
TURBULENCE
Turbulence is a state of a nonlinear physical system that
has energy distribution over many degrees of freedom
strongly deviated from equilibrium. Turbulence is
irregular both in time and in space. Turbulence can
be maintained by some external influence or it can
decay on the way to relaxation to equilibrium. The
term first appeared in fluid mechanics and was later
generalized to include far-from-equilibrium states in
solids and plasmas.

If an obstacle of size L is placed in a fluid of viscosity
ν that is moving with velocity V , a turbulent wake
emerges for sufficiently large values of the Reynolds
number

Re ≡ V L/ν.

At large Re, flow perturbations produced at scale
L experience, a viscous dissipation that is small
compared with nonlinear effects. Nonlinearity then
induces motions at smaller and smaller scales until
viscous dissipation terminates the process at a scale
much smaller than L, leading to a wide (so-called
inertial) interval of scales where viscosity is negligible
and nonlinearity plays a dominant role.

Examples of this phenomenon include waves excited
on a fluid surface by wind or moving bodies and waves
in plasmas and solids that are excited by external
electromagnetic fields. The state of such a system is
called turbulent when the wavelength of the waves
excited greatly differs from the wavelength of the waves
that dissipate. Nonlinear interactions excite waves in
the interval of wavelengths (called the transparency
window or inertial interval as in fluid turbulence)
between the injection and dissipation scales.

The ensuing complicated and irregular dynamics
require a statistical description based on averaging
over regions of space or intervals of time. Because
nonlinearity dominates in the inertial interval, it is
natural to ask to what extent the statistics are universal,
in the sense of being independent of the details of
excitation and dissipation. The answer to this question
is far from evident for non-equilibrium systems. A
fundamental physical problem is to establish which
statistical properties are universal in the inertial interval
of scales and which are features of different turbulent
systems.

Constraints on dynamics are imposed by conserva-
tion laws, and therefore conserved quantities must play
an essential role in turbulence. Although the conser-
vation laws are broken by pumping and dissipation,
these factors do not act in the inertial interval. Under
incompressible turbulence, for example, the kinetic en-
ergy is pumped by external forcing and is dissipated
by viscosity. As suggested by Lewis Fry Richardson in
1921, kinetic energy flows throughout the inertial in-

terval of scales in a cascade-like process. The cascade
idea explains the basic macroscopic manifestation of
turbulence: the rate of dissipation of the dynamical in-
tegral of motion has a finite limit when the dissipation
coefficient tends to zero. In other words, the mean rate
of the viscous energy dissipation does not depend on
viscosity at large Reynolds numbers. That means that
symmetry of the inviscid equation (here, time-reversal
invariance) is broken by the presence of the viscous
term, even though the latter might have been expected
to become negligible in the limit Re → ∞.

The cascade idea fixes only the mean flux of the
respective integral of motion, requiring it to be constant
across the inertial interval of scales. To describe an
entire turbulence statistics, one has to solve problems
on a case-by-case basis with most cases still unsolved.

Weak Wave Turbulence

From a theoretical point of view, the simplest case is
the turbulence of weakly interacting waves. Examples
include waves on the water surface, waves in plasma
with and without a magnetic field, and spin waves in
magnetics. We assume spatial homogeneity and denote
by ak the amplitude of the wave with the wave vector
k. When the amplitude is small, it satisfies the linear
equation

∂ak

∂t
= −iωkak + fk(t) − γkak. (1)

Here, the dispersion law ωk describes wave propaga-
tion, γk is the decrement of linear damping, and fk

describes pumping. For the linear system, ak is differ-
ent from zero only in the regions of k-space where fk

is nonzero. To describe wave turbulence that involves
wave numbers outside the pumping region, one must
account for the interactions among different waves.
Considering the wave system to be closed (no exter-
nal pumping or dissipation) one can describe it as a
Hamiltonian system using wave amplitudes as normal
canonical variables (Zakharov et al., 1992). At small
amplitudes, the Hamiltonian can be written as an ex-
pansion over ak , where the second-order term describes
non-interacting waves and high-order terms determine
the interaction

H =
∫

ωk|ak|2 dk +
∫ (

V123a1a
∗
2a∗

3 + c.c.
)

δ(k1 − k2 − k3) dk1 dk2 dk3 + O(a4). (2)

Here, V123 = V (k1,k2,k3) is the interaction vertex,
and c.c. denotes complex conjugate. In this expansion,
we presume every subsequent term smaller than the
previous one, in particular, ξk = |Vkkkak|kd/ωk � 1.
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Wave turbulence that satisfies that condition is called
weak turbulence. Also, space dimensionality d can be
1, 2, or 3.

