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Abstract

We built and characterized a laser stabilization scheme tailored for precision control of a trapped-ion
qubit. A high-power diode laser is injection-locked to a remote stable 729 nm master laser, with fiber
noise cancellation (FNC) applied on the 120 fiber link connecting them—actively stabilizing the phase of
the light before amplification. This configuration suppresses fiber-induced phase noise prior to injection
locking, allowing narrow-linewidth, low-noise light to seed the slave laser.

We characterize the stabilized system using out-of-loop measurements of the beta-separation line
and in-loop phase stability diagnostics, confirming high phase coherence and wavelength stability. By
thoroughly exploring the injection parameter space of the slave diode, we obtain a detailed understanding
of the master–slave configuration.

We demonstrate the viability of the system through high-resolution spectroscopy on a single trapped
Ca+ ion. Sideband-resolved spectra confirm operation in the Lamb–Dicke regime, and spectroscopy
measurements indicate improved short-term stability. The observed spectral features and robust ion–laser
coherence validate the system’s performance for quantum control.

This architecture—integrating injection locking with FNC—provides a reliable platform for coherent
spectroscopy and quantum logic operations.
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1 Introduction

The ability to control and measure quantum systems with high precision lies at the foundation of many of the
most powerful technologies and profound scientific discoveries of the 21st century. From the definition of time
and the operation of GPS networks to the rise of quantum computing and tests of fundamental symmetries,
the tools of atomic, molecular, and optical (AMO) physics have redefined what is experimentally possible [1–
4].

Central to this revolution is the laser [5]-an instrument that provides coherent, tunable, and highly
controllable light across a vast range of wavelengths. Precision in AMO physics depends critically on the
stability and coherence of laser light. Whether probing optical clock transitions at sub-Hz linewidths [6,
7] or performing quantum-logic gates with trapped ions [8], the demands on laser systems are constantly
increasing.

Ultra-stable optical clocks based on ions such as 27Al+ [9] or neutral atoms in optical lattices like 87Sr [10]
require lasers with linewidths well below one hertz, typically stabilized using high-finesse Fabry-Pérot cavities
and frequency combs [9]. Other systems employ Doppler-free saturated absorption [11], electromagnetically
induced transparency (EIT) [12], or offset locks to reference lasers or atomic lines [13]. Laser stabilization
is equally critical in quantum computing platforms. Trapped ions, neutral atoms, superconducting circuits
with optical interfaces, and even photonic qubits all rely on lasers for coherent control, measurement, and
clocking.

In trapped-ion systems, lasers enable sideband cooling, spin-motion entanglement, and high-fidelity gate
operations [14]-all of which depend on laser linewidth, intensity stability, and phase coherence. As an
example, the electric quadrupole transition in 40Ca+ at 729 nm offers an accessible, narrow-line testbed with
a natural linewidth of 0.14Hz, ideal for benchmarking laser performance. Within this broader context, our
work focuses on developing a stable 729 nm laser system suitable for coherent control of a single trapped
40Ca+ ion. The aim is not to match the ultimate performance of clock lasers, stabilized to cryogenic reference
cavities [6, 7], but to create a robust, modular, and scalable system capable of narrow-linewidth operation
with good phase stability across a laboratory-scale experimental setup. This system is designed to support
quantum control experiments today and to serve as a foundation for molecular-ion spectroscopy [15, 16] and
high-precision tests of fundamental physics in the near future [17].

Rather than develop an independent cavity- or comb-stabilized system, we use a master-slave laser
configuration in which the master laser-already stabilized to a high-finesse cavity in a separate laboratory-
seeds a high-power slave diode via optical injection locking [18]. This approach allows us to inherit the
narrow linewidth and spectral purity of the master while retaining flexibility in optical routing and power
distribution. Injection locking, in this context, acts as a passive coherence transfer technique, enabling us
to replicate the stable light in our own experimental zone without the need for additional frequency-locking
electronics. Although not fully autonomous, this approach provides a reliable and scalable solution for
numerous precision tasks, especially in a setting where the laser serves as a shared frequency reference for
other stabilized systems.

A critical challenge in delivering phase-stable light to a remote quantum system is the accumulation of
noise along the optical path. Optical fibers, while convenient for routing and alignment, are susceptible
to phase fluctuations caused by temperature drifts, acoustic vibrations, and mechanical stress. Even small
path length variations can lead to significant phase noise over meter-scale distances. Across the field, various
techniques have been developed to address this issue. In some setups, piezo-mounted mirrors [19] or electro-
optic modulators (EOMs) [20] are used in feedback loops to correct for phase fluctuations in free-space
interferometers, while spatial light modulators (SLMs) [21] and deformable mirrors [22] are employed to
correct spatial wavefront distortions in beam-shaping and quantum-gas experiments. In our system, we
implement an active fiber-noise-cancellation (FNC) scheme by interfering the clock laser with the slave
laser after it has been frequency shifted via an acousto-optic modulator (AOM). The resulting interference
signal encodes phase noise accumulated along the fiber path, which is actively corrected by adjusting the
AOM drive frequency. This approach offers a compact and robust solution for suppressing temporal phase
fluctuations introduced during long-distance optical delivery.

Our laser system is intended to support not only atomic ion control, but also future experiments involving
molecular ions. Molecules such as N+

2 and I+2 possess a richer internal structure than atoms, including
vibrational and rotational modes and different nuclear-spin isomers [23]. These features open the door to
new forms of quantum-state control, encoding, and precision spectroscopy. One potential direction is the
use of molecular ions in correlation spectroscopy with atomic clocks to probe variations in fundamental
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constants [24], such as those that might arise from ultralight dark matter [25]. While such applications
lie beyond the scope of this thesis, the laser system developed here is designed to meet the stability and
resolution requirements that such measurements would demand.

