
MIXING
The word mixing is used both as a general term defining
the operation of putting two or more substances
together in order to achieve uniformity and as a
mathematical term defining the property of random
processes. Mixing as an operation is widespread both
as a natural phenomenon and an industrial process.
Putting milk into coffee, preparing cement, and pushing
a car accelerator pedal involve mixing liquids, granular
materials, and gases. On a molecular scale, it is
diffusion which provides mixing. When diffusion is
caused solely by the gradient of concentration θ(r, t),
it is described by the second-order partial differential
equation

∂θ

∂t
= div(κ∇θ). (1)

When the diffusivity κ is constant, (1) is a linear
parabolic equation which can be solved by using
the Green function: θ(r, t) = (4πκt)−d/2

∫
exp[−(r−

r′)2/4κt]θ(r′, 0) dr′.
The diffusivity of gases in gases is of order

10−1 cm2s−1 so it would take many hours for an odor
to diffuse across the dinner table. Similarly, to diffuse
salt to a depth of 1 km in the ocean molecular diffusion
would take 107 years. It is the motion of fluids that
provides large-scale mixing in most cases. In a moving
fluid, θ satisfies the advection–diffusion equation:

∂θ

∂t
+ (v · ∇)θ = div(κ∇θ). (2)

If the velocity gradient is λ then one can define a
diffusion scale rd = √

κ/λ comparing advective and
diffusive terms in (2). Fluid motion and molecular
diffusion provide for mixing at the scales respectively
larger and smaller than rd . Inhomogeneous flow brings
into contact fluid parcels with different values of θ thus
producing large gradients that are then eliminated by
molecular diffusivity. How fast mixing proceeds and
how concentration variance decays in time depends on
how inhomogeneous the flow is.

When a velocity field fluctuates, the simplest
quantity (and often most important) is the concentration
averaged over velocity, 〈θ(r, t)〉. The behavior of this
quantity is determined by the properties of Lagrangian
velocity V (t) =v[q(t), t] which is taken on the
trajectory that satisfies dq/dt =v[q(t), t]. For times
longer than the Lagrangian correlation time, 〈θ(r, t)〉
also satisfies the diffusion equation

[
∂t − (κδij + Dij )∇i∇j

]
〈θ(r, t)〉 = 0,

with so-called eddy diffusivity

Dij = 1

2

∫ ∞

0
〈Vi(0)Vj (s) + Vj (0)Vi(s)〉 ds.

If we release a single spot of, say, a pollutant then
its average position is given by 〈θ(r, t)〉. On the
other hand, the evolution of the spot itself depends
on the spatial properties of the velocity field. In
considering hydrodynamic mixing at a given scale,
one usually distinguishes between two qualitatively
different classes of velocity fields: spatially smooth
and nonsmooth. Velocity can be considered spatially
smooth on a given scale if the velocity gradient does
not change much across the scale. Comparing the
inertial term (v · ∇)v to the viscous term ν�v in the
Navier–Stokes equation for fluid motion, one defines
the viscous scale η similarly to rd. Turbulent flows are
smooth at scales smaller than η (viscous interval) and
non-smooth at larger scales (intertial interval). Fluid
particles separate exponentially with time in smooth
flows and according to power laws in nonsmooth flows.
Despite the fact that the fluid viscosity ν (momentum
diffusivity) is caused by the same molecular motion
as κ (diffusivity of a substance), their ratio varies
widely depending on the type of material. That ratio
is called the Schmidt number or Prandtl number when
θ is temperature. The Schmidt number is very high
for viscous liquids and also for colloids and aerosols,
since the diffusivity of, say, micron-size particles (e.g.,
cream globules in milk and smoke in the air) is six to
seven orders of magnitude less than the viscosity of
the ambient fluid. In those cases, rd � η. At scales less
than η, the flow is spatially smooth and the velocity
difference between two fluid particles can be presented
as v(q1, t)−v(q2, t) = σ̂ (t)R(t) so that the separation
R =q1 − q2 obeys the ordinary differential equation

Ṙ(t) = σ(t)R(t),

leading to the linear propagation R(t) = W(t)R(0).
The main statistical properties of R(t) can be
established at the limit when t exceeds the correlation
time of the strain matrix σ̂ (t). The basic idea (going
back to the works of Lyapunov, Furstenberg, Oseledec
and many others and developed in the theory of
dynamical chaos) is to consider the positive symmetric
matrix WTW which determines R. The main result
states that in almost every realization of σ̂ (t), the matrix
t−1 ln WTW stabilizes as t → ∞. In particular, its
eigenvectors tend to d fixed orthonormal eigenvectors
fi . To understand that intuitively, consider some fluid
volume, say a sphere, which evolves into an elongated
ellipsoid at later times. As time increases, the ellipsoid
is more and more elongated and it is less and less likely
that the hierarchy of the ellipsoid axes will change. The
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limiting eigenvalues

λi = lim
t→∞ t−1 ln |Wfi | (3)

define the so-called Lyapunov exponents. The major
property of the Lyapunov exponents is that they do
not depend on the starting point if the velocity field
is ergodic.