A dynamic equation that accounts for pumping,
damping, wave propagation, and interaction thus has
the following form:

∂ak

∂t
= −i

δH

δa∗
k

+ fk(t) − γkak. (3)

It is likely that the statistics of the weak turbulence
at k � kf is close to Gaussian for wide classes of
pumping statistics (this has not been shown rigorously).
It is definitely the case for a random force with the
statistics close to Gaussian. We consider here and below
a pumping by a Gaussian random force statistically
isotropic and homogeneous in space, and white in time.
Thus,

〈fk(t)f
∗
k′(t ′)〉 = F(k)δ(k + k′)δ(t − t ′), (4)

where angular brackets imply spatial averages, and
F(k) is assumed nonzero only around some kf . For
waves to be well defined, we assume γk � ωk .

Because the dynamic equation (3) contains a
quadratic nonlinearity, the statistical description in
terms of moments encounters the closure problem: the
time derivative of the second moment is expressed
via the third one, the time derivative of the third
moment is expressed via the fourth one, and so on.
Fortunately, weak turbulence in the inertial interval is
expected to have the statistics close to Gaussian so
one can express the fourth moment as the product of
two second ones. As a result, one gets a closed kinetic
equation for the single-time pair correlation function
〈akak′ 〉 = nkδ(k +k′) (Zakharov et al., 1992):

∂nk

∂t
= Fk − γknk + I

(3)
k ,

I
(3)
k =

∫ (
Uk12 − U1k2 − U2k1

)
dk1 dk2 ,

U123 = π
[
n2n3 − n1(n2 + n3)

]|V123|2
δ(k1 − k2 − k3)δ(ω1 − ω2 − ω3).

(5)

This is called the kinetic equation for waves.
The collision integral I

(3)
k describes three-wave

interactions: the first term in the integral corresponds
to a decay of a given wave while the second and third
terms correspond to a confluence with other waves.

One can estimate from (5) the inverse time of nonlin-
ear interaction at a given k as |V (k, k, k)|2n(k)kd/ω(k).
We define kd as the wave number where this inverse
time is comparable to γ (k) and assume nonlinearity to

dominate over dissipation at k � kd . As has been noted,
wave turbulence appears when there is a wide (inertial)
interval of scales where both pumping and damping
are negligible, which requires kd � kf , the condition
analogous to Re � 1.

The presence of frequency delta-function in I
(3)
k

means that wave interaction conserves the quadratic
part of the energy E = ∫

ωknk dk = ∫
Ek dk. For the

cascade picture to be valid, the collision integral
has to converge in the inertial interval which means
that energy exchange is small between motions of
vastly different scales, a property called interaction
locality in k-space. Consider now a statistical steady
state established under the action of pumping and
dissipation. Let us multiply (5) by ωk and integrate it
over either interior or exterior of the ball with radius k.

Taking kf � k � kd , one sees that the energy flux
through any spherical surface (� is a solid angle),

Pk =
∫ k

0
kd−1dk

∫
d� ωkI

(3)
k ,

is constant in the inertial interval and is equal to the
energy production/dissipation rate:

Pk = ε =
∫

ωkFk dk =
∫

γkEk dk. (6)

Let us assume now that the medium (characterized
by ωk and V123) can be considered isotropic at
the scales in the inertial interval. In addition, for
scales much larger or much smaller than a typical
scale in the medium (like the Debye radius in
plasma or the depth of the water), the Hamiltonian
coefficients are usually scale invariant: ω(k) = ckα and
|V (k,k1,k2)|2 = V 2

0 k2mχ(k1/k,k2/k) with χ 
 1.
Remember that we presumed statistically isotropic
force. In this case, the pair correlation function that
describes a steady cascade is also isotropic and scale
invariant:

nk 
 ε1/2V −1
0 k−m−d . (7)

One can show that (7) reduces I
(3)
k to zero (see

Zakharov et al. 1992).
If the dispersion relation ω(k) does not allow for

the resonance condition ω(k1)+ω(k2) = ω(|k1 +k2|)
then the three-wave collision integral is zero
and one has to account for four-wave scatter-
ing which is always resonant, that is what-
ever ω(k) one can always find four wave vec-
tors that satisfy ω(k1) + ω(k2) = ω(k3) + ω(k4) and
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k1 +k2 =k3 +k4. The collision integral that de-
scribes scattering,

I
(4)
k = �

2

∫
|Tk123|2

[
n2n3(n1 + nk)

−n1nk(n2 + n3)
]
δ(k + k1 − k2 − k3)

×δ(ωk + ω1 − ω2 − ω2) dk1 dk2 dk3,

(8)

conserves the energy and also the wave action N =∫
nk dk (which can also be called the number of waves).