In this thesis, we present the design, implementation, and performance of a 729 nm laser system based
on injection locking and fiber-noise cancellation. Our work shows that significant spectral narrowing and
phase coherence can be achieved through a simple, modular setup that leverages existing ultra-stable laser
systems, without the need for in-lab cavities or frequency combs. By identifying and addressing phase noise
introduced during delivery, and by ensuring RF stability within the FNC system, we create a platform
suitable for coherent quantum control and precision spectroscopy. We characterize the laser system by
measuring both in-loop and out-of-loop phase stability using interferometric techniques, and systematically
scan the diode’s injection parameters to optimize performance. We showcase the capabilities of this system
through high-resolution spectroscopy on a single 40Ca+ ion. This work represents a technical contribution to
the broader effort to push the limits of resolution and coherence in atomic and molecular quantum systems.

2 Goals

The primary goal of this thesis is to develop a highly stable and narrow-linewidth laser at 729 nm for
coherent quantum control of a single calcium ion (Ca+). Achieving precise control over this transition is
critical for future molecular-ion spectroscopy, where the Ca+ ion will serve as a quantum probe.

To accomplish this, the focus is on two key stabilization techniques:

1. Laser Injection Locking – Ensuring a high-quality injected laser with minimal frequency noise.

2. Fiber-Noise Cancellation (FNC) – Compensating for phase noise introduced during laser delivery
through optical fibers.

The performance of our laser system will be characterized using interferometric methods and beat-
stability analysis. Finally, we aim to achieve a spectroscopic signal of the clock transition in Ca+ using our
laser system.

These advancements will enable high-fidelity gate operations on the 729 nm transition, ensuring precise
control over the ion’s quantum state and leading to improved spectral resolution and measurement accuracy.
Ultimately, this work aims to establish a foundation for probing molecular ions with unprecedented accuracy,
enabling new experiments in precision measurements and fundamental physics.
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3 Methods - Injection Locking and Laser Stabilization

3.1 Injection Locking in Lasers

Injection locking is a laser stabilization technique in which a weak optical field from a master laser is injected
into a slave laser. This process forces the slave’s frequency, ω, and phase to lock to those of the master,
provided the injection parameters lie within a defined locking range [26, 27]. Injection locking significantly
reduces the slave laser’s linewidth, suppresses phase noise, and improves spectral purity. In the following
section, we derive the dynamical equations governing this locking behavior.

3.1.1 Maxwell–Bloch Equations

Applying the Slowly-Varying-Envelope Approximation (SVEA) to Maxwell’s equations leads to a first-order
wave equation for the field envelope coupled to the polarization, as derived in [28, Ch. 9]:

• Electric-field envelope, E(t):

dE
dt

+ (L+ i(ω − Ω))E = − iω

2ϵ0
P. (1)

• Polarization, P (t):
dP

dt
+ (i(ω − ω0) + γ)P = i

|µ12|2

ℏ
∆NE . (2)

• Population inversion, ∆N(t):

d∆N

dt
=

∆N0 −∆N

T1
− 2

ℏ
Im(P ∗E). (3)

Here, ω is the field frequency, Ω is the cavity resonance frequency, ω0 is the laser’s two-level transition
frequency, and |µ12| is the dipole laser-field coupling. The parameters L, γ, and T1 represent the cavity
losses, polarization decay rate, and inversion relaxation time, respectively.

Neglecting Cavity Detuning The term i(ω−Ω) in Eq. 1 accounts for a detuning between the field and
the cavity resonance. In the regime of interest, where the laser oscillates close to the cavity resonance, we
assume that this detuning is small compared to the cavity linewidth γcavity:

|ω − Ω| ≪ γcavity.

Thus, the i(ω − Ω) term can be neglected to leading order.

Adiabatic Approximation for the Polarization Since the polarization, P , typically relaxes much
faster than the electric field E , we apply the adiabatic approximation, neglecting dP/dt in Eq (2):

P ≈ i
|µ12|2

ℏ
∆N

γ + i(ω − ω0)
E . (4)

This shows that the polarization follows the electric field instantaneously. Putting Eq. (4) into Eq. (1) and
neglecting the cavity-detuning term as mentioned above gives:

dE
dt

+ LE =
ω

2ϵ0

|µ12|2

ℏ
∆N

γ + i(ω − ω0)
E . (5)

Dependence of the Inversion on Field Intensity The inversion dynamics are governed by Eq. (3).
Assuming steady-state conditions (d∆N/dt ≈ 0):

∆N = ∆N0 − T1 ×
2

ℏ
Im(P ∗E). (6)

From Eq. (4), we find that Im(P ∗E) is proportional to ∆N |E|2. Therefore:

∆N = ∆N0 − α|E|2, (7)

where α is a constant depending on material and cavity parameters.
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Relation Between Population Inversion and Gain Since the laser gain, G, is proportional to the
population inversion, ∆N , we have:

G = G0 − S|E|2, (8)

where G0 is the small-signal gain, and S is the saturation coefficient. Substituting this expression for G into
the simplified field equation (5) leads to:

dE
dt

+ (L−G0 + S|E|2)E = 0. (9)

This is the Van der Pol equation for a free-running laser.

Addition of an Injected Field When an external weak field,

Einj(t) = Eje
iωjt, (10)

is injected into the laser cavity, the total electric field in the rotating frame is:

Etotal(t) = E(t) + Eje
i(ωj−ω)t. (11)

Since the polarization, P , is driven linearly by the total electric field, it follows that:

P ∝ ∆N
(
E(t) + Eje

i(ωj−ω)t
)
. (12)

Substituting back into the field equation, the injected field appears as a driving term.

Remark on the Role of the Injected Field In this derivation, the injected external field is incorporated
by modifying the polarization, P , rather than by adding a term directly to the left-hand side of the field
equation (1). This is consistent with the structure of Maxwell’s equations (Sec. 3.1.1), where the material
response (polarization) acts as a source term for the electric field. The left-hand side of the Maxwell–Bloch
field equation describes the intrinsic dynamics of the cavity field E(t), including propagation losses and
possible detuning.

External fields interact with the gain medium by modifying its polarization. This altered polarization
then acts back on the intracavity field through the right-hand side of the field equation. Therefore, the
injected field enters the laser dynamics by perturbing the polarization, P , not by directly altering the free
evolution of the cavity field.

