ∇v(r, t)− ν∇2v(r, t) = −∇p(r, t) , divv = 0 . (1.12)

See Lecture 1 of the Gawȩdzki course for more details on this equation. We

are again interested in the structure functions Sn(r, t) = ⟨[(v(r, t)−v(0, t)) ·
r/r]n⟩ and consider distance r smaller than the force correlation scale for a

steady case and smaller than the size of turbulent region for a decay case.

3d turbulence. We treat first the three-dimensional case. Similar to

(1.9), one can derive the Karman-Howarth relation between S2 and S3 (see

Landau and Lifshits 1987):

∂S2

∂t
= − 1

3r4
∂

∂r
(r4S3) +

4ϵ

3
+

2ν

r4
∂

∂r

(
r4

∂S2

∂r

)
. (1.13)

Here ϵ = ν⟨(∇v)2⟩ is the mean energy dissipation rate. Neglecting time

derivative (which is zero in a steady state and small comparing to ϵ for

decaying turbulence) one can multiply (1.13) by r4 and integrate: S3(r) =

−4ϵr/5 + 6νdS2(r)/dr. Kolmogorov considered the limit ν → 0 for fixed

r and assumed nonzero limit for ϵ which gives the so-called 4/5 law (Kol-
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mogorov 1941, Landau and Lifshits 1987, Frisch 1995):

S3 = −4

5
ϵ r . (1.14)

Similar to (1.5,1.10), this relation means that the kinetic energy has a con-

stant flux in the inertial interval of scales (the viscous scale η is defined

by νS2(η) ≃ ϵη2). Let us stress that this flux relation is built upon the

assumption that the energy dissipation rate ϵ has a nonzero limit at van-

ishing viscosity. Since the input rate can be independent of viscosity, this

is the assumption needed for an existence of a steady state at the limit: no

matter how small the viscosity, or how high the Reynolds number, or how

extensive the scale-range participating in the energy cascade, the energy

flux is expected to remain equal to that injected at the stirring scale. Unlike

compressible (Burgers) turbulence, here we do not know the form of the

specific singular structures that are supposed to provide non-vanishing dis-

sipation in the inviscid limit (as shocks waves do). Experimental data show,

however, that the dissipation rate is indeed independent of the Reynolds

number when Re ≫ 1. Historically, persistence of the viscous dissipation

in the inviscid limit (both in compressible and incompressible turbulence)

is the first example of what is now called “anomaly” in theoretical physics:

a symmetry of the equation (here, time-reversal invariance) remains broken

even as the symmetry-breaking factor (viscosity) becomes vanishingly small

(see e.g. Falkovich and Sreenivasan 2006). If one screens a movie of steady

turbulence backwards, we can tell that something is indeed wrong!

The law (1.14) shows that the third-order moment is universal, i.e. it

does not depend on the details of the turbulence production but is deter-

mined solely by the mean energy dissipation rate. The rest of the structure

functions have never been derived. Kolmogorov (1941) and also Heisenberg,

von Weizsacker and Onsager presumed the pair correlation function to be

determined only by ϵ and r which would give S2(r) ∼ (ϵr)2/3 and the energy

spectrum Ek ∼ ϵ2/3k−5/3. Experiments suggest that ζn = d lnSn/d ln r lie

on a smooth concave curve sketched in Fig. 1.4. While ζ2 is close to 2/3

it has to be a bit larger because experiments show that the slope at zero

dζn/dn is larger than 1/3 while ζ(3) = 1 in agreement with (1.14). Like in

Burgers, the PDF of velocity differences in the inertial interval is not scale

invariant in the 3d incompressible turbulence. So far, nobody was able to

find an explicit relation between the anomalous scaling for 3d Navier-Stokes

turbulence and either structures or additional integrals of motion.

While not exact, the Kolomogorov’s approximation S2(η) ≃ (ϵη)2/3 can

be used to estimate the viscous scale: η ≃ LRe−3/4. The number of degrees
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Fig. 1.4. The scaling exponents of the structure functions ξn for Burgers, ζn for 3d
Navier-Stokes and σn for the passive scalar. The dotted straight line is n/3.

of freedom involved into 3d incompressible turbulence can thus be roughly

estimated as N ∼ (L/η)3 ∼ Re9/4. That means, in particular, that detailed

numerical simulation of water or oil pipe flows (Re ∼ 104 ÷ 107) or tur-

bulent cloud (Re ∼ 106 ÷ 109) is beyond the reach of today (and possibly

tomorrow) computers. To calculate correctly at least the large-scale part

of the flow, it is desirable to have some theoretical model to parameterize

the small-scale motions. Here, the main obstacle is our lack of qualita-

tive understanding and quantitative description of how turbulence statistics

changes with the scale. This breakdown of scale invariance in the inertial

range is another example of anomaly (effect of pumping scale does not dis-

appear even at the limit r/L → 0). Such an anomalous (or multi-fractal)

scaling, is an important feature of turbulence, and sets it apart from the

usual critical phenomena: one needs to work out the behavior of moments

of each order independently rather than get it from dimensional analysis.

Anomalous scaling in turbulence is such that ζ2n < nζ2 so that S2n/S
n
2 for

n > 2 increases as r → 0. The relative growth of high moments means that

strong fluctuations become more probable as the scales become smaller. Its

practical importance is that it limits our ability to produce realistic models

for small-scale turbulence.

Since we know neither the structures nor the extra conservation laws that

are responsible for an anomalous scaling in the 3d incompressible turbulence,

then, to get some qualitative understanding of this very complicated prob-

lem, we now pass to another (no less complicated) problem of 2d turbulence.

That latter problem will motivate us to consider passive scalar turbulence,
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which will, in particular, teach us a new concept of statistical conservation

laws that will shed some light on 3d turbulence too.

2d Turbulence. Large-scale motions in shallow fluid can be approxi-

mately considered two-dimensional. When the velocities of such motions

are much smaller than the velocities of the surface waves and the velocity

of sound, such flows can be considered incompressible. Their description

is important for understanding atmospheric and oceanic turbulence at the

scales larger than the atmosphere height and the ocean depth. Vorticity

ω = curl v is a scalar in a two-dimensional flow. It is advected by the ve-

locity field and dissipated by viscosity. Taking curl of the Navier-Stokes

equation one gets

dω/dt = ∂tω + (v · ∇)ω = ν∇2ω . (1.15)

Two-dimensional incompressible inviscid flow just transports vorticity from

place to place and thus conserves spatial averages of any function of vorticity,

Ωn ≡
∫
ωndr. In particular, we now have the second quadratic inviscid

invariant (in addition to energy) which is called enstrophy: Ω2 =
∫
ω2 dr.

Since the spectral density of the energy is |vk|2/2 while that of the enstrophy

is |k × vk|2 then (similarly to the cascades of E and N in wave turbulence

under four-wave interaction) one expects that the direct cascade (towards

large k) is that of enstrophy while the inverse cascade is that of energy, as

was suggested by Kraichnan (1967). What about other Ωn? The intuition

developed so far might suggest that the infinity of dynamical conservation

laws must bring about anomalous scaling. As we shall see, turbulence never

fails to defy intuition.

Passive Scalar Turbulence. Before discussing vorticity statistics in

two-dimensional turbulence, we describe a similar yet somewhat simpler

problem of passive scalar turbulence which allows one to introduce the nec-

essary notions of Lagrangian description of the fluid flow. Consider a scalar

quantity θ(r, t) which is subject to molecular diffusion and advection by the

fluid flow but has no back influence on the velocity (i.e. passive):

dθ/dt = ∂tθ + (v · ∇)θ = κ∇2θ . (1.16)

Here κ is molecular diffusivity. The examples of passive scalar are smoke in

the air, salinity in the water and temperature when one can neglect thermal

convection. Without viscosity and diffusion, ω and θ behave in the same

way in the same 2d flow — they are both Lagrangian invariants satisfying

dω/dt = dθ/dt = 0. Note however that vorticity is related to velocity while

the passive scalar is not.