Pumping generally provides for an input of both E and
N . If there are two inertial intervals (at k � kf and
k � kf ), then there should be two cascades. Indeed, if
ω(k) grows with k then absorbing finite amount of E at
kd → ∞ corresponds to an absorption of an infinitely
small N . It is thus clear that the flux of N has to go in
the opposite direction, that is to snall wave numbers.
A so-called inverse cascade with a constant flux of N

can thus be realized at k � kf . A sink at small k can
be provided by wall friction in the container or by long
waves leaving the turbulent region in open spaces (as
in sea storms).

The collision integral I
(3)
k involves products of two

nk so that flux constancy requires Ek ∝ ε1/2 while
for the four-wave case, one has Ek ∝ ε1/3. In many
cases (when there is complete self-similarity), that
knowledge is sufficient to obtain the scaling of Ek from
a dimensional reasoning without actually calculating
V and T . For example, short waves in deep water
are characterized by the surface tension σ and density
ρ so the dispersion relation must be ωk ∼√σk3/ρ,
which allows for the three-wave resonance and thus
Ek ∼ ε1/2(ρσ)1/4k − 7/4. For long waves in deep water,
the surface-restoring force is dominated by gravity so
that the gravitational acceleration g replaces σ as a
defining parameter and ωk ∼ √

gk. Such a dispersion
law does not allow for three-wave resonance so that
the dominant interaction is four-wave scattering which
permits two cascades. The direct energy cascade
corresponds to Ek ∼ ε1/3ρ2/3g1/2k− 5/2. The inverse
cascade carries the flux of N which we denote Q, it has
the dimensionality [Q] = [ε]/[ωk] and corresponds to
Ek ∼ Q1/3ρ2/3g2/3k − 7/3.

Because the statistics of weak turbulence is near
Gaussian, it is completely determined by the pair
correlation function, which is in turn determined by the
respective flux. We thus conclude that weak turbulence
is universal in the inertial interval.

Strong Wave Turbulence

One cannot treat wave turbulence as a set of weakly
interacting waves when the wave amplitudes are large
(ξk ≥ 1) and also in the particular case of linear

(acoustic) dispersion where ω(k) = ck for arbitrarily
small amplitudes. Indeed, there is no dispersion of wave
velocity for acoustic waves, so waves moving in the
same direction interact strongly and produce shock
waves when viscosity is small. Formally, there is a
singularity due to the coinciding arguments of delta-
functions in (5) (and in the higher terms of perturbation
expansion for ∂nk/∂t), which is thus invalid at however
small amplitudes. Still, some features of the statistics
of acoustic turbulence can be understood even without
a closed description.

Consider a one-dimensional case which pertains, for
instance, to sound propagating in long pipes. Because
weak shocks are stable with respect to transversal
perturbations (Landau & Lifshitz, 1987), quasi-one-
dimensional perturbations may propagate in two and
three dimensions as well. In a reference frame that
moves with the sound velocity, weakly compressible
1-d flows (u � c) are described by the Burgers’
equation (Landau & Lifshitz, 1987)

ut + uux − νuxx = 0. (9)

The Burgers’ equation has a propagating shock-wave
solution u = 2v{1 + exp[v(x − vt)/ν]}− 1 with the en-
ergy dissipation rate ν

∫
u2

x dx independent of ν.
The shock width ν/v is a dissipative scale, and we
consider acoustic turbulence produced by a pump-
ing correlated on much larger scales (i.e., pump-
ing a pipe from one end by frequencies much less
than cv/ν). After some time, the system will de-
velop shocks at random positions. Here we con-
sider the single-time statistics of the Galilean in-
variant velocity difference δu(x, t) = u(x, t) − u(0, t).
The moments of δu are called structure functions
Sn(x, t) = 〈[u(x, t) − u(0, t)]n 〉 . Quadratic nonlinear-
ity allows the time derivative of the second moment to
be expressed via the third one:

∂S2

∂t
= − ∂S3

3∂x
− 4ε + ν

∂2S2

∂x2
. (10)

Here ε = ν〈u2
x〉 is the mean energy dissipation rate.

Equation (10) describes both a free decay (then
ε depends on t) and the case of a permanently
acting pumping which generates turbulence statistically
steady at scales less than the pumping length.

In the first case, ∂S2/∂t 
 S2u/L � ε 
 u3/L

(where L is a typical distance between shocks)
while in the second case, ∂S2/∂t = 0 so that
S3 = 12εx + ν∂S2/∂x. Consider now the limit ν → 0
at fixed x (and t for decaying turbulence). Shock
dissipation provides for a finite limit of ε at ν → 0,
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then

S3 = −12εx. (11)

This formula is a direct analog of (6). Indeed, the
Fourier transform of (10) describes the energy density
Ek = 〈 |uk|2 〉 /2: (∂t − νk2)Ek = − ∂Pk/∂k where the
k-space flux

Pk =
∫ k

0
dk′

∫ ∞

−∞
dx S3(x)k′ sin(k′x)/24.