The final forced Van der Pol equation reads [28, 29]:

dE
dt

+ (L−G0 + S|E|2)E = KjEje
i(ωj−ω)t (13)

where Kj is a coupling coefficient depending on the medium and cavity properties.

3.1.2 Adler’s Equation

Starting from the forced Van der Pol equation (13), we express the complex field as:

E(t) = A(t)eiϕ(t), (14)

where A(t) and ϕ(t) are real functions representing the amplitude and phase of the field. Differentiating the
above equation yields:

dE
dt

=

(
dA

dt
+ iA

dϕ

dt

)
eiϕ. (15)

Since the injected field oscillates as ei(ωj−ω)t relative to the cavity frame, we define the slowly varying
phase difference:

θ(t) = ϕ(t)− (ωj − ω)t, (16)

thus:

ϕ(t) = θ(t) + (ωj − ω)t and
dϕ

dt
=

dθ

dt
+ (ωj − ω). (17)

Substituting this definition into the field equation and matching real and imaginary parts yields:
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• Amplitude equation:
dA

dt
+ (L−G0 + SA2)A = KjEj cos(θ). (18)

• Phase equation:

A

(
dθ

dt
+ (ωj − ω)

)
= −KjEj sin(θ). (19)

Assuming the amplitude A relaxes rapidly to steady state, we set dA/dt ≈ 0, yielding:

(L−G0 + SA2)A = KjEj cos(θ), (20)

which implies that A depends slowly on θ.
Substituting into the phase equation gives:

dθ

dt
= −(ωj − ω)− KjEj

A
sin(θ). (21)

Defining:

∆ω = ω − ωj and κ =
KjEj

A
, (22)

the phase dynamics reduce to the Adler equation:

dθ

dt
= ∆ω − κ sin(θ), (23)

which governs the phase evolution of the injection-locked laser.

Locking Range and Frequency Pulling Adler’s equation provides the condition for stable phase lock-
ing:

sin θ =
∆ω

κ
. (24)

Since | sin(θ)| ≤ 1, the detuning must be smaller than the coupling strength to achieve steady-state condi-
tions, dθ/dt = 0. The maximum detuning for stable locking defines the locking range:

∆ωlock ≈ 2Kj

√
R, (25)

where R = Pmaster/Pslave is the injection ratio [27, 30]. Within this range, the slave laser inherits the master’s
spectral purity, reducing its linewidth.

Linewidth Narrowing and Spano’s Noise Model The frequency noise spectrum of an injection-locked
laser follows the expression derived by Spano et al. [18]:

S∆ν(Ω) = S∆ν,M (Ω) +

(
Ω2

κ2

)
S∆ν,S(Ω), (26)

where:

• S∆ν,M (Ω) is the frequency-noise spectrum of the master laser,

• S∆ν,S(Ω) is the frequency-noise spectrum of the free-running slave laser,

• κ is the locking strength, determined by the injection power and cavity parameters,

• Ω is the Fourier frequency offset from the carrier.

At low Fourier frequencies (Ω ≪ κ), the spectral properties of the master laser dominate, ensuring that
its stability is effectively transferred to the slave. This occurs because the injected field forces the slave
laser’s phase to follow that of the master, suppressing its intrinsic phase noise. As the Fourier frequency
increases (Ω ≫ κ), the influence of the master diminishes, and the slave laser’s inherent noise begins to
dominate.
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The coupling efficiency, κ, plays a crucial role in determining the effectiveness of injection locking and
depends strongly on transverse-mode matching and slave diode cavity quality. A well-matched transverse-
mode profile between the master and slave lasers ensures efficient spatial overlap, allowing optimal power
transfer and minimizing losses due to beam mismatches. Additionally, a high-quality slave laser cavity with
low internal losses and a well-defined longitudinal-mode structure enhances its ability to maintain coherence
with the injected field, reducing phase noise and improving locking stability.

Stronger injection not only enhances noise suppression but also extends the locking range, as shown in
equation 25, allowing the slave laser to remain frequency-locked over a broader detuning range.

3.2 I-V Characteristics of a Laser Diode and its Temperature Dependence

Once the slave diode current exceeds the threshold current, Ith, stimulated emission dominates, and the I-V
characteristics of the diode deviates from the simple diode equation (see Appendix 8.1 for more details).
The total voltage can be expressed as:

V = IRs + Vth, (27)

where:

• Rs is the series resistance of the laser diode.

In this regime (see Appendix 8.1):

• The diode voltage increases slowly with current.

• The differential resistance (dV/dI) is significantly lower than at low current levels.

• The optical output power increases linearly with excess current:

Popt = ηd(I − Ith),

where ηd is the differential quantum efficiency.

• Ith is the threshold current, the minimum current required for lasing.

3.2.1 Temperature Dependence via Power Dissipation

The temperature of the laser diode is influenced by Joule heating, which depends on the electrical power
dissipated:

Pheat = IV − Popt. (28)

For efficient lasers, where a significant portion of the input electrical power is converted into optical
output, the heat dissipation is reduced. However, for typical diodes:

T (I) = T0 +RthPheat, (29)

where Rth is the thermal resistance of the diode. Since V is nearly constant above threshold (see Appendix
8.1.2), the temperature dependence primarily follows:

T (I) ≈ T ′
0 +Θ · I where Θ = RthVth-opt. (30)

Thus, temperature increases with electrical power dissipation, impacting the bandgap, emission wavelength,
and injection locking conditions. Controlling I and Popt is crucial for laser stability and thermal management.