Let us now consider passive scalar turbulence. For that we add random
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source of fluctuations φ:

∂tθ + (v · ∇)θ = κ∇2θ + φ . (1.17)

If the source φ produces the fluctuations of θ on some scale L then the

inhomogeneous velocity field stretches, contracts and folds the field θ pro-

ducing progressively smaller and smaller scales — this is the mechanism of

the scalar cascade. If the rms velocity gradient is Λ then molecular diffusion

is substantial at the scales less than the diffusion scale rd =
√
κ/Λ. For

scalar turbulence, the ratio Pe = L/rd, called Peclet number, plays the role

of the Reynolds number. When Pe ≫ 1, there is an inertial interval with a

constant flux of θ2:

⟨(v1 · ∇1 + v2 · ∇2)θ1θ2⟩ = 2P , (1.18)

where P = κ⟨(∇θ)2⟩ = ⟨φθ⟩ and subscripts denote the spatial points. In

considering the passive scalar problem, the velocity statistics is presumed

to be given. Still, the correlation function (1.18) mixes v and θ and does

not generally allow one to make a statement on any correlation function

of θ. The proper way to describe the correlation functions of the scalar at

the scales much larger than the diffusion scale is to employ the Lagrangian

description that is to follow fluid trajectories. Indeed, if we neglect diffusion,

then the equation (1.17) can be solved along the characteristics R(t) which

are called Lagrangian trajectories and satisfy dR/dt = v(R, t). Presuming

zero initial conditions for θ at t → −∞ we write (see also Sect. 1.2.3 in the

Gawȩdzki course)

θ
(
R(t), t

)
=

∫ t

−∞
φ
(
R(t′), t′

)
dt′ . (1.19)

In that way, the correlation functions of the scalar Fn=⟨θ(r1, t) . . . θ(rn, t)⟩
can be obtained by integrating the correlation functions of the pumping

along the trajectories that satisfy the final conditionsRi(t)=ri. We consider

a pumping which is Gaussian, statistically homogeneous and isotropic in

space and white in time:

⟨φ(r1, t1)φ(r2, t2)⟩ = Φ(|r1 − r2|)δ(t1 − t2)

where the function Φ is constant at r ≪ L and goes to zero at r ≫ L. The

pumping provides for symmetry θ → −θ which makes only even correlation

functions F2n nonzero. The pair correlation function is as follows:

F2(r, t) =

∫ t

−∞
Φ
(
R12(t

′)
)
dt′ . (1.20)



1.4 Incompressible turbulence 17

Here R12(t
′) = |R1(t

′)−R2(t
′)| is the distance between two trajectories and

R12(t) = r. The function Φ essentially restricts the integration to the time

interval when the distance R12(t
′) ≤ L. Simply speaking, the stationary pair

correlation function of a tracer is Φ(0) (which is twice the injection rate of

θ2) times the average time T2(r, L) that two fluid particles spent within the

correlation scale of the pumping. The larger r the less time it takes for the

particles to separate from r to L and the less is F2(r). Of course, T12(r, L)

depends on the properties of the velocity field. A general theory is available

only when the velocity field is spatially smooth at the scale of scalar pumping

L. This so-called Batchelor regime happens, in particular, when the scalar

cascade occurs at the scales less than the viscous scale of fluid turbulence

(Batchelor 1959, Kraichnan 1974, Falkovich et al 2001). This requires the

Schmidt number ν/κ (called Prandtl number when θ is temperature) to

be large, which is the case for very viscous liquids. In this case, one can

approximate the velocity difference v(R1, t) − v(R2, t) ≈ σ̂(t)R12(t) with

the Lagrangian strain matrix σij(t) = ∇jvi. In this regime, the distance

obeys the linear differential equation

Ṙ12(t) = σ̂(t)R12(t) . (1.21)

The theory of such equations is well-developed and is related to what is called

Lagrangian chaos and multiplicative large deviations theory described in

detail in the course of K. Gawȩdzki. Fluid trajectories separate exponentially

as typical for systems with dynamical chaos (see, e.g. Antonsen and Ott

1991, Falkovich et al 2001): At t much larger than the correlation time of

the random process σ̂(t), all moments of R12 grow exponentially with time

and ⟨ln[R12(t)/R12(0)]⟩ = λt where λ is called a senior Lyapunov exponent

of the flow (remark that for the description of the scalar we need the flow

taken backwards in time which is different from that taken forward because

turbulence is irreversible). Dimensionally, λ = Λf(Re) where the limit of

the function f at Re → ∞ is unknown. We thus obtain:

F2(r) = Φ(0)λ−1 ln(L/r) = 2Pλ−1 ln(L/r) . (1.22)

In a similar way, one shows that for n ≪ ln(L/r) all Fn are expressed via F2

and the structure functions S2n = ⟨[θ(r, t) − θ(0, t)]2n⟩ ≃ (P/λ)n lnn(r/rd)

for n ≪ ln(r/rd). That can be generalized for an arbitrary statistics of

pumping as long as it is finite-correlated in time (Balkovsky and Fouxon

1999, Falkovich et al 2001). Note that those F2n anf S2n are completely

determined by Φ(0) which is the flux of θ2, only sub-leading corrections

depend on the fluxes of the high-order integrals.

2d Enstrophy cascade. Now, one can use the analogy between passive
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scalar and vorticity in 2d (Kraichnan 1967,Falkovich and Lebedev 1994).

For the enstrophy cascade, one derives the flux relation analogous to (1.18):

⟨(v1 · ∇1 + v2 · ∇2)ω1ω2⟩ = 2D , (1.23)

where D = ⟨ν(∇ω)2⟩. The flux relation along with ω = curl v suggests

the scaling δv(r) ∝ r that is velocity being close to spatially smooth (of

course, it cannot be perfectly smooth to provide for a nonzero vorticity

dissipation in the inviscid limit, but the possible singularities are indeed

shown to be no stronger than logarithmic). That makes the vorticity cas-

cade similar to the Batchelor regime of passive scalar cascade with a no-

table change in that the rate of stretching λ acting on a given scale is not

a constant but is logarithmically growing when the scale decreases. Phys-

ically, for smaller blobs of vorticity there are more large-scale velocity gra-

dients that are able to stretch them. Since λ scales as vorticity, the law of

renormalization can be established from dimensional reasoning and one gets

⟨ω(r, t)ω(0, t)⟩ ∼ [D ln(L/r)]2/3 which corresponds to the energy spectrum

Ek ∝ D2/3k−3 ln−1/3(kL). High-order correlation functions of vorticity are

also logarithmic, for instance, ⟨ωn(r, t)ωn(0, t)⟩ ∼ [D ln(L/r)]2n/3. Note

that both passive scalar in the Batchelor regime and vorticity cascade in 2d

are universal that is determined by the single flux (P and D respectively)

despite the existence of high-order conserved quantities. Experimental data

and numeric simulations support those conclusions (Falkovich et al 2001,

Tabeling 2002).

1.5 Zero modes and anomalous scaling

How one builds the Lagrangian description when the velocity is not spatially

smooth, for example, that of the energy cascades in the inertial interval?

Again, the only exact relation one can derive for two fluid particles separated

by a distance in the inertial interval is for the Lagrangian time derivative of

the squared velocity difference (Falkovich et al 2001):⟨
d|δv|2

dt

⟩
= 2ϵ

— this is the Lagrangian counterpart to (1.5,1.10,1.14,1.29). One can as-

sume that the statistics of the distances between particles is also determined

by the energy flux. That assumption leads, in particular, to the Richardson

law for the asymptotic growth of the inter-particle distance:

⟨R2
12(t)⟩ ∼ ϵt3 , (1.24)
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first inferred from atmospheric observations (in 1926) and later from ex-

perimental data on the energy cascades both in 3d and in 2d. There is

no consistent theoretical derivation of (1.24) and it is unclear whether it

is exact (likely to be in 2d) or just approximate (possible in 3d). Semi-

heuristic argument usually presented in textbooks is based on the mean-

field estimate: Ṙ12 = δv(R12, t) ∼ (ϵR12)
1/3 which upon integration gives:

R
2/3
12 (t) − R

2/3
12 (0) ∼ ϵ1/3t. While this argument is at best a crude estimate

in 3d (where there is no definite velocity scaling since every moment has its

own exponent ζn) we use it to discuss implications for the passive scalar†.
For two trajectories, the Richardson law gives the separation time from

r to L: T2(r, L) ∼ ϵ−1/3[L2/3 − r2/3]. Note that T2(r, L) has a finite limit

at r → 0 — infinitesimally close trajectories separate in a finite time. That

leads to non-uniqueness of Lagrangian trajectories (non-smoothness of the

velocity field means that the equation Ṙ = v(R) is non-Lipschitz). As dis-

cussed in much details elsewhere (see Falkovich et al 2001 and Lecture 4

of the Gawȩdzki course), that leads to a finite dissipation of a transported

passive scalar even without any molecular diffusion (which corresponds to a

dissipative anomaly and time irreversibility). Indeed, substituting T2(r, L)

into (1.20), one gets the steady-state pair correlation function of the passive

scalar: F2(r) ∼ Φ(0)ϵ−1/3[L2/3−r2/3] as suggested by Oboukhov (1949) and

Corrsin (1952). The structure function is then S2(r) ∼ Φ(0)ϵ−1/3r2/3. Ex-

periments measuring the scaling exponents σn = d lnSn(r)/d ln r generally

give σ2 close to 2/3 but higher exponents deviating from the straight line

even stronger than the exponents of the velocity in 3d as seen in Fig. 1.4.