It is thus the flux constancy that fixes S3(x) which is
universal (determined solely by ε) and depends neither
on the initial statistics for decay nor on the pumping
for steady turbulence. On the contrary, other structure
functions Sn(x) are not given by (εx)n/3. Indeed,
the scaling of the structure functions can be readily
understood for any dilute set of shocks (that is, when
shocks do not cluster in space) which seems to be the
case both for smooth initial, conditions and large-scale
pumping in Burgers turbulence. In this case, Sn(x) ∼
Cn|x|n + C′

n|x|, where the first term comes from the
regular (smooth) parts of the velocity while the second
comes from O(x) probability to have a shock in the
interval x. The scaling exponents, ξn = d ln Sn/d ln x,
thus behave as follows: ξn = n for n ≤ 1 and ξn = 1 for
n > 1. That means that the probability density function
(PDF) of the velocity difference in the inertial interval
P(δu, x) is not scale-invariant, that is, the function
of the rescaled velocity difference δu/xa cannot be
made scale-independent for any a. As one goes to
smaller scales, the lower-order moments decrease faster
than the higher-order ones, that means that the smaller
the scale the more probable are large fluctuations. In
other words, the level of fluctuations increases with the
resolution. When the scaling exponents ξn do not lie on
a straight line, this is called an anomalous scaling since
it is related again to the symmetry (scale invariance) of
the PDF broken by pumping and not restored even when
x/L → 0. As an alternative to the description in terms
of structures (shocks), one can relate the anomalous
scaling in Burgers turbulence to the additional integrals
of motion. Indeed, the integrals En = ∫

u2n dx/2 are all
conserved by the inviscid Burgers’ equation. Any shock
dissipates the finite amount of En at the limit ν → 0 so
that similar to (11) one denotes 〈 Ėn 〉 = εn and obtains
S2n + 1 = − 4(2n + 1)εnx/(2n − 1) for integer n.

Note that S2(x) ∝ |x| corresponds to E(k) ∝ k − 2,
which is natural since every shock gives uk ∝ 1/k at
k � v/ν, that is, the energy spectrum is determined
by the type of structures (shocks) rather than by
energy flux constancy. Similar ideas were suggested
for other types of strong wave turbulence assuming
them to be dominated by different structures. Weak

wave turbulence, being a set of weakly interacting
plane waves, can be studied uniformly for different
systems (Zakharov et al., 1992). On the contrary,
when nonlinearity is comparable to or exceeds
dispersion, different structures appear in different
systems. Identifying structures and the role they play
in determining different statistical characteristics of
strong wave turbulence remains to be investigated for
most cases. Broadly, one distinguishes conservative
structures (like solitons and vortices) from dissipative
structures which usually appear as a result of finite-time
singularity of the nondissipative equations (like shocks,
light self-focusing, or wave collapse). For example,
nonlinear wave packets are described by the nonlinear
Schrödinger equation,

i�t + �� + T |�|2� = 0. (12)

Weak wave turbulence is determined by |T |2 and is the
same both for T < 0 (wave repulsion) and T > 0 (wave
attraction). At high levels of nonlinearity, different
signs of T correspond to dramatically different physics:
At T < 0, one has a stable condensate, solitons and
vortices, while at T > 0, instabilities dominate and
wave collapse is possible at d = 2, 3. No analytic theory
is yet available for strong turbulence described by (12).

Because the parameter of nonlinearity ξ(k)generally
depends on k then there may exist a weakly turbulent
cascade until some k∗ where ξ(k∗) ∼ 1, and strong
turbulence beyond this, wave number; thus weak and
strong turbulence can coexist in the same system.
Presuming that some mechanism (for instance, wave
breaking) prevents the appearance of wave amplitudes
that correspond to ξk � 1, one may hypothetize that
some cases of strong turbulence correspond to the
balance between dispersion and nonlinearity local in
k-space so that ξ(k) = constant throughout its domain
in k-space. That would correspond to the spectrum
Ek ∼ ω3

kk
− d/|Vkkk|2 which is ultimately universal,

that is independent even of the flux (only the boundary
k∗ depends on the flux). For gravity waves, this
gives Ek = ρgk − 3, the same spectrum one obtains
presuming the wave profile to have cusps (another type
of dissipative structure leading to whitecaps in stormy
seas—see Phillips, 1977). It is unclear if such flux-
independent spectra are realized.