The emission wavelength of the laser is determined by the semiconductor bandgap energy, Eg(T ), which
varies with temperature due to phonon interactions. At high temperatures (T ≫ TD, where TD is the Debye
temperature), this dependence follows [31–34]:

Eg(T ) ≈ Eg(0)− γkBT (31)

Where, γ, is an empirical parameter defined in [31]. Since the emission wavelength, λ, is related to the
bandgap energy as:
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λ(T ) =
hc

Eg(T )
, (32)

substituting Eg(T ) gives a linear wavelength shift with temperature:

λ(T ) ≈ λ0 +
γkBλ

2
0

hc
T. (33)

This equation shows that as temperature increases, the emission wavelength redshifts, which directly affects
the injection locking condition. Apart from bandgap narrowing, the cavity resonance modes shift with
temperature due to the thermal expansion of the laser cavity:

L(T ) = L0(1 + αL(T − T0)), (34)

where L0 is the cavity length at a specified temperature, T0, and αL is the linear coefficient of thermal
expansion. The longitudinal cavity modes satisfy the condition:

m
λ

2
= L(T ), (35)

where m is the longitudinal-mode index. Differentiating with respect to T gives:

dλ

dT
=

2

m

dL

dT
=

2

m
L0αL, (36)

which implies that for linear expansion of the cavity, also the wavelength will depend linearly on the temper-
ature. For InGaAsP materials lattice-matched to InP (as used in the HL7301MG diode that we are using),
the linear thermal expansion coefficient is on the order of αL ≈ 5.1× 10−6 K−1 [35], supporting the use of
a linear model across the diode’s operating range.

The above discussion shows that the laser wavelength shifts proportionally with temperature through
both bandgap narrowing and thermal expansion. These relations explain the dependence of injection locking
on current and temperature.

3.3 Fiber-Noise-Cancellation (FNC) Method

3.3.1 Optical-Path Length and Fluctuations

Fluctuations in the optical fiber arise due to several environmental effects:

• Temperature variations: Changes in the refractive index and fiber length introduce slow drifts [36].

• Mechanical vibrations: Structural motion and acoustic disturbances cause dynamic fluctuations [37].

These variations lead to changes in the optical path length, defined as:

OPL(t) =

∫ L

0
n
(
z, t

)
dz, (37)

where n(z) denotes the refractive index along the fiber axis. Since the light is confined to the fiber, the
integral runs simply from z = 0 to z = L. The associated phase is therefore given by:

ϕfiber(t) =
2π

λ
OPL(t), (38)

which degrade coherence and require active compensation.
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3.3.2 AOM-Based Noise Cancellation

The fiber-induced fluctuations manifest as phase variations on the interference signal. These fluctuations
are extracted as an electrical error signal using a phase detector. This error signal reflects the deviation
between the expected and actual phase evolution of the light returning from the fiber.

To correct this error, a proportional-integral (PI) controller is applied:

V (t) = GP · error(t) +GI ·
∫ t

0
error(t′) dt′, (39)

where GP and GI are the proportional and integral gains, respectively.
This control voltage drives a voltage-controlled oscillator (VCO), which sets the frequency of the AOM.

With a linear tuning response, the AOM frequency at time t is given by:

fAOM(t) = κ (V0 + V (t)) , (40)

where V0 is a static bias voltage, V (t) is the PI controller output, and κ is the VCO tuning coefficient in
units of Hz/V.

The system is biased such that κV0 = 40MHz, which defines the nominal operating point of the AOM.
The correction term, κV (t), dynamically compensates for the fiber-induced phase fluctuations. This feedback
loop ensures that the AOM frequency tracks the accumulated noise and stabilizes the optical phase at the
output [38].

3.3.3 Performance and Stability Considerations

Fiber noise cancellation systems demonstrated suppression of fluctuations over a broad frequency range,
typically up to 20 kHz, as confirmed by experimental data [39]. Key factors influencing system performance
include:

• Loop response time: The PLL must be fast enough to track and correct dominant noise sources [37].

• Residual noise sources: Imperfections in detection and feedback electronics introduce minor fluc-
tuations [38].

• Long-term stability: Temperature-induced drift may require additional low-bandwidth correction
mechanisms [36, 40].

By dynamically adjusting the AOM frequency, this approach can achieve high-fidelity noise suppression,
significantly improving the stability of optical transmission systems [39].

3.4 Laser Linewidth Estimation Using the Beta Separation Method

3.4.1 Phase Noise to Frequency Fluctuation Conversion

To evaluate the contribution of laser frequency noise to its linewidth or spectral properties, it is common
to convert the phase noise Sϕ(f) (typically given in dBc/Hz) into the frequency noise power spectral
density Sν(f) in units of Hz2/Hz. The relationship is [40]:

Sν(f) =

(
2

f2

)
10Sϕ(f)/10. (41)

In this expression, f denotes the offset frequency in Hz, Sϕ(f) is the single-sideband phase noise expressed
in dBc/Hz, and Sν(f) is the resulting frequency fluctuation PSD in Hz2/Hz.

3.4.2 Linewidth Estimation via the β-Separation Method

A precise determination of the laser linewidth is essential for optimizing system performance in frequency
stabilization and coherent optical processes. In this thesis, we employ the β-separation method to extract the
linewidth from the power spectral density (PSD) of frequency fluctuations. This method provides
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a systematic approach to distinguish between the spectral components that contribute to the linewidth and
those that influence only the wings of the laser line shape. The β-separation line, given by [41]:

Sν,β(f) = 8(ln 2)
f

π2
, (42)

separates the high-modulation-index region, which significantly contributes to the linewidth, from the
low-modulation-index region, which affects only the spectral wings. The β-separation frequency, fβ,
is the offset frequency where the measured Sν(f) intersects with Sν,β(f).

To compute the laser linewidth ∆ν, we integrate the frequency noise PSD from the lowest mea-
sured, fmin, frequency up to the β-separation frequency:

∆ν =

√
8 ln 2

∫ fβ

fmin

Sν(f)df, (43)

This integral captures the contribution of frequency noise within the coherence bandwidth of the laser,
ensuring that only the relevant spectral components contributes to linewidth estimation while excluding
noise that merely affects the spectral wings.
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4 Results - Injection Locking and Laser Stabilization

4.1 The Laser System

The system is designed to transfer a highly coherent Hz-linewidth laser at 729 nm from a remote lab to
our lab while suppressing fiber-induced noise. In our lab, the weak signal from the remote lab is amplified
using an injection setup. The amplified signal is then directed to the ion-trapping experiment. The setup
consists of an acousto-optic modulator for fiber-noise cancellation (AOM-FNC) followed by a 120 m optical
fiber link connecting the two labs. Another AOM controls the exact frequency of the amplified light that
reaches the ion. The laser light undergoes the following path (see Fig. 1):

1. A narrow-linewidth coherent laser light at f0 = 411.0421443 THz from a master laser in a remote lab
(Roee Ozeri’s clock lab) enters our FNC system with H polarization and directed into a shear-type
AOM-FNC modulated at 40MHz (green arrow).