Moreover, the scalar exponents σn are anomalous even when advecting ve-

locity has a normal scaling like in 2d energy cascade (to be described in

Sec. 1.6 below).

To explain the dependence σ(n) and describe multi-point correlation func-

tions or high-order structure functions one needs to study multi-particle

statistics. Here an important question is what memory of the initial config-

uration remains when final distances far exceed initial ones. To answer this

question one must analyze the conservation laws of turbulent diffusion. We

now describe a general concept of conservation laws which, while conserved

only on the average, still determine the statistical properties of strongly

fluctuating systems. In a random system, it is always possible to find some

fluctuating quantities which ensemble averages do not change. We now ask

a more subtle question: is it possible to find quantities that are expected

to change on the dimensional grounds but they stay constant (Falkovich et

† What matters here and below is that in a non-smooth flow Ra
12(t) − Ra

12(0) ∼ t with a < 1,
not the precise value of a
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al 2001, Falkovich and Sreenivasan 2006). Let us characterize n fluid par-

ticles in a random flow by inter-particle distances Rij (between particles i

and j) as in Figure 1.5. Consider homogeneous functions f of inter-particle

distances with a nonzero degree ζ, i.e. f(λRij) = λζf(Rij). When all the

distances grow on the average, say according to < R2
ij >∝ ta, then one

expects that a generic function grows as f ∝ taζ/2. How to build (specific)

functions that are conserved on the average, and which ζ-s they have? As

the particles move in a random flow, the n-particle cloud grows in size and

the fluctuations in the shape of the cloud decrease in magnitude. Therefore,

one may look for suitable functions of size and shape that are conserved

because the growth of distances is compensated by the decrease of shape

fluctuations.

2

R13

R
12

1

3

Fig. 1.5. Three fluid particles in a flow.

For the simplest case of Brownian random walk, inter-particle distances

grow by the diffusion law: ⟨R2
ij(t)⟩ = R2

ij(0) + κt, ⟨R4
ij(t)⟩ = R4

ij(0) + 2(d+

2)[R2
ij(0)κt+κ2t2]/d, etc. Here d is the space dimensionality. Two particles

are characterized by a single distance. Any positive power of this distance

grows on the average. For many particles, one can build conserved quantities

by taking the differences where all powers of t cancel out: f2 = ⟨R2
12−R2

34⟩,
f4 = ⟨2(d + 2)R2

12R
2
34 − d(R4

12 + R4
34)⟩, etc. These polynomials are called

harmonic since they are zero modes of the Laplacian in the 2d-dimensional

space of R12, R13. One can write the Laplacian as ∆ = R1−2d∂RR
2d−1∂R+

∆θ, where R2 = R2
12 + R2

13 and ∆θ is the angular Laplacian on 2d − 1-

dimensional unit sphere. Introducing the angle, θ = arcsin(R12/R), which

characterizes the shape of the triangle, we see that the conservation of both

f2 = ⟨R2 cos 2θ⟩ and f4 = ⟨R4[(d+ 1) cos2 2θ − 1]⟩ can be also described as

due to cancellation between the growth of the radial part (as powers of t) and
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the decay of the angular part (as inverse powers of t). For n particles, the

polynomial that involves all distances is proportional to R2n (i.e. ζn = n)

and the respective shape fluctuations decay as t−n.

The scaling exponents of the zero modes are thus determined by the laws

that govern decrease of shape fluctuations. The zero modes, which are con-

served statistically, exist for turbulent macroscopic diffusion as well. How-

ever, there is a major difference since the velocities of different particles are

correlated in turbulence. Those mutual correlations make shape fluctua-

tions decaying slower than t−n so that the exponents of the zero modes, ζn,

grow with n slower than linearly. This is very much like the total energy

of the cloud of attracting particles does not grow linearly with the num-

ber of particles. Indeed, power-law correlations of the velocity field lead to

super-diffusive behavior of inter-particle separations: the farther particles

are, the faster they tend to move away from each other, as in Richardson’s

law of diffusion. That is the system behaves as if there was an attraction

between particles that weakens with the distance, though, of course, there

is no physical interaction among particles (but only mutual correlations be-

cause they are inside the correlation radius of the velocity field). Let us

stress that while zero modes of multi-particle evolution exist for all velocity

fields—from those that are smooth to those that are extremely rough as

in Brownian motion—only those non-smooth velocity fields with power-law

correlations provide for an anomalous scaling. Zero modes were discovered

in Gawedzki and Kupiainen 1995, Shraiman and Siggia 1995, Chertkov et

al 1995 and then described in Chertkov and Falkovich 1996, Bernard et al

1996, Balkovsky and Lebedev 1998.

The existence of multi-particle conservation laws indicates the presence of

a long-time memory and is a reflection of the coupling among the particles

due to the simple fact that they are all in the same velocity field.

We now ask: How does the existence of these statistical conservation laws

(called martingales in the probability theory) lead to anomalous scaling of

fields advected by turbulence? According to (1.19), the correlation func-

tions of θ are proportional to the times spent by the particles within the

correlation scales of the pumping. The structure functions of θ are differ-

ences of correlation functions with different initial particle configurations as,

for instance, S3(r12) ≡ ⟨[θ(r1) − θ(r2)]
3⟩ = 3⟨θ2(r1)θ(r2) − θ(r1)θ

2(r2)⟩. In

calculating S3, we are thus comparing two histories: the first one with two

particles initially close to the position r1 and one particle at r2, and the

second one with one particle at r1 and two particles at r2— see Fig 1.6.

That is, S3 is proportional to the time during which one can distinguish

one history from another, or to the time needed for an elongated triangle to
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1

1

Fig. 1.6. Two configurations (upper and lower) whose difference determines the
third structure function.

relax to the equilateral shape. That time grows with r12 (as it takes longer

to forget more elongated triangle) by the law that can be inferred from the

law of the decrease of the shape fluctuations of a triangle.

Quantitative details can be worked out for the white in time velocity

(Kraichnan 1968). Profound insight of Kraichnan was that it is spatial

rather than temporal non-smoothness of the velocity that is crucial for an

anomalous scaling. The Kraichnan model is described in much detail in

the course by Gawȩdzki, here we mention few salient points. The velocity

ensemble is defined by the second moment:

⟨vi(r, t)vj(0, 0)⟩ = δ(t)
[
D0δij − dij(r)

]
,

dij = D1 r
ξ
[
(d− 1 + ξ) δij − ξrirjr−2

]
. (1.25)

Here the exponent ξ ∈ [0, 2] is a measure of the velocity non-smoothness

with ξ = 2 corresponding to a smooth velocity while ξ = 0 to a velocity

very rough in space (distributional). Richardson-Kolmogorov scaling of the

energy cascade corresponds to ξ = 4/3. Lagrangian flow is a Markov random

process for the Kraichnan ensemble (1.25). Every fluid particle undergoes

a Brownian random walk with the so-called eddy diffusivity D0. The PDF

P (r, t) for two particles to be separated by r after time t satisfies the diffusion

equation (see e.g. Falkovich et al 2001)

∂tP = L2P , L2 = dij(r)∇i∇j = D1(d− 1)r1−d∂rr
d+ξ−1∂r , (1.26)

with the scale-dependent diffusivity D1(d − 1)rξ. The asymptotic solution
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of (1.26) is P (r, t) = rd−1td/(2−ξ) exp(−const r2−ξ/t), log-normal for ξ = 2.