Incompressible Turbulence

Incompressible fluid flow is described by the Navier–
Stokes equation

∂tv(r, t) + v(r, t) · ∇v(r, t) − ν∇2v(r, t)

= −∇p(r, t) , div v = 0.
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We are again interested in the structure functions
Sn(r, t) = 〈 [(v(r, t) −v(0, t)) ·r/r]n 〉 and treat first
the three-dimensional case. Similar to (10), one
considers distance r smaller than the force correlation
scale for a steady case and smaller than the size of the
turbulent region for a decay case. For such r , one can
derive the Karman–Howarth relation between S2 and
S3 (see Landau & Lifshitz, 1987):

∂S2

∂t
= − 1

3r4

∂

∂r
(r4S3) + 4ε

3
+ 2ν

r4

∂

∂r

(
r4 ∂S2

∂r

)
. (13)

Here ε = ν 〈 (∇v)2 〉 is the mean energy dissipation
rate. Neglecting the time derivative (which is zero
in a steady state and small compared to ε for
decaying turbulence), one can multiply (13) by r4 and
integrate: S3(r) = − 4εr/5 + 6ν dS2(r)/dr . Andrei
Kolmogorov in 1941 considered the limit ν → 0 for
fixed r and assumed nonzero limit for ε, which gives the
so-called 4

5 law (see Landau & Lifshitz, 1987; Frisch,
1995):

S3 = − 4
5 ε r. (14)

This relation is a direct analog of (6) and (11). It also
means that the kinetic energy has a constant flux in
the inertial interval of scales (the viscous scale η is
defined by νS2(η) 
 εη2). Law (14) implies that the
third-order moment is universal, that is, it does not
depend on the details of the turbulence production but is
determined solely by the mean energy dissipation rate.
The rest of the structure functions have not yet been
derived. Kolmogorov (and also Werner Heisenberg,
Karl von Weizsacker, and Lars Onsager) presumed
the pair correlation function to be determined only
by ε and r which would give S2(r) ∼ (εr)2/3 and the
energy spectrum Ek ∼ ε2/3k−5/3. Experiments suggest
that ζn = d ln Sn/d ln r lie on a smooth concave curve
sketched in Figure 1. While ζ2 is close to 2/3, it has
to be a bit larger because experiments show that the
slope at zero dζn/dn is larger than 1

3 while, ζ(3) = 1
in agreement with (14). As in Burgers turbulence, the
PDF of velocity differences in the inertial interval is
not scale-invariant in 3-d incompressible turbulence.
No one has yet found an explicit relation between the
anomalous scaling for 3-d Navier–Stokes turbulence
and either structures or additional integrals of
motion.

While not exact, the Kolomogorov approximation
S2(η) 
 (εη)2/3 can be used to estimate the viscous
scale: η 
LRe − 3/4. The number of degrees of freedom
involved in 3-d incompressible turbulence can thus be
roughly estimated as N ∼ (L/η)3 ∼ Re9/4. That means,
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Figure 1. The scaling, exponents of the structure functions ξn
for Burgers, ζn for Navier–Stokes, and σn for the passive scalar.
The dotted straight line is the Kolmogorov hypothesis n/3.

in particular, that detailed computer simulation of water
or oil pipe flows (Re ∼ 104 − 107) or turbulent clouds
(Re ∼ 106 − 109) is out of question for the foreseeable
future. To calculate correctly at least the large-scale
part of the flow, it is desirable to have some theoretical
model to parametrize the small-scale motions, the main
obstacle being our lack of qualitative understanding
and quantitative description of how turbulence statistics
changes as one goes downscale.

Large-scale motions in a shallow fluid can be
approximately considered two dimensional. When the
velocities of such motions are much smaller than the
velocities of the surface waves and the velocity of
sound, such flows can be considered incompressible.
Their description is important for understanding
atmospheric and oceanic turbulence at the scales larger
than atmosphere height and ocean depth.

Vorticity ω = curl v is a scalar in a two-dimensional
flow. It is advected by the velocity field and dissipated
by viscosity. Taking the curl of the Navier–Stokes
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equation, one gets

∂tω + (v · ∇)ω = ν∇2ω. (15)

Two-dimensional incompressible inviscid flow just
transports vorticity from place to place and thus
conserves spatial averages of any function of vorticity.
In particular, we now have the second quadratic
inviscid invariant (in addition to energy) which is
called enstrophy:

∫
ω2 dr. Since the spectral density

of the energy is |vk|2/2 while that of the enstrophy is
|k × vk|2, Robert Kraichnan suggested in 1967 that
the direct cascade (towards large k) is that of enstrophy
while the inverse cascade is that of energy. Again, for
the inverse energy cascade, there is no consistent theory
except for the flux relation that can be derived similar
to (14):

S3(r) = 4εr/3. (16)

The inverse cascade is observed in the atmosphere (at
scales of 30–500 km) and in laboratory experiments.
Experimental data suggest that there is no anomalous
scaling; thus Sn ∝ rn/3. In particular, S2 ∝ r2/3 which
corresponds to Ek ∝ k − 5/3. It is ironic that probably
the most widely known statement on turbulence, the 5

3
spectrum suggested by Kolmogorov for the 3-d case, is
not correct in this case (even though the true scaling
is close), while it is probably exact in Kraichnan’s
inverse 2-d cascade. Qualitatively, it is likely that the
absence of anomalous scaling in the inverse cascade is
associated with the growth of the typical turnover time
(estimated, say, as r/

√
S2) with the scale. As the inverse

cascade proceeds, the fluctuations have enough time to
get smoothed out as opposed to the direct cascade in
three dimensions, where the turnover time decreases in
the direction of the cascade.