2. The 0th-order non-diffracted beam with H polarization is reflected back to the AOM-FNC (green
arrows) where it diffracts to the +1st order with V polarization (blue arrow).

3. The −1st-order diffracted beam with V polarization propagates from the remote lab to our lab through
120 m of fiber (red arrows).

4. The light is then directed through a side port of an isolator (path (1)) to the slave laser where it is
amplified by injection (red arrows).

5. Small fraction of the light from the injected slave diode returns through the isolator side port (path
(1)) back to the remote lab where it passes the AOM-FNC without diffracting (red arrows).

6. This slave light interferes with the reflected master light (red/blue arrow) on a photodetector, creating
the phase error signal.

7. The AOM-FNC is phase-locked using a PLL, dynamically adjusting its frequency to compensate for
fiber-induced fluctuations.

8. Most of the light from the injected slave diode goes through the isolator (path (2)) to the experimental
AOM setup (∼220 MHz, −1st order) in a double pass configuration where it is shifted to match one
of the 40Ca+ lines.

This scheme ensures that any fluctuations accumulated in the fiber are mapped onto the interference signal
and actively corrected in real time.

Figure 1: Schematic of the laser system including the fiber noise cancellation setup, injection diode, and
experimental AOM setup.
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The Physical Setup Fig. 2 shows the optical setup we constructed. Paths (a) and (d) correspond to
the fiber noise cancellation and injection locking lines, as depicted in Fig. 1. Path (b) delivers light to the
double-pass AOM setup and ultimately to the ion trap. Path (c) leads to the wavelength meter.

Figure 2: Labeled photograph of the optical setup used for laser injection and fiber noise cancellation.

(a.1–a.3): A short diagnostic line used to measure coupling from the master laser in the remote lab to our
lab and to control polarization. In addition, it is used to measure the spatial coupling of the master and
slave lasers. Typical powers are 1mW for the master and 0.5mW for the slave.
(a.4–a.6): Alignment optics for matching the slave beam into the spatial mode of the master by maximizing
the input coupling of the slave laser to the fiber coupler (a.4). The master (slave) beam enters (exists) the
isolator (a.6) through port p.1.
(a.7–a.11): Spatial mode shaping optics for the master/slave lasers. The anamorphic prism pair (a.10)
corrects for the natural ellipticity of the slave beam.
(b.1–b.2): Optical path controlling the ratio of power between the wavemeter and the main experiment.
(b.3–b.5): Fiber coupling line for the main laser line, delivering up to 50mW to the experiment.
(c.1–c.2): Coupling to the wavemeter, typically with 0.5mW of power.
(d.1): Fiber input from the master (clock) laser.
(d.3): A beamsplitter that transmits the clock laser in the forward direction and reflects the interference
signal in the backwards direction (red and blue lines) toward the photodiode (d.11).
(d.4): A 40MHz shear-AOM configured for 50% diffraction efficiency, producing both −1st (red, V polar-
ization) and 0th (green, H polarization) orders.
(d.5): Order-splitting PBS separating the AOM outputs, and combining the AOM inputs.
(d.6–d.7): Mirror and wave plate controlling the amount of master light reflected back to the AOM to
create the interference.
(d.8–d.10): Fiber coupling between the master and slave systems, connected via a 120m optical fiber
between d.10 and a.1.
(d.11): FNC photodiode. Detects the interference between the return slave signal (shifted by -40MHz) and
the return master signal (shifted by +40MHz).

4.2 Injection-Locking characterization

To properly inject the slave laser we require that (see Sec. 3.1.2): 1) Good spatial mode overlap between
the master signal and the slave laser. 2) Spectral overlap between the master signal and one of the slave
modes. 3) Enough power to saturate the injection.

To evaluate the quality of the injection lock, we developed a diagnostic method based on monitoring
the interferometric signal from the wavemeter (HighFinesse WS8-10). A well-injected laser produces a
clean and stable interference pattern, as shown in Fig. 3c. By varying the temperature and current of the
slave diode—either manually or via automated control—we searched for operating points that yield sharp
and periodic interference fringes. For these injection-locking conditions, we found out that the wavelength
reading deviation from nominal was less than |∆λ| ≈ 10−5 nm. The deviation is attributed to wavemeter
calibration drifts.
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Figure 3: Interferometric signal from the wavemeter (HighFinesse WS8-10) used to assess injection quality.
(a) No injection: only the master laser is present, resulting in a weak and irregular pattern. (b) Partial
injection: the slave is injected but with suboptimal parameters, producing unstable fringes. (c) Optimal
injection: strong, periodic fringes indicate a well-injected slave laser.

4.2.1 Current and Temperature dependence

Figure 4: Injection-locking map for the slave diode. The vertical axis indicates the diode’s temperature, T ,
while the horizontal axis its drive current, I. The gray scale represents deviations of the slave laser from the
master laser wavelength (logarithmic scale). An injection-locked laser is indicated by the dark band which
corresponds to

∣∣∆λ
∣∣ < 10−5 nm. The residual wavelength deviation is attributed to wavemeter calibration

drifts. The fitted line (red) follows T = T ′
0+Θ I, where T ′

0 = 42.382◦C and Θ = −0.181◦C/mA. It describes
the diode’s linear temperature-current setpoint for robust locking.

In Fig. 4, we plot the locking region dependence on both the slave diode temperature, T , and current,
I. A key outcome is that the locking region follows a linear relationship:

T = T ′
0 +Θ I, (44)

where T ′
0 is the baseline temperature at zero current, and Θ describes how T must shift with I to maintain

lock. This relationship is identical to the relation of the diode’s temperature with its driving current (see
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Eq. 30). This implies that we are able to keep the total temperature of the diode (gain medium and cavity)
constant.