For ξ = 4/3, it reproduces, in particular, the Richardson law. Multi-particle

probability distributions also satisfy diffusion equations in the Kraichnan

model as well as all the correlation functions of θ. Multiplying (1.17) by

θ2 . . . θ2n and averaging over the Gaussian statistics of v and φ one derives

∂tF2n = L2nF2n +
∑
l,m

F2n−2Φ(rlm) , L2n =
∑

dij(rlm)∇i
l∇j

m . (1.27)

This equation enables one, in principle, to derive inductively all steady-state

F2n starting from F2. The equation ∂tF2(r, t) = L2F2(r, t) + Φ(r) has a

steady solution F2(r) = 2[Φ(0)/(2− ξ)d(d−1)D1][dL
2−ξ/(d−2+ ξ)− r2−ξ],

which has the Corrsin-Oboukhov form for ξ = 4/3. Further, F4 contains

the so-called forced solution having the normal scaling 2(2 − ξ) but also,

remarkably, a zero mode Z4 of the operator L4: L4Z4 = 0. Such zero

modes necessarily appear (to satisfy the boundary conditions at r ≃ L) for

all n > 1 and the scaling exponents of Z2n are generally different from nγ

that is anomalous. In calculating the scalar structure functions, all terms

cancel out except a single zero mode (called irreducible because it involves

all distances between 2n points). Analytically and numerical calculations

of Zn and their scaling exponents σn (described in detail in the course of

K. Gawȩdzki and in the review Falkovich et al 2001) give σn lying on a

convex curve (see Fig. 1.4) which saturates (Balkovsky and Lebedev 1998)

to a constant at large n. Such saturation is a signature that most singular

structures in a scalar field are shocks like in Burgers turbulence, the value σn
at n → ∞ is the fractal codimension of fronts in space (Celani et al 2001).

The existence of statistical conserved quantities breaks the scale invariance

of scalar statistics in the inertial interval and explains why scalar turbulence

knows about pumping “more” than just the value of the flux. Here again the

statistics in the inertial interval, apart from the flux of θ2, depends on the in-

finity of pumping-related parameters. However, those parameters neither are

fluxes of θn, nor we can interpret them as any other fluxes. At the present

level of understanding, we thus describe an anomalous scaling in Burgers

and in passive scalar in quite different terms. Of course, the qualitative

appeal to structures (shocks) is similar but the nature of the conservation

laws is different. The anomalies produced by dynamically conserved quan-

tities (like anomalous scaling in Burgers and time irreversibility in all cases

of turbulence) are qualitatively different from the anomalies produced by

statistically conserved quantities (like breakdown of scale invariance in pas-

sive scalar turbulence). Indeed, dissipation is a singular perturbation which

breaks conservation of dynamical integrals of motion and imposes (one or
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many) flux-constancy conditions, very much similar to quantum anomalies.

On the contrary, there are no cascades of conserved quantity related to zero

modes, nor their conservation is broken by dissipation. Anomalous scal-

ing of zero modes is due to correlations between different fluid trajectories.

On the other hand, the two types of anomalies are related intimately: the

flux constancy requires a certain degree of velocity non-smoothness, which

generally leads to an anomalous scaling of zero modes.

Both symmetries, one broken by pumping (scale invariance) and another

by damping (time reversibility) are not restored even when r/L → 0 and

rd/r → 0.

For the vector field (like velocity or magnetic field in magnetohydrody-

namics) the Lagrangian statistical integrals of motion may involve both the

coordinate of the fluid particle and the vector it carries. Such integrals of

motion were built explicitly and related to the anomalous scaling for the

passively advected magnetic field in the Kraichnan ensemble of velocities

(Falkovich et al 2001). Doing that for velocity that satisfies the 3d Navier-

Stokes equation remains a task for the future.

1.6 Inverse cascades

Here we consider inverse cascades and discover that, while time reversibil-

ity remains broken, the scale invariance is restored in the inertial interval.

Moreover, even wider symmetry of conformal invariance may appear there.

Passive scalar in a compressible flow. Similar to (1.20) one can derive

from (1.19)

⟨θ(t, r1) . . . θ(t, r2n)⟩ =
∫ t

0
dt1 . . . dtn

×⟨Φ(R(t1|T, r12)) . . .Φ(R(tn|T, r2n−1,2n))⟩+ . . . , (1.28)

The functions Φ in (1.28) restrict integration to the time intervals where

Rij < L. If the Lagrangian trajectories separate, the correlation functions

reach at long times the stationary form for all rij . Such steady states cor-

respond to a direct cascade of the tracer (i.e. from large to small scales)

considered above. That generally takes place in incompressible and weakly

compressible flows.

It is intuitively clear that in compressible flows the regions of compressions

can trap fluid particles counteracting their tendency to separate. Indeed,

one can show that particles cluster in flows with high enough compressibil-

ity (Chertkov et al 1998, Gawȩdzki and Vergassola 2000). In particular,

the solution of the Problem 3 shows that all the Lyapunov exponents are
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negative when the compressibility degree of a short-correlated flow exceeds

d/4 (Chertkov et al 1998). Even in the non-smooth flow with high enough

compressibility, the trajectories are unique, particles that start from the

same point will remain together throughout the evolution (Gawȩdzki and

Vergassola 2000). That means that advection preserves all the single-point

moments ⟨θN ⟩(t). Note that the conservation laws are statistical: the mo-

ments are not dynamically conserved in every realization, but their average

over the velocity ensemble are. In the presence of pumping, the moments are

the same as for the equation ∂tθ = φ in the limit κ → 0 (nonsingular now). It

follows that the single-point statistics is Gaussian, with ⟨θ2⟩ coinciding with

the total injection Φ(0)t by the forcing. That growth is produced by the flux

of scalar variance toward the large scales. In other words, the correlation

functions acquire parts which are independent of r and grow proportional

to time: when Lagrangian particles cluster rather than separate, tracer fluc-

tuations grow at larger and larger scales — phenomenon that can be loosely

called an inverse cascade of a passive tracer (Chertkov et al 1998, Gawȩdzki

and Vergassola 2000). As is clear from (1.28), correlation functions at very

large scales are related to the probability for initially distant particles to

come close. In a strongly compressible flow, the trajectories are typically

contracting, the particles tend to approach and the distances will reduce to

the forcing correlation length L (and smaller) for long enough times. On a

particle language, the larger the time the large the distance starting from

which particle come within L. The correlations of the field θ at larger and

larger scales are therefore established as time increases, signaling the inverse

cascade process.

<θ(0,t) θ(r,t)>

t t

t
1

2 > t1
1 2

r

/< θ2(t)>

Fig. 1.7. Growth of large-scale correlations with time.

The uniqueness of the trajectories greatly simplifies the analysis of the

PDF P(δθ, r). Indeed, the structure functions involve initial configurations

with just two groups of particles separated by a distance r. The particles
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explosively separate in the incompressible case and we are immediately back

to the full N -particle problem. Conversely, the particles that are initially

in the same group remain together if the trajectories are unique. The only

relevant degrees of freedom are then given by the intergroup separation and

we are reduced to a two-particle dynamics. It is therefore not surprising that

the statistics of the passive tracer is scale invariant in the inverse cascade

regime (Gawȩdzki and Vergassola 2000).

An example of strongly compressible flow is given by Burgers turbulence

(1.8) where there is clustering (in shocks) for the majority of trajectories

(full measure in the inviscid limit). Considering passive scalar in such a

flow, θt + uθx −κ∆θ = ϕ, we conclude that it undergoes an inverse cascade.

The statistics of θ is scale invariant at the scales exceeding the correlation

scale of the pumping ϕ. While the limit κ → 0 is regular (i.e. no dissipative

anomaly), the statistics is time irreversible because of the flux towards large

scales. It is instructive to compare u and θ which are both Lagrangian

invariants (tracers) in the unforced undamped limit. Yet passive quantity

θ (and all its powers) go to large scales under pumping while all powers of

u cascade towards small scales and are absorbed by viscosity. Physically,

the difference is evidently due to the fact that the trajectory depends on

the value of u it carries, the larger the velocity the faster it ends in a shock

and dissipates the energy and other integrals. Formally, for active tracers

like un one cannot write a formula like (1.28) obtained by two independent

averages over the force and over the trajectories.

Inverse energy cascade in two dimensions.