Before discussing the direct (enstrophy) cascade, we
describe a similar yet somewhat simpler problem of
passive scalar turbulence, which allows one to introduce
the necessary notions of Lagrangian description of the
fluid flow. Consider a scalar quantity θ(r, t) that is
subject to molecular diffusion and advection by the
fluid flow but has no back influence on the velocity
(i.e., passive):

∂tθ + (v · ∇)θ = κ∇2θ + ϕ. (17)

Here κ is molecular diffusivity. In the same 2-d flow, ω
and θ behave in the same way, but vorticity is related
to velocity while the passive scalar is not. Examples
of passive scalar are smoke in air, salinity in water,
and temperature when one neglects thermal convection.

If the source ϕ produces fluctuations of θ on some
scaleL then the inhomogeneous velocity field stretches,
contracts, and folds the field θ producing progressively
smaller and smaller scales. If the rms velocity gradient
is � then molecular diffusion is substantial at scales
less than the diffusion scale rd = √

κ/�. The ratio

Pe = L/rd

is called the Peclet number. It is an analog of the
Reynolds number for passive scalar turbulence. When
Pe � 1, there is a long inertial interval where the flux
constancy relation derived by A.M. Yaglom in 1949
holds:

〈(v1 · ∇1 + v2 · ∇2)θ1θ2〉 = 2P, (18)

where P = κ 〈 (∇θ)2 〉 and subscripts denote the spatial
points. In considering the passive scalar problem, the
velocity statistics is presumed to be given. Still, the
correlation function (18) mixes v and θ and does
not generally allow one to make a statement on any
correlation function of θ . The proper way to describe the
correlation functions of the scalar at scales much larger
than the diffusion scale is to employ the Lagrangian
description, that is, to follow fluid trajectories. Indeed,
if we neglect diffusion, then Equation (17) can be
solved along the characteristics R(t) which are called
Lagrangian trajectories and satisfy dR/dt =v(R, t).
Presuming zero initial conditions at t → − ∞, we write

θ
(
R(t), t

)
=
∫ t

−∞
ϕ
(
R(t ′), t ′

)
dt ′. (19)

In that way, the correlation functions of the scalar
Fn = 〈 θ(r1, t) . . . θ(rn, t) 〉 can be obtained by in-
tegrating the correlation functions of the pumping
along the trajectories that satisfy the final conditions
Ri (t) = ri .

Consider first, the case of pumping which is Gaus-
sian, statistically homogeneous, and isotropic in space
and white in time: 〈 ϕ(r1, t1)ϕ(r2, t2) 〉 = �(|r1 − r2|)
δ(t1 − t2) where the function � is constant at r � L

and goes to zero at r � L. The pumping provides for
symmetry θ → − θ which makes only even correlation
functions F2n nonzero. The pair correlation function is

F2(r, t) =
∫ t

−∞
�
(
R12(t

′)
)

dt ′. (20)

Here R12(t
′) = |R1(t

′) −R2(t
′)| is the distance be-

tween two trajectories and R12(t) = r . The function �

essentially restricts the integration to the time interval
when the distance R12(t

′) ≤ L. Simply speaking, the
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stationary pair correlation function of a tracer is �(0)

(which is twice the injection rate of θ2) times the aver-
age time T2(r, L) that two fluid particles spend within
the correlation scale of the pumping. The larger r , the
less time it takes for the particles to separate from r to L

and the smaller is F2(r). Of course, T12(r, L) depends
on the properties of the velocity field. A general the-
ory is available only when the velocity field is spatially
smooth at the scale of scalar pumping L. This so-called
Batchelor regime happens, in particular, when the scalar
cascade occurs at the scales less than the viscous scale
of fluid turbulence. This requires the Schmidt number
ν/κ (called the Prandtl number when θ is temperature)
to be large, which is the case for very viscous liquids.
In this case, one can approximate the velocity differ-
ence v(R1, t) −v(R2, t) ≈ σ̂ (t)R12(t) with the La-
grangian strain matrix σij (t) = ∇j vi . In this regime, the
distance obeys the linear differential equation

Ṙ12(t) = σ̂ (t)R12(t). (21)