Consider now a pollutant spot with size l released
within a spatially smooth velocity and assume that the
Peclet number l/rd is large. The above consideration
shows, in particular, that the spot will acquire an
ellipsoid form. The direction that corresponds to the
lowest Lyapunov exponent (necessarily negative in an
incompressible flow) contracts until it reaches rd, and
further contraction is stopped by molecular diffusion.
Since the exponentially growing directions continue
to expand then the volume grows exponentially and
the value of θ inside the spot decays exponentially
in time. For an arbitrary large-scale initial distribution
of θ , the concentration variance decays exponentially
in a spatially smooth flow since this is how
fast velocity inhomogeneity contracts θ “feeding”
molecular diffusion which eventually decreases the
variance. Even though it is diffusion that diminishes
θ , the rate of decay is independent of κ , it is usually of
order of the typical velocity gradient.

If the Schmidt number is small while the Reynolds
number of the flow is large then the velocity field at
scales larger than rd cannot be considered spatially
smooth. That means that the velocity difference δv(r)

measured between two points distance r apart scales as
ra with a < 1 (of course, δv is random and the statement
pertains to the moments). For example, for the energy
cascade in incompressible fluids, a is close to 1/3. The
equation Ṙ = δv(R) ∝ Ra suggests that interparticle
distance grows by a power law: R(t) ∝ t1/(1−a). The
volume of any spot also grows so that scalar variance
decays by a power law: 〈θ2〉 ∝ td/(1−a). Such estimates
are supported by a rigorous theory only for a velocity
field short-correlated in time. In this case, one can
also show that the probability distribution P(θ, t) takes
the self-similar form td/2(1−a)Q(td/2(1−a)θ) which is
likely to be the case for a general scale-invariant
velocity. On the contrary, P(θ, t) does not change in
a self-similar way in a spatially smooth flow.

In finite vessels, the long-time properties of fluid
mixing are usually determined by slowest parts, namely
the walls, where the velocity gradient may become zero,
and corners with recirculating eddies.

In multiphase flows, not only mixing but also
segregation can occur. The physical reason for that is
a centrifugal force: when fluid streamlines are curved,
heavier particles move out while lighter particles move
in. It is a matter of everyday experience that air bubbles
are trapped inside the sink vortex while heavy particles
gather outside the vortices (which is used, in particular,
for flow visualization).

Granular mixing is strikingly different from fluid
mixing. In a granular flow, collisions of grains are
inelastic and friction between grains makes it possible
for static configurations (such as arches) to support a
load and distribute stresses.As a result, granular motion
has nonlocal properties and no effective hydrodynamic
description based on average over local kinetics (like
Equation (2)) is available. When a container partially
filled with grains is vertically shaken with accelerations
larger than the gravitational acceleration, convective
rolls are observed with grains rising at the center and
falling along the walls. Contrary to fluid convection,
however, the grains move faster and mix better near the
walls. Granular flows can also demonstrate segregation.
The most celebrated example is the so-called Brazil nut
effect whereby large particles (Brazil nuts) rise to the
top of shaken container of mixed nuts.

The use of the term “mixing” in mathematics is based
on the notion (introduced by Josiah Gibbs) that evolu-
tion is mixing when it leads asymptotically in time to
some equilibrium invariant measure. Formally, one de-
fines the evolution operator Ut acting on some phase
space A and denotes the measure of any subset B as
P(B). The evolution is mixing if for any B, C ∈ A

one has limt → ∞ P(A
⋂

UtB) = P(A)P (B). One
can also define weak mixing property where
limt → ∞ t−1

∫
P(A

⋂
UsB) ds = P(A)P (B). Mixing

of a random process or dynamical system means ergod-
icity, that is equality between temporal and phase-space
average.

GREGORY FALKOVICH

See also Diffusion; Entropy; Granular materials;
Intermittency; Kolmogorov cascade; Lagrangian
chaos; Lyapunov exponents; Turbulence
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