For the inverse energy cascade, there is no consistent theory except for

the flux relation that can be derived similarly to (1.14):

S3(r) = 4ϵr/3 . (1.29)

This scaling one can also get from phenomenological dimensional arguments,

though in two seemingly unrelated ways. Consider the velocity difference

vr at the distance r. On the one hand, one may require that the kinetic

energy v2r divided by the typical time r/vr must be constant and equal to

the energy flux, ϵ: v3r ∼ ϵr. On the other hand, it can be argued that

vorticity, which cascades to small scales, must be in equipartition in the

inverse cascade range. If this is the case, the enstrophy rdω2
r accumulated in

a volume of size r is proportional to the typical time r/vr at such scale, i.e.

rdω2
r ∼ r/vr. Using ωr ∼ vr/r we derive v

3
r ∼ r3−d which for d = 2 is exactly

the requirement of constant energy flux. Amazingly, the requirements of

vorticity equipartition (i.e. equilibrium) and energy flux (i.e. turbulence)

give the same Kolmogorov-Kraichnan scaling in 2d. Let us stress that (1.29)
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means that time reversibility is broken in the inverse cascade. Experiments

(Tabeling 2002, Kellay and Goldburg 2002, Chen et al 2006) and numerical

simulations (Boffetta et al 2000), however, demonstrate a scale-invariant

statistics with the vorticity having scaling dimension 2/3: ωr ∝ r−2/3. In

particular, S2 ∝ r2/3 which corresponds to Ek ∝ k−5/3. It is ironic that

probably the most widely known statement on turbulence, the 5/3 spectrum

suggested by Kolmogorov for 3d, is not correct in this case (even though the

true scaling is close) while it is probably exact in the Kraichnan’s inverse 2d

cascade. Qualitatively, it is likely that the absence of anomalous scaling in

the inverse cascade is associated with the growth of the typical turnover time

(estimated, say, as r/
√
S2) with the scale. As the inverse cascade proceeds,

the fluctuations have enough time to get smoothed out as opposite to the

direct cascade in 3d, where the turnover time decreases in the direction of the

cascade. Note in passing that passive scalar undergoes direct cascade in the

flow of the 2d inverse energy cascade, scalar statistics is not scale invariant

since the velocity is non-smooth (compare with the relation between the

Lagrangian invariants u and θ for Burgers turbulence).

Remarkably, there are indications that scale invariance of the vorticity

can be extended to conformal invariance at least for its isolines (Bernard et

al 2006). Under conformal transformations the lengths are re-scaled non-

uniformly yet the angles between vectors are left unchanged (a useful prop-

erty in navigation cartography where it is often more important to aim in

the right direction than to know the distance). Conformal invariance has

been discovered by analyzing the large-scale statistics of the boundaries of

vorticity clusters, i.e. large-scale zero-vorticity (nodal) lines. In equilibrium

critical phenomena, cluster boundaries in the continuous limit of vanish-

ingly small lattice size were recently found to belong to a remarkable class

of curves that can be mapped into Brownian walk. That class is called

Schramm-Loewner Evolution or SLE curves (Schramm 2000, Gruzberg and

Kadanoff 2004, Lawler 2005, Cardy 2005, Bauer and Bernard 2006). Namely,

consider a curve γ(t) that starts at a point on the boundary of the half-plane

H (by conformal invariance any planar domain is equivalent to the upper

half plane). One can map the half-plane H minus the curve γ(t) back onto

H by an analytic function gt(z) which is unique upon imposing the condi-

tion gt(z) ∼ z + 2t/z +O(1/z2) at infinity. The growing tip of the curve is

mapped into a real point ξ(t). Loewner found in 1923 that the conformal

map gt(z) and the curve γ(t) are fully parametrized by the driving function

ξ(t). Almost eighty years later, Schramm (2000) considered random curves

in planar domains and showed that their statistics is conformal invariant

if ξ(t) is a Brownian walk, i.e. its increments are identically and indepen-
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dently distributed and ⟨(ξ(t)− ξ(0))2⟩ = κt. In simple words, the locality in

time of the Brownian walk translates into the local scale-invariance of SLE

curves, i.e. conformal invariance. SLEκ provide a natural classification (by

the value of the diffusivity κ) of boundaries of clusters of 2d critical phe-

nomena described by conformal field theories (see Gruzberg and Kadanoff

2004, Lawler 2005, Cardy 2005, Bauer and Bernard 2006 for a review).

L

ω=0

Fig. 1.8. Vorticity nodal line with the gyration radius L.

The fractal dimension of SLEκ curves is known to be Dκ = 1 + κ/8 for

κ < 8. To establish possible link between turbulence and critical phenom-

ena, let us try to relate the Kolmogorov-Kraichnan phenomenology to the

fractal dimension of the boundaries of vorticity clusters. Note that one

ought to distinguish between the dimensionality 2 of the full vorticity level

set (which is space-filling) and a single zero-vorticity line that encloses a

large-scale cluster. Consider the vorticity cluster of gyration radius L which

has the “outer boundary” of perimeter P (that boundary is the part of the

zero-vorticity line accessible from outside, see Fig. 1.8 for an illustration).

The vorticity flux through the cluster,
∫
ωdS ∼ ωLL

2, must be equal to

the velocity circulation along the boundary, Γ =
∮
v · dℓ. The Kolmogorov-

Kraichnan scaling is ωL ∼ ϵ1/3L−2/3 (coarse-grained vorticity decreases with

scale because contributions with opposite signs partially cancel) so that the

flux is ∝ L4/3. As for circulation, since the boundary turns every time it

meets a vortex, such a contour is irregular on scales larger than the pump-

ing scale. Therefore, only the velocity at the pumping scale Lf is expected

to contribute to the circulation, such velocity can be estimated as (ϵLf )
1/3

and it is independent of L. Hence, circulation should be proportional to

the perimeter, Γ ∝ P , which gives P ∝ L4/3, i.e. the fractal dimension of

the exterior of the vorticity cluster is expected to be 4/3. This remarkable

dimension correspond to a self-avoiding random walk (SLE curve) which is

also known to be an exterior boundary (without self-intersections) of perco-
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lation cluster (yet another SLE curve). Data analysis of the zero-vorticity

lines have shown that indeed within an experimental accuracy their statis-

tics is indistinguishable from percolation clusters while that of their exterior

boundary from the statistics of self-avoiding random walk (Bernard et al

2006). Whether the statistics of the zero-vorticity isolines indeed falls into

the simplest universality class of critical phenomena (that of percolation)

deserves more study.

Let us briefly discuss wave turbulence from the viewpoint of conformal in-

variance. Gaussian scalar field in 2d is conformal invariant if its correlation

function is logarithmic i.e. the spectral density decays as k−2. Such is the

case, for instance, for the fluid height in gravitational-capillary weak wave

turbulence on a shallow water (see Zakharov et al 1992, Sect. 5.1.2). It is

interesting if deviations from Gaussianity due to wave interaction destroy

conformal invariance. Another interesting example is the inverse cascade of

2d strong optical turbulence described by the Nonlinear Schrödinger Equa-

tion. Numerics hint that in the case of a stable growing condensate, the

statistics of the finite-scale fluctuations approach Gaussian with a logarith-

mic correlation function (Dyachenko and Falkovich 1996).
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1.7 Conclusion

We reiterate the conclusions on the status of symmetries in turbulence.

Turbulence statistics is always time-irreversible.

Weak turbulence is scale invariant and universal (determined solely by the

flux value). It is generally not conformal invariant.

Strong turbulence: Direct cascades often have symmetries broken by pump-

ing (scale invariance, isotropy) non-restored in the inertial interval. In other

words, statistics at however small scales is sensitive to other characteristics

of pumping besides the flux. That can be alternatively explained in terms

of either structures or statistical conservation laws (zero modes). Anoma-

lous scaling in a direct cascade may well be a general rule apart from some

degenerate cases like passive scalar in the Batchelor case (where all the zero

modes have the same scaling exponent, zero, as the pair correlation func-

tion). Inverse cascades in systems with strong interaction may be not only

scale invariant but also conformal invariant. It is an example of emerging

or restored symmetry.

For Lagrangian invariants, we explain the difference between direct and

inverse cascades in terms of separation or clustering of fluid particles. Gen-

erally, it seems natural that the statistics within the pumping correlation

scale (direct cascade) is more sensitive to the details of the pumping statis-

tics than the statistics at much larger scales (inverse cascade).

Exercises

1.1 Show that nk ∝ k−s with s = m+ d turns the collision integral I
(3)
k

into zero and corresponds to a constant energy flux, which sign is

given by the derivative −dI
(3)
k (s)/ds.

1.2 A general equilibrium solution of I
(3)
k = 0 depends on the energy

and the momentum of the wave system: n(k, T,u) = T [ωk − (k ·
u)]−1 (Doppler-shifted Rayleigh-Jeans distribution). A general non-

equilibrium solution depends on the fluxes P and R of the energy

and momentum respectively. Find the form of the weakly anisotropic

correction to the isotropic turbulence spectrum.