The theory of such equations is well developed and
related to what is called Lagrangian chaos, as fluid
trajectories separate exponentially as is typical for
systems with dynamical chaos (see, e.g. Falkovich et
al., 2001): At t much larger than the correlation time
of the random process σ̂ (t), all moments of R12 grow
exponentially with time and 〈 ln[R12(t)R12(0)] 〉 = λt ,
where λ is called a senior Lyapunov exponent of the
flow (note that for the description of the scalar we need
the flow taken backwards in time which is different from
that taken forward because turbulence is irreversible).
Dimensionally, λ = �f (Re) where the limit of the
function f at Re → ∞ is unknown. We thus obtain

F2(r) = �(0)λ−1 ln(L/r) = 2Pλ−1 ln(L/r). (22)

In a similar way, one shows that for n � ln(L/r), all
Fn are expressed via F2 and the structure functions
S2n = 〈 [θ(r, t) − θ(0, t)]2n 〉 ∝ lnn(r/rd) for n �
ln(r/rd). This can be generalized for an arbitrary statis-
tics of pumping as long as it is finite-correlated in time
(Falkovich et al., 2001).

One can use the analogy between passive scalar
and vorticity in two dimensions as has been shown
by Falkovich and Lebedev in 1994 following the line
suggested by Kraichnan in 1967. For the enstrophy
cascade, one derives the flux relation analogous to (18):

〈(v1 · ∇1 + v2 · ∇2)ω1ω2〉 = 2D, (23)

where D = 〈 ν(∇ω)2 〉 . The flux relation along with
ω = curl v suggests the scaling δv(r) ∝ r , that is,
velocity being close to spatially smooth (of course,

it cannot be perfectly smooth to provide for a
nonzero vorticity dissipation in the inviscid limit,
but the possible singularitites are indeed shown to
be no stronger than logarithmic). That makes the
vorticity cascade similar to the Batchelor regime
of passive scalar cascade with a notable change
in that the rate of stretching λ acting on a
given scale is not a constant but is logarithmically
growing when the scale decreases. Since λ scales
as vorticity, the law of renormalization can be
established from dimensional reasoning and one gets
〈ω(r, t)ω(0, t) 〉 ∼ [D ln(L/r)]2/3 which corresponds
to the energy spectrum Ek ∝ D2/3k − 3 ln − 1/3(kL).
Higher-order correlation functions of vorticity are
also logarithmic, for instance, 〈 ωn(r, t)ωn(0, t) 〉 ∼
[D ln(L/r)]2n/3. Note that both passive scalar in
the Batchelor regime and vorticity cascade in two
dimensions are universal, that is, determined by
the single flux (P and D, respectively) despite
the existence of higher-order conserved quantities.
Experimental data and numeric simulations support
these conclusions.

Zero Modes and Anomalous Scaling

Let us now return to the Lagrangian description and
discuss it when velocity is not spatially smooth, for
example, that of the energy cascades in the inertial
interval. One can assume that it is Lagrangian statistics
that are determined by the energy flux when the
distances between fluid trajectories are in the inertial
interval. That assumption leads, in particular, to the
Richardson law for the asymptotic growth of the
interparticle distance:

〈R2
12(t)〉 ∼ εt3, (24)

which was first established from atmospheric observa-
tions (in 1926) and later confirmed experimentally for
energy cascades both in 3-d and in 2-d. There is no
consistent theoretical derivation of (24) and it is un-
clear whether it is exact (likely to be in 2-d) or just
approximate (possible in 3-d). The semi-heuristic ar-
gument usually presented in textbooks is based on the
mean-field estimate: Ṙ12 = δv(R12, t) ∼ (εR12)

1/3

which upon integration gives: R
2/3
12 (t) − R

2/3
12 (0) ∼

ε1/3t . For the passive scalar it gives, by virtue of (20),
F2(r) ∼ �(0)ε − 1/3[L2/3 − r2/3] which was suggested
by S. Corrsin and A.M. Oboukhov. The structure func-
tion is then S2(r) ∼ �(0)ε − 1/3r2/3. Experiments mea-
suring the scaling exponents σn = d ln Sn(r)/d ln r gen-
erally give σ2 close to 2/3 but higher exponents devi-
ating from the straight lineane even stronger than the
exponents of the velocity in 3-d. Moreover, the scalar
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exponents σn are anomalous even when advecting ve-
locity has a normal scaling like in the 2-d energy cas-
cade.

To better understand the Lagrangian dynamics (and
passive scalar statistics) in a spatially nonsmooth
velocity, Kraichnan suggested considering the model
of a velocity field having the simplest statistical and
temporal properties, namely Gaussian velocity which
is white in time:

〈vi(r, t)vj (0, 0)〉 = δ(t)
[
D0δij − dij (r)

]
,

dij = D1 r2−γ
[
(d + 1 − γ ) δij + (γ − 2)rirj r−2

]
.