Fitting the results presented in Fig. 4 (red line) we get,

T ′
0 = 42.382 ◦C, Θ = −0.181 ◦C/mA.

Operating along this linear trend allows the slave to remain on exact resonance with the master-laser
wavelength. The small deviations in the wavemeter readings corresponds to instrumental drifts of the
wavelength measurement by the wavemeter. From an experimental perspective, these data confirm that
carefully matching T and I can preserve injection. We can choose the desired diode operating point with
respect to output power at a reasonable operating temperature.

4.2.2 Injection-Locking Range and Saturation

In Fig. 5, we measured the diode’s locking range as function of the injected optical power from the master
laser. The slave-laser power and master-laser power were monitored at points (1) and (2) in Figure 1,
respectively. The locking range reveals a near-linear rise in the locked current window up to injection ratio
of R = Pmaster/Pslave ≈ 0.003, followed by saturation. This observation does not fully align with the relation
in 25, as it is based on a rather simplistic model.

Figure 5: Injection lock range as function of injected power ratio. (Top) Raw data of the measured wave-
length difference

∣∣∆λ
∣∣ as a function of slave-laser current (y-axis) and injected power ratio (x-axis). The log-

arithmic gray scale highlighting points within
∣∣∆λ

∣∣ < 10−5 nm where the laser is considered injection locked.
(Bottom) The extracted current-locking range plotted against the injection power ratio R ∝ Pmaster/Pslave.
Mode hops are observed near the edges of the locking region, underscoring the importance of operating
within the main plateau for robust, stable locking. Dashed red line is fitted to a linear and flat regions.

The saturation regime has two practical implications. First, once the injection coupling is strong enough,
adding more power does not further expand the locking range. Second, operating near or above this sat-
uration point makes the system resilient to small fluctuations in injected power, such as those caused by

18



fiber-related polarization and amplitude noise. In this high-coupling regime, minor power drifts due to en-
vironmental or fiber instabilities do not appreciably degrade the slave-laser lock, resulting in a robust and
stable output despite imperfect power regulation.

4.3 Fiber-Noise Cancellation measurements

Fig. 6 illustrates the measurement setup for characterizing the fiber-noise-cancellation performance. A single
laser source is split by a beam splitter into two paths: a fiber arm and a reference arm. The fiber arm passes
through the FNC setup that includes a 5m spool with its output on the same optical table of the source.
The reference arm provides a stable local oscillator. The FNC photodiode records the 80MHz in-loop signal.
However, this setup also features an out-of-loop signal at 40MHz between the reference arm and the signal
that output the fiber spool. These two beams are recombined to produce a beat note whose frequency
fluctuations encode the fiber’s phase noise.

Figure 6: Schematic of the out-of-loop phase-noise measurement. The PID loop (yellow) corrects the
frequency modulator to stabilize the beat note against fiber fluctuations measured on the left photodiode
(PD). The right PD monitors the (out-of-loop) noise between the light that passes through the fiber and
the original signal. Arrows color indicate the optical frequency deviation, δfopt, and the beat frequency, frf
(see legend).

4.3.1 Out-of-Loop Results

A phase noise analyzer (Microchip 53100A) measures the beat note’s phase-noise spectrum; specifically,
it outputs the power spectral density (PSD) of phase fluctuations by using TimeLab software. From this
PSD (dBc/Hz), we compute the equivalent frequency fluctuations Sν(f) in units of Hz2/Hz using 41. The
PID servo actively locks the beat note by driving the frequency modulator, thus canceling much of the
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fiber-induced phase noise in real time. Crucially, we place an out-of-loop photodiode and phase detector so
that this second detector’s signal is not used by the PID; this ensures our measurement genuinely reflects
the final noise, uncorrupted by any feedback-loop artifacts.

To quantify the servo’s effectiveness, we record two datasets:

1. Locked (PID On): The servo engages, suppressing phase noise from the fiber.

2. Unlocked (PID Off): The fiber noise remains uncompensated, providing a baseline.

In Fig. 7, we show the resulting PSD of the frequency fluctuations in both locked (blue) and unlocked (red)
conditions on a log–log scale. We also plot the so-called β-separation line (Sec. 3.4.2), which discriminates
between: high modulation index regime (Sν(f) > Sν,β(f)) where the PSD contributes to the linewidth,
and a low modulation index regime (Sν(f) < Sν,β(f)) where the PSD contributes only to the wings of the
line shape. The area under each curve (up to the β-separation frequency, fβ) is integrated to estimate the
effective laser linewidth (Eq. 43). We see that the estimated linewidth for the locked laser (∼30 Hz) is 3
order of magnitude narrower than the estimated linewidth of the unlocked laser (∼50 kHz).

Figure 7: Locked vs. unlocked frequency-fluctuation PSD, measured via the out-of-loop photodiode and
phase-noise detector. The shaded regions illustrate the integration bounds for estimating the linewidth.

At low offset frequencies (around 0.1 Hz), the locked trace lies substantially below the unlocked trace,
indicating up to 40dB of noise suppression. This out-of-loop method demonstrates that the PID loop effec-
tively reduces fiber phase noise across a broad frequency range (up to ∼1 kHz), and that our measurement
truly reflects the residual noise outside of the loop’s direct feedback path. Verifying the laser performance
is crucial before integrating the system into the main experiment, where stable, low-noise laser delivery is
vital. It is important to emphasize that this measurement does not constitute a full characterization of
the FNC system capabilities. Firstly, the source laser used here is an injection-locked diode laser with an
unknown intrinsic linewidth, in contrast to the clock laser employed in the main experiment. This may
introduce uncorrelated phase noise between the unshifted and the 40MHz frequency-shifted beams. Sec-
ondly, the 5-meter fiber spool used in this setup was placed in a temperature-stabilized and acoustically
isolated room. This substantially suppresses both mechanical stress-induced phase fluctuations and acoustic
noise. In contrast, in our main setup (see Fig. 1), the fiber experiences a less controlled environment and is
therefore more susceptible to such perturbations.