1.3 For the two-particle distance evolving in a spatially smooth random

flow according to (1.21), Ṙ(t) = σ̂(t)R(t), consider the Jacobi matrix

defined by Ri(t) = Wij(t)Rj(t) — see also Sects. 1.2.3 and 2.2 in the

Gawȩdzki course. An initial infinitesimal sphere evolves into an elon-

gated ellipsoid with the inertia tensor I(t) = W (t)W T (t). Lyapunov

exponents are the asymptotic in time eigenvalues of W T (t)W (t)
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which stabilizes in every realization. They can be also found from

the tensor I, which on the contrary, rotates all the time. Decom-

pose I = OTΛO where O is an orthogonal matrix composed of the

eigenvectors of I and Λ is a diagonal matrix with the eigenvalues

e2ρ1 , . . . , e2ρd . Derive the equation for I(t) and ρi(t) and find the

Lyapunov exponents as λi = limt→∞ ρi(t)/t for the short-correlated

isotropic Gaussian strain ⟨σij(0)σkl(t)⟩ = Cijklδ(t).

Solutions

Exercise 1.1 We write the collision integral as follows

I
(3)
k =

∫
(Uk12 − U1k2 − U2k1) dk1dk2

with U123 = π [n2n3 − n1(n2 + n3)] |V123|2δ (k1 − k2 − k3) δ (ω1 − ω2 − ω3).

Here and below i stands for ki. To evaluate I
(3)
k on nk ∝ k−m−d we first

integrate over the directions of ki. In an isotropic medium, the interaction

coefficient Vk12 depends only on the scalar products of k and ki. Using

the additional condition k − k1 − k2 = 0 one can express Vk12, like the

frequency ω(k), as a function of wavenumbers. Then, only the δ-function

of wave vectors is to be integrated over the angles in the k1,k2 space. The

result of the angular integration is non-zero only if one can form a triangle

out of k, k1 and k2. Denote Θ(k1, k2, k3) the product of step functions

θ(k1+k2−k)θ(k+k2−k1)θ(k+k1−k2) that ensures the triangular inequalities

k < k1 + k2, k1 < k + k2 and k2 < k + k1. We introduce k̂i = ki/ki and

dki = kd−1
i dkidk̂i. Applying the formula

∫
δ (f − gĝ) dĝ = 2δ(f2 − g2)/gd−2

to the integration over k̂2 we obtain

Hd ≡
∫

δ(k− k1 − k2)dk̂1dk̂2 =

∫
dk̂12k

2−d
2 δ

(
k2 + k21 − k22 − 2k · k1

)
.

We confine ourselves to physical dimensions d = 2 and d = 3 though one

can easily generalize the following to arbitrary d. In d = 2 we have

H2 = 4

∫ π

0
δ
(
k2 + k21 − k22 − 2kk1 cos θ

)
dθ =

2Θ(k, k1, k2)

kk1 sin θ0
=

Θ(k, k1, k2)

∆(k, k1, k2)
,

where cos θ0 = (k2+k21−k22)/(2kk1) and ∆(k, k1, k2) = (1/2)
[
2(k2k21+k2k22+

k21k
2
2)−k4−k41−k42

]1/2
is the area of the triangle formed by the vectors k,k1

and k2. We have used the fact that the triangular inequalities are equivalent

to one condition |(k2+k21 −k22)/(2kk1)| ≤ 1. Analogous calculation in d = 3
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produces

H3 =
4π

k2

∫ π

0
δ
(
k2 + k21 − k22 − 2kk1 cos θ

)
sin θdθ =

2πΘ(k, k1, k2)

kk1k2
.

Observe that Hd depends only on the wavenumbers k, k1 and k2, invari-

ant with respect to their permutations and is non-zero only if triangular

inequalities are satisfied:

I
(3)
k =

∫ ∞

0
kd−1
1 dk1

∫ ∞

0
kd−1
2 dk2H(k, k1, k2)

(
Ũk12 − Ũ1k2 − Ũ2k1

)
, (1.1)

Ũ123 = π [n2n3 − n1(n2 + n3)] |V123|2δ (ω1 − ω2 − ω3) .

We change the integration variables from k1, k2 to t ω(k1) = ω1, ω(k2) = ω2.

Using ω(k) ∝ kα we obtain for π(2k)d−1I(k)/v(k) ≡ I(ω)

I(ω) =

∫ ∞

0

∫ ∞

0
dω1dω2

[
R(ω, ω1, ω2)−R(ω1, ω, ω2)−R(ω2, ω, ω1)

]
(1.2)

=

∫ ω

0
Q(ω, ω1, ω − ω1)[n(ω1)n(ω − ω1)− n(ω)(n(ω1) + n(ω − ω1))]dω1

−2

∫ ∞

ω
Q(ω1, ω, ω1 − ω)[n(ω)n(ω1 − ω)− n(ω1)(n(ω) + n(ω1 − ω))] dω1.

R(ω, ω1, ω2) = C|V (ω, ω1, ω2)|2Hd(ω, ω1, ω2)(ωω1ω2)
−1+d/αδ(ω − ω1 − ω2)

×[n1n2 − nω(n1 + n2)] ≡ Q(ω, ω1, ω2)δ(ω − ω1 − ω2)[n1n2 − nω(n1 + n2)].

Here v(k) = dω(k)/dk. Homogeneity properties

V (λk, λk1, λk2) = λmV (k,k1,k2) , Hd(λk, λk1, λk2) = λ−dHd(k, k1, k2)

allow us to write Q(ω, ω1, ω−ω1) = ωγf(ω/ω1), where γ = 2(m+ d)/α− 3.

All the information about the interactions is contained in one number γ and

in one function f(x). One solution that turns the collision integral into zero

is the equilibrium Rayleigh-Jeans distribution ,n(ω) ∝ ω−1. Let us search

for other power-law solutions n(ωk) = k−s = ω−s/α. Since integrals over a

power-law function generally diverge either at zero or infinite frequency we

first check for which s collision integral converges. Physically, convergence

means locality of interactions in the frequency space as it signifies that n(ω)

changes only due the waves with the frequencies of order ω.

We have in (1.2) a sum of integrals of power functions, of which every

one separately diverges either at ω1 → 0 or at ω1 → ∞. Cancellations of

leading divergencies (by one power at infinity and by two powers at zero)

may provide for convergence. Assume |V (k, k1, k2)|2 ∝ km1
1 k2m−m1 at k1 ≪

k. Consider ω1 → ∞ when n(ω1 − ω) − n(ω1) ≈ ω∂n1/∂ω1 ∝ n1ω/ω1,

|V (ω1, ω, ω1−ω)|2 ∝ ω
(2m−m1)/α
1 andQ(ω1, ω, ω1−ω) ∝ ω

−2+(2m−m1+d+1)/α
1 .
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The most dangerous (second) term in (1.2) converges when s > s2 = 2m−
m1 + d+ 1− 2α.

At small frequencies, one should take into account not only the contribu-

tion of small ω1 and ω− ω1 in the first term but also of small ω1 − ω in the

second term of (1.2):(∫ ϵ

0
+

∫ ω

ω−ϵ

)
Q(ω, ω1, ω − ω1){n1n(ω − ω1)− n(ω)[n1 + n(ω − ω1)]}dω1

−2

∫ ω+ϵ

ω
dω1Q(ω1, ω, ω1 − ω)[n(ω)n(ω1 − ω)− n(ω1)(n(ω) + n(ω1 − ω))]

= 2

∫ ϵ

0
ωγf

(
ω

ω1

)
[n(ω1)n(ω − ω1)− n(ω)(n(ω1) + n(ω − ω1))]dω1

−2

∫ ϵ

0
(ω1 + ω)γf

(
ω1 + ω

ω1

)
[n(ω)n(ω1)− n(ω1 + ω)(n(ω) + n(ω1))]dω1

= 2

∫ ϵ

0

[
n(ω1)

(
n(ω − ω1) + n(ω + ω1)− 2n(ω)

)
+ n(ω)

(
n(ω + ω1)

−n(ω − ω1)
)]

ωγf

(
ω

ω1

)
dω1 + 2

∫ ϵ

0

[
(ω1 + ω)γf

(
ω1 + ω

ω1

)
− ωγf

(
ω

ω1

)]

×
[
n(ω1 + ω) (n(ω) + n(ω1))− n(ω)n(ω1)

]
dω1. (1.3)

The integrals converge if s < s1 = m1 + d− 1 + 2α. Thus, if

s1 > s2, 2m1 > 2m+ 2− 4α, (1.4)

then there exists an interval of exponents 2m − m1 + d + 1 − 2α < s <

m1 + d− 1 + 2α such that on n(ω) ∝ ω−s/α the collision integral converges.