(25)

Here the exponent γ ∈ [0, 2] is a measure of the
velocity nonsmoothness with γ = 0 corresponding to a
smooth velocity and γ = 2 corresponding to a velocity
very rough in space (distributional). Richardson–
Kolmogorov scaling of the energy cascade corresponds
to γ = 2/3. Lagrangian flow is a Markov random
process for the Kraichnan ensemble (25). Every fluid
particle undergoes a Brownian random walk with the
so-called eddy diffusivityD0. The PDF for two particles
to be separated by r after time t satisfies the diffusion
equation (see, e.g., Falkovich et al., 2001)

∂tP (r, t) = L2P(r, t) ,

L2 = dij (r)∇i∇j = D1(d − 1)r1−d∂rr
d+1−γ ∂r ,

(26)

with the scale-dependent diffusivity D1(d − 1)r2 − γ .
The asymptotic solution of (26) is lognormal for the
Batchelor case while for γ > 0

P(r, t) = rd−1td/γ exp
(
−const rγ /t

)
. (27)

For γ = 2/3, it reproduces, in particular, the Richardson
law. Multiparticle probability distributions also satisfy
diffusion equations in the Kraichnan model as well as
all the correlation functions of θ . Multiplying equation
(17) by θ2 . . . θ2n and averaging over the Gaussian
statistics of v and ϕ, one derives

∂tF2n = L2nF2n +
∑
l,m

F2n−2�(rlm) ,

L2n =
∑

dij (rlm)∇i
l ∇j

m. (28)

This equation enables one, in principle, to derive induc-
tively all steady-state F2n starting from F2. The equa-
tion ∂tF2(r, t) = L2F2(r, t) + �(r) has a steady so-
lution F2(r) = 2[�(0)/γ d(d − 1)D1][dLγ /(d − γ ) −
rγ ], which has the Corrsin–Oboukhov form for
γ = 2/3. Further, F4 contains the so-called forced solu-
tion having the normal scaling 2γ but also, remarkably,

a zero mode Z4 of the operator L4: L4Z4 = 0. Such
zero modes necessarily appear (to satisfy the bound-
ary conditions at r 
 L) for all n > 1 and the scal-
ing exponents of Z2n are generally different from nγ

that is anomalous. In calculating the scalar structure
functions, all terms cancel out except a single zero
mode (called irreducible because it involves all dis-
tances between 2n points). Calculation of Zn and their
scaling exponents σn were carried out analytically at
γ � 1, 2 − γ � 1 and d � 1, and numerically for all γ

and d = 2, 3 (Falkovich et al., 2001).
That gives σn lying on a convex curve (as in Figure 1)

which saturates to a constant at large n. Such saturation
(confirmed by experiments) is a signature that most
singular structures in a scalar field are shocks (as in
Burgers’ turbulence), the value σn at n → ∞ is the
fractal codimension of fronts in space. Interestingly, the
Kraichnan model enables one to establish the relation
between the anomalous scaling and conservation laws
of a new type. Thus, the combinations of distances
between points that constitute zero modes are the
statistical integrals of Lagrangian evolution. To give
a simple example, in a Brownian walk, the mean
distance between every two particles grows with time,
〈 R2

lm(t) 〉 = R2
lm(0) + κt , while 〈 R2

lm − R2
pq 〉 and

〈 2(d + 2)R2
lmR2

pq − d(R4
lm + R4

pq) 〉 (and an infinity
of similarly built harmonic polynomials) are conserved.
Note that the integrals are not dynamical, they are
conserved only in average. In a turbulent flow, the
form of such conserved quantities is more complicated
but the essence is the same: the increase of averaged
distances between fluid particles is compensated by
the decrease in shape fluctuations. The existence
of statistical conserved quantities breaks the scale
invariance of scalar statistics in the inertial interval
and explains why scalar turbulence knows more about
pumping than just the value of the flux. Note that both
symmetries, one broken by pumping (scale invariance)
and another by damping (time reversibility) are not
restored even when r/L → 0 and rd/r → 0.

For the vector field (like velocity or magnetic field
in magnetohydrodynamics), the Lagrangian statistical
integrals of motion may involve both the coordinate
of the fluid particle and the vector it carries. Such
integrals of motion were built explicitly and related
to the anomalous scaling for the passively advected
magnetic field in the Kraichnan ensemble of velocities
(Falkovich et al., 2001). Doing that for velocity that
satisfies the Navier–Stokes equation remains a task for
the future.

GREGORY FALKOVICH

See also Chaos vs. turbulence; Development of sin-
gularities; Intermittency; Kolmogorov cascade; La-
grangian chaos; Magnetohydrodynamics; Mixing;
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Navier–Stokes equation; Nonlinear Schrödinger
equations; Water waves; Wave packets, linear and
nonlinear
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