4.3.2 In-Loop Results

The in-loop noise measurements were performed on the finalized setup (Fig. 1) with the 120 m fiber
connecting between the labs. The light path to the FNC photodiode is described in detail in Sec. 4.1. The
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resulting interference signal exhibits a visibility exceeding 90%.
In Fig. 8, we present the RF spectra of the optical beat signal obtained from the spectrum analyzer

(’Keysight-N9010A’), in both the unlocked and locked cases. In the unlocked case (cyan), the in-loop
linewidth is approximately 10 kHz, while in the locked case (orange), the signal is significantly narrower.
The right-hand panel shows a high-resolution measurement of the locked peak, confirming that its in-loop
linewidth is below the 1 Hz resolution bandwidth of the spectrum analyzer.

Figure 8: RF spectrum of the optical beat signal. Left: Unlocked (cyan) and locked (orange) signals,
normalized and aligned to their respective carrier frequencies. Right: High-resolution trace of the locked
signal showing a linewidth below the analyzer’s 1 Hz resolution.

Next, we recorded the beat signal using a frequency counter with a 1-second gate time, and from this
data we extracted the Allan deviation (ADEV) and modified Allan deviation (MDEV), shown in Fig. 9.
The Allan and modified Allan deviation data reveal key features of the noise behavior in the locked system.
In the short to intermediate averaging regime (τ ∈ [1, 270] s), the modified Allan deviation follows a slope of
approximately −0.588, which is characteristic of white frequency modulation (WFM). At longer averaging
times (τ ∈ [400, 2500] s), the slope steepens to −1.475, approaching the −1.5 value expected for white phase
modulation (WPM). The lowest measured MDEV drops below 10−19 at τ = 1000 s, suggesting excellent
long-term stability between the injected and source lasers.

Figure 9: Allan deviation (ADEV) and modified Allan deviation (MDEV) of the locked beat signal. The
dashed lines show fitted power-law slopes: −0.588 for short to intermediate timescales (τ ∈ [1, 270] s), and
−1.475 at longer timescales (τ ∈ [400, 2500] s).
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5 Methods - Coherent Manipulation of the 40Ca+ Quadrupole Transition

5.1 The Electric Quadrupole Transition in 40Ca+

The 2D5/2 level in singly-ionized calcium (40Ca+) is a metastable state with a lifetime of approximately 1
second [42]. This long-lived character stems from the fact that the 4s 2S1/2 ↔ 3d 2D5/2 transition is electric-
dipole forbidden and instead proceeds via the much weaker electric-quadrupole interaction. Compared
to dipole-allowed transitions with nanosecond-scale lifetimes and MHz-scale linewidths, this quadrupole
transition is about nine orders of magnitude longer in its lifetime and narrower in its natural linewidth.

The natural linewidth, ∆νnat (in Hz), is inversely related to the excited state lifetime, τ , by:

∆νnat =
1

2πτ
. (45)

With τ = 1.168 s [43], this yields a natural linewidth of approximately ∆νnat ≈ 0.14 Hz. This makes the
729 nm quadrupole transition between the 2S1/2 (|S⟩) and the 2D5/2 (|D⟩) states an ideal candidate for
applications requiring extremely narrow and coherent optical transitions.

In the context of ion trapping and laser cooling, the long-lived |D⟩ state enables high-fidelity state
preparation and readout, long coherence times, and precise manipulation of internal states using narrowband
laser light. These properties are essential both for quantum information processing [44]—where the |S⟩ and
|D⟩ levels form a stable optical qubit—and for precision spectroscopy, such as in the development of optical
clocks [45].

To fully utilize this potential, the addressing laser must exhibit a linewidth significantly narrower than
the power-broadened linewidth of the transition, rather than the natural linewidth itself. In typical quantum
logic and coherent control experiments, the effective linewidth is set by the Rabi frequency (which is propor-
tional to the inverse of the interaction time) which is much larger than the natural linewidth. For example,
for Rabi oscillations with a µs to ms timescale, the corresponding Fourier-limited linewidth is on the order
of MHz to kHz respectively. A laser linewidth much narrower than this power-broadened width is necessary
to avoid introducing decoherence during driven Rabi or Ramsey sequences. In practice, narrow-linewidth
lasers with stabilities on the order of a few Hz or better have enabled coherence times exceeding several
hundred milliseconds in similar systems [46].

Beyond internal-state control, the 729 nm laser also enables quantum logic operations through resolved
sideband transitions [47]. In the Lamb-Dicke regime, where the ion’s motion is confined to less than the
optical wavelength, the laser can couple internal electronic states with quantized vibrational modes of the
ion in the trap. This sideband excitation mechanism is the basis for entangling gates [48], ground-state
cooling [49], and precise motional control—core ingredients for trapped-ion quantum computation. The
spectral resolution and stability of the 729 nm laser are therefore critical not just for maintaining coherence,
but also for addressing motional sidebands with high fidelity.

Figure 10: Simplified level diagram of 40Ca+ showing all relevant transitions and annotated with life-
times [50]. The metastable 2D5/2 state (used for the 729 nm clock/qubit transition) is orders of magnitude
longer-lived than the dipole-allowed 2P1/2 state used for cooling and detection.
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Other levels in the 40Ca+ system are also involved in the cooling and detection scheme. The 2P1/2

and 2P3/2 levels have lifetimes of approximately 7.1 ns and 6.9 ns, respectively, and the 2D3/2 level has a
lifetime of about 1.2 s—comparable to that of 2D5/2 [50]. These states support fast optical pumping and
rapid cooling on strong dipole-allowed transitions, such as the 397 nm and 866 nm lines, enabling efficient
state initialization and detection. The dramatic difference in timescales between the dipole and quadrupole
transitions is what allows the system to combine both fast control and long-time coherence, as summarized
in Figure 10.

The narrow linewidth of the 729 nm transition allows the resolution of individual Zeeman sublevels within
the 2S1/2 and 2D5/2 manifolds under a modest external magnetic field. In a static field of a few Gauss,
Zeeman splittings on the order of 5 MHz can be achieved [51], enabling frequency-selective addressing of
magnetic sublevels. This feature is essential for techniques such as state initialization, selective shelving,
and fine control of internal degrees of freedom. In addition, the 729 nm laser resolves the external motional
modes in the trap. In the Lamb-Dicke regime, these are of the order of 1 MHz, enabling motional side-
bands addressing. This feature is essential for techniques such as ground-state cooling, thermometry, and
entanglement.

5.2 Coherent Addressing of the Electric Quadrupole Transition

In what follows, we will present the theoretical formalism of the quadrupole interaction, the selection rules,
and how this transition is driven and observed in our experiment.

5.2.1 Electric Quadrupole Interaction

In many atomic systems, transitions between certain levels are forbidden under the electric dipole approxi-
mation due to symmetry or parity selection rules. In such cases, transitions can still occur via higher-order
interactions. For the 4s2S1/2 ↔ 3d2D5/2 transition in 40Ca+, the dominant contribution arises from the
electric quadrupole interaction.

The interaction between the ion and the laser field can be expressed as [52]:

HE2(t) = −e (⃗ϵ · r⃗) (k⃗ · r⃗)E0 cos(k⃗ · r⃗ − ωt), (46)

where r⃗ is the position operator of the electron, ϵ⃗ and k⃗ are the polarization vector and the wavevector of the
driving field, E0 is its amplitude, e is the elementary charge, and ω is the radial frequency of the laser. This
Hamiltonian captures the spatial variation of the laser field and its projection onto the atomic quadrupole
structure. The product of the two scalar terms (⃗ϵ · r⃗)(k⃗ · r⃗) reflects the second-order nature of the coupling,
in contrast to the linear dependence found in electric dipole transitions.

5.2.2 Rabi Frequency for the Quadrupole Transition

The Rabi frequency for a quadrupole transition (Eq. 46) is given by [51]:

Ω0 =

∣∣∣∣eE0

2ℏ
⟨S1/2,m|(⃗ϵ · r⃗)(k⃗ · r⃗)|D5/2,m

′⟩
∣∣∣∣ . (47)

The matrix element in the above equation can be evaluated by expressing the bilinear product of vector
operators as a rank-2 spherical tensor. The matrix element becomes [52]:

Ω0 =

∣∣∣∣∣∣eE0

2ℏ
⟨S1/2||r2C(2)||D5/2⟩

2∑
q=−2

(
1
2 2 5

2
−m q m′

)
c
(q)
ij ϵikj

∣∣∣∣∣∣ , (48)

where:

• ⟨S1/2||r2C(2)||D5/2⟩ is the reduced matrix element of the quadrupole operator,

• The 3j-symbol encodes angular momentum selection rules and is proportional to the more well-known
Clebsch–Gordan coefficients,

• c
(q)
ij are numerical coefficients converting Cartesian products to spherical tensor components,
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• ϵi and kj are Cartesian components of the polarization and propagation vectors, respectively.

This form shows how the Rabi frequency depends both on internal atomic structure and on the external
laser geometry (polarization and direction). The angular dependence enters through the contraction ϵikj ,
while the state-specific coupling is set by the reduced matrix element and the 3j-symbol.

5.2.3 Selection Rules and Parity Considerations

The electric quadrupole operator transforms as a rank-2 spherical tensor and imposes specific selection rules
on allowed transitions. For quadrupole transitions between total angular momentum eigenstates |γJm⟩ and
|γ′J ′m′⟩, the following selection rules apply:

• ∆J = 0,±1,±2, but transitions with J = J ′ = 0 are forbidden.

• The initial and final states must have the same parity.

• ∆m = 0,±1,±2.

In the case of 40Ca+, the quadrupole transition 2S1/2 →2 D5/2 satisfies these conditions:

• J = 1
2 → J ′ = 5

2 is allowed by angular momentum rules,

• Both S and D orbitals have even parity, consistent with quadrupole (even-parity) transitions,

• Ground state sublevels m = ±1
2 can couple to multiple sublevels in the 2D5/2 manifold (m′ =

±1
2 ,±

3
2 ,±

5
2) via ∆m = 0,±1,±2.

5.2.4 Geometric Coupling Tensor - G(2)
q (θ, ϕ)

The angular dependence of the quadrupole transition is captured by the geometric factor G(2)
q (θ, ϕ), which

reflects the projection of the laser’s electric field and wavevector onto the spherical tensor components of
the quadrupole operator. This factor arises from the contraction:

G(2)
q =

∑
i,j

c
(q)
ij ϵikj , (49)

where ϵ⃗ is the laser polarization vector, k⃗ is the wavevector, and c
(q)
ij project the dyadic product ϵikj onto

rank-2 spherical tensor components (see, e.g., Ref. [52] appendix).
We define the quantization axis (the direction of the magnetic field B⃗) to lie along the ẑ direction and

the two angles describing the laser geometry:

• ϕ: angle between the laser wavevector k⃗ and B⃗, such that k⃗ = k(sin(ϕ), 0, cos(ϕ)).

• θ: angle of the linear polarization vector ϵ⃗, such that ϵ⃗ = (cos θ cosϕ, sin θ,− cos θ sinϕ).

The resulting coupling strength g(q) = |G(2)
q |/|k| determines the ability of the laser to drive transitions with

∆m = q. For linearly polarized light, using the definitions above, the following expressions hold (see Fig.
11):

g(0) =
1

2
|cos θ sin(2ϕ)| , (50)

g(±1) =
1√
6
|cos θ cos(2ϕ) + i sin θ cosϕ| , (51)

g(±2) =
1√
6

∣∣∣∣12 cos θ sin(2ϕ) + i sin θ sinϕ

∣∣∣∣ . (52)

These components describe the angular dependence of the laser-ion coupling strength for various ∆m tran-
sitions, and allow for the design of laser geometries that maximize or suppress specific transitions. By
selecting specific values of θ and ϕ, the experimentalist can enhance desired Zeeman transitions or eliminate
undesired ones. This geometric control is essential in precision quantum-logic operations, state initialization,
and sideband cooling.
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Figure 11