The cancellations (one at infinity and two at zero) that provide for the “lo-

cality interval” are property of the kinetic equation, they generally do not

take place for higher nonlinear corrections, at least, nobody was able so

far to make resummations of the perturbation series to have such a local-

ity order-by-order. The exponent of Zakharov distribution s0 = m + d lies

exactly in the middle of the “locality interval”: s0 = (s1+ s2)/2 when it ex-

ists. That means that for the constant-flux distribution the contributions to

interactions of all scales, from small to large ones, are counterbalanced and

the collision integral in fact vanishes. To show this we use the transforma-

tion invented independently by Zakharov and Kraichnan. Let us substitute

n(ω) = Aω−s/α into (1.2) and make the change of variables ω1 = ωω/ω′
1,

ω2 = ω′
2ω/ω

′
1 in the second term and do the same, interchanging 1 ↔ 2, in
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the third term:

I(ω) =

∫ ∫ ∞

0
dω1dω2

[
1− (ω/ω1)

ϑ−1 − (ω/ω2)
ϑ−1

]
R(ω, ω1, ω2)

= A2ωγ

ω∫
0

[
1−

(
ω

ω1

)ϑ−1
−

(
ω

ω − ω1

)ϑ−1][
1−

(
ω

ω1

)−s/α

−
(

ω

ω − ω1

)−s/α
]

× [ω1(ω−ω1)]
−s/αf

(
ω

ω1

)
dω1, (1.5)

where ϑ = 2(m + d − s)/α. The transformation interchange 0 and ∞ so

they are legitimate only for converging integrals. Since f(x) is a positive

function, the integrals become zero only at s0 = α and s1 = m+ d. There-

fore, the Rayleigh-Jeans and Kolmogorov-Zakharov distributions are the

only universal power-law stationary solutions of the kinetic equation. Each

of these solutions is a one-parameter solution in the isotropic case. Rayleigh-

Jeans equipartition describes equilibrium which takes place for the closed

system of waves, that is at zero forcing and dissipation: I3k{k−s0} = 0.

On the contrary, Kolmogorov-Zakharov solution has singularity at ω = 0

(which corresponds to a source): I3k{k−s1} ∝ δ(ω). Let us show that indeed

Kolmogorov-Zakharov solution provides a constant flux of energy in k-space:

Pk = −
∫
k′<k dk

′ωk′I
(3)
k′ = −

∫ k
0 π(2k′)d−1ωk′I

(3)
k′ dk

′. Using (1.2) we find that

P (ω) ≡ Pk(ω) is given by P (ω) = −
∫ ω
0 ω′I(ω′)dω′. For the exponents s from

to the locality interval one can consider the collision integral as a function

of s. Passing in (1.5) to y = ω1/ω one finds I(ω) ∝ ωϑ−2A2I(s) and

I(s)=

1∫
0

dy
[
1−y1−ϑ−(1−y)1−ϑ

] [
1−ys/α−(1−y)s/α

]
[y(1− y)]−s/αf(1/y).

Hence, the flux on power-law distributions is as follows: P = −ωϑA2I(s)/ϑ.

At s = s0 = m+d there is an indeterminacy of the form 0/0 since I(m+d) =

0 and ϑ(s0) = 0. Using the L’Hospital’s rule, we obtain an expression where

the energy flux is proportional to the derivative of the collision integral with

respect to the exponent: P = −2A2I ′(s0)/α

P = −A2

1∫
0

[y ln y + (1− y) ln(1− y)]
[
ys0/α+ (1− y)s0/α−1

] f
(
y−1

)
dy

[y(1−y)]s0/α
.

The sign of P coincides with that of 1 − ys0/α − (1 − y)s0/α, which is that

of s0/α − 1, i.e. the equilibrium exponent s0 = α provides the boundary

between the positive and the negative fluxes to large k. Indeed, flux must
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flow trying to restore equipartition. We conclude that the Kolmogorov-

Zakharov spectrum describes physical turbulent state provided it decays

faster than the equilibrium. In the opposite case, s0 < α, a flux solution is

not physical, it is actually unstable (Zakharov et al 1992).

Exercise 1.2 Consider an anisotropic forcing that produces non-vanishing

rate of injection of momentum into the system:
∫
kFkdk ≡ R. Using di-

mensional analysis we can write for a steady state (assuming it exists)

n(k, P,R) = λP 1/2k−m−df(ξ), ξ =
(R · k)ω(k)

Pk2
, (1.6)

where λ is the dimensional Kolmogorov constant; the medium is assumed

to be isotropic, therefore the solution depends on (R · k). The dimension-

less function f(ξ) has been found analytically only for sound with positive

dispersion (Zakharov et al 2001). In a general case, one can assume that

f(ξ) is analytical at zero; then, expanding (1.6), one obtains a stationary

anisotropic correction to the isotropic solution

n(k,P,R) ≈ λP 1/2k−m−d + λf ′(0)k−m−d(R · k)ω(k)P−1/2k−2 (1.7)

= n0(k) + δn(k) .

The ratio δn/n0 ∝ ω(k)/k increases with k for waves with the decay dis-

persion law (when the three-wave kinetic equation is relevant). That is the

spectrum of the weak turbulence generated by weakly anisotropic pumping

is getting more anisotropic as we go into the inertial interval of scales.

To verify that (1.7) is the stationary solution of the linearized kinetic

equation, let us substitute n(k) = ka[1 + kb(qR)] with q = k/k into the

linearized collision integral, which may be represented as L̂kδn(k) = R·I′(k),

I′(k) =

∫
dk1dk2[U(k,k1,k2)f(k,k1,k2)− U(k1,k2,k)f(k1,k2,k)

−U(k2,k,k1)f(k2,k,k1)], (1.8)

U(k,k1,k2) = Uk12 = π|V (k, k1, k2)|2δ(ωk − ω1 − ω2)δ(k− k1 − k2),

f(k,k1,k2) = −qka+b(ka1 + ka2) + q1k
a+b
1 (ka2 − ka) + q2k

a+b
2 (ka1 − ka) .

Isotropy allows us to write I′ = qI(k) where

I=

∫
dk1dk2[Uk12f(k,k1,k2)−U12kf(k1,k2,k)− U2k1f(k2,k,k1)] .

Similarly to what we did in the Problem 1, let us look for the change of

the integration variables that transform the second and the third terms of
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the integral into the first one (with certain factors). Such transformation

was found out by Kats and Kontorovich (see Zakharov et al 1992 and the

references therein). Let us relabel the integration variables so that the third

term takes the form
∫
dk′

1dk
′
2U(k′

2,k,k
′
1)q · f(k′

2,k,k
′
1). The integrand is

non-vanishing only for those k′
i which satisfy the conservation of energy

and momentum. Figure 1.9, a and c show triangles corresponding to the

momentum conservation in the first and third term respectively.

k

k2

g  k1
−1

g  k’−1
1

g  k’−1
2

k
k’1

b

c

k’2

a
k1

Fig. 1.9. Transformation which converts two triangles (c and a) into one another.
The triangles express the laws of conservation of energy and momentum.

The two triangles have a common vector k and the map c→a is the com-

bination of rotation ĝ−1
1 , depicted in Figure c in 1.9 which maps the original

triangle to the re-scaled desired triangle and then re-scaling λ̂ with the co-

efficient λ1 = k/k1 = k′2/k that finishes the transformation. Such map

means the change of variables k′
2 = (λ1ĝ1)

2k1 and k′
1 = λ1ĝ1k2. Taking into

account the Jacobian and using k = λ1ĝ1k1 we find∫
dk′

1dk
′
2U(k′

2,k,k
′
1)q · f(k′

2,k,k
′
1) =

∫
dk1dk2U(λ1ĝ1k, λ1ĝ1k1, λ1ĝ1k2)

×q · f(λ1ĝ1k, λ1ĝ1k1, λ1ĝ1k2)λ
3d
1 .

Since U(λ1ĝ1k, λ1ĝ1k1, λ1ĝ1k2) = λ2m−d−α
1 U(k,k1,k2) and

q · f(λ1ĝ1k, λ1ĝ1k1, λ1ĝ1k2) = λ2a+b
1 q · ĝ1f(k,k1,k2) = λ2a+b

1 q1 · f(k,k1,k2) ,∫
dk′

1dk
′
2U(k′

2,k,k
′
1)q·f(k′

2,k,k
′
1) = λw

∫
dk1dk2U(k,k1,k2)q1 ·f(k,k1,k2)

with w = 2m + 2d − α + 2a + b. Interchanging 1 and 2 we obtain I(k) in

the factorized form:

I(k) =

∫
dk1dk2U(k,k1,k2)f(k,k1,k2)

[
q− q1(k/k1)

w − q2(k/k2)
w
]
.

When we choose w = 2m + 2d − α + 2a + b = −1, then I(k) = 0 due

to the δ-function of wave vectors. It is easily seen that the index obtained

corresponds to δn from (1.7). To conclude that the drift solutions are steady
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modes, we have to verify their locality, i.e., the convergence of I(k) which

is done similarly to the isotropic case in the Problem 1. The only difference

is that the divergences are reduced by the power of k rather than ωk, due

to which the locality strip is compressed by 2(α− 1).

The direction of the momentum flux (to large or small k) is given by

the sign of the collision integral derivative with respect to the index of the

solution: signR = −sign (∂I/∂b).

Exercise 1.3 Our consideration here is more intuitive and less formal

than that of Gawȩdzki, Sect. 3.2. Since Ẇ = σW then İ = σI + IσT . We

assume the following ordering of the eigenvalues ρ1 ≥ ρ2 ≥ . . . ≥ ρd. The

equation on I becomes

∂tρi = σ̃ii, σ̃ = OσOT , ∂tO = ΩO, Ωij =
e2ρi σ̃ji + e2ρj σ̃ij

e2ρi − e2ρj
, (1.9)

where ρi(0) = 0 and Oij(0) = δij . Here and below we do not sum over

repeated indices unless stated otherwise. Note that Ω is antisymmetric to

preserve OTO = 1. We assume the spectrum of Lyapunov exponents to

be non-degenerate, then at times much larger than the maximum of (λi −
λi+1)

−1 we have ρ1 ≫ ρ2 ≫ . . . ≫ ρd and matrix Ω becomes independent of

ρi

Ωik = σ̃ki, i < k, Ωik = −σ̃ik, i > k. (1.10)

The above independence allows us to resolve explicitly the equation on ρi
as follows

ρi(t) =

∫ t

0
σ̃ii(t

′)dt′, λi = lim
t→∞

1

t

∫ t

0
σ̃ii(t

′)dt′. (1.11)

The above representation of Lyapunov exponents is a (non-rigorous) proof

that the limits defining Lyapunov exponents exist as Oseledec theorem

states. Indeed let us make the (ergodic) hypothesis that the above time-

average can be calculated as an average over the statistics of velocity field.

Then, provided the statistics of σ̃ii(t) becomes stationary at large t, the

Lyapunov exponents λi become the subject of the law of large numbers and

we have

λi = lim
t→∞

⟨σ̃ii(t)⟩ = lim
t→∞

∑
jk

⟨Oij(t)Oik(t)σjk(t)⟩ . (1.12)

While generally the analytic calculation of that average is not possible, it

is readily accomplished in a statistically isotropic case when the correlation
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time τ of σ is small comparing to the rms value σc. For ∆t satisfying τ ≪
∆t ≪ σ−1

c we have Oij(t) = Oij(t−∆t) +
∫ t
t−∆tΩik(t

′)Okj(t
′)dt′ + o(σc∆t)

where Oij(t−∆t), being determined by σ(t) at times smaller than t−∆t, is

approximately independent of σ(t) by ∆t ≫ τ . First iteration of Oij gives

at large time

λi = ⟨Oij(t−∆t)Oik(t−∆t)σjk(t)⟩+
∑
jk

∫ t

t−∆t
dt′

⟨
σjk(t)

×
[
Ωil(t

′)Olj(t
′)Oik(t−∆t) + Ωil(t

′)Olk(t
′)Oij(t−∆t)

]⟩
+ o(σc∆t) ,

Introducing σ̃′(t) = O(t −∆t)σ(t)OT (t −∆t), performing second iteration

of Oij(t
′) and using (1.10) and the symmetry of thr indices we find

λi = ⟨σ̃′
ii⟩+

t∫
t−∆t

dt′
[∑
l>i

⟨(σ̃′
il(t)+σ̃′

li(t))σ̃
′
il(t

′)⟩ −
∑
l<i

⟨(σ̃′
il(t)+σ̃′

li(t))σ̃
′
il(t

′)⟩
]
.

For ∆t ≫ τ the matrix σij(t) is independent of Oij(t−∆t) which is deter-

mined by σ at times earlier than t−∆t. Due to isotropy, the matrix σ̃′ has

the same statistics as σ and can be replaced by it in the correlation func-

tions. The first average in is independent of i and equals ⟨trσ⟩/d =
∑

λi/d

while the second is independent of l so that

λi = d−1
∑
p

λp + (d− 2i+ 1)

∫ t

t−∆t
dt′⟨(σil(t) + σli(t))σil(t

′)⟩ ,

where there is no summation over the repeated indices in the second term

(note that summation over i produces identity). We may write∫ t

t−∆t
dt′

⟨
σij(t)σkl(t

′)
⟩
=

∫ t

t−∆t
dt′⟨⟨σij(t)σkl(t′)⟩⟩+∆t⟨σij⟩⟨σkl⟩

where double brackets stand for dispersion. Noting from ⟨σjk⟩ =
∑

p λpδjk/d

that the last term contains additional factor
∑

λi∆t ≪ σcτ ≪ 1 with respect

to the first term we conclude that it can be neglected. Here we used
∑

λi ∼
σ2
c τ and ∆t ≪ σ−1

c . Using stationarity of the statistics of σij(t) at large

times we may write

λi = d−1
∑

λp + (d− 2i+ 1)(Cijij + Cijji)/2,

= −(2d)−1
∑
j,l

Cjjll + (d− 2i+ 1)(Cikik + Ckiik)/2. (1.13)

Cijkl = lim
t→∞

∫
dt′⟨⟨σij(t)σkl(t′)⟩⟩ ,

where there is no summation in the last term in λi. Note the symmetry
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Cijkl = Cilkj . Due to isotropy and the symmetry Cijkl + Cilkj we have

Cijkl = Aδikδjl + B(δijδkl + δilδjk), where we also assumed parity. It is

convenient to write the two remaining constants as

Cijkl = 2D1 [(d+ 1− 2Γ)δikδjl + (Γd− 1)(δijδkl + δilδjk)] . (1.14)

Then it is easy to show using dispersion non-negativity conditions that D1

and Γ are non-negative. While D1 measures the overall rate of strain, Γ is

the degree of compressibility, it changes between zero (for an incompressible

flow) and unity (for a potential flow). Since Γ vanishes for incompressible

flow one has
∑

λi ∝ Γ:∑
λi = −

∑
jl

Cjjll/2 = −ΓD1d(d− 1)(d+ 2). (1.15)

The final answer takes the form

λi = D1 [d(d− 2i+ 1)− 2Γ(d+ (d− 2)i)] . (1.16)

Formulas (1.14) and (1.16) correspond respectively to (3.9) and (3.17) from

Gawȩdzki. The senior Lyapunov exponent, λ1 = D1(d−1) [d− 4Γ] decreases

linearly when compressibility degree grows. Thus the effect of compressibil-

ity is to suppress the exponential divergence of nearby trajectories. For

an incompressible random flow where Γ = 0, the first Lyapunov exponent

is positive. Generally λ1 ≥ 0 for incompressible flow because volume con-

servation implies
∑

λi = 0 ≤ λ1. On the hand in the case d = 1 where

compressibility is always maximal Γ = 1 (the only incompressible flow in

one dimension is a constant one) we always have λ1 < 0 (to define this limit

one should assume that D1(d− 1) is a finite constant). In dimensions 2 and

3, Γ becomes negative at the critical compressibility Γcr = d/4. Finally λ1

is always positive at d > 4 while in four dimensions λ1 > 0 unless the flow

is potential where λ1 = 0.
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Coarse Grained Scale of Turbulent Mixtures E. Villermaux1,* and J. Du-

plat PRL 97, 144506 (2006)

Small-scale anisotropy in Lagrangian turbulence N Ouellette1,4, Haitao

Xu M Bourgoin3 and E Bodenschatz New Journal of Physics 8 (2006) 102

V. E. Zakharov, A. O. Korotkevich A. Pushkarev and D. Resio, Coexis-

tence of Weak and Strong Wave Turbulence in a Swell Propagation Phys.

Rev. Lett. 99, 164501 (2007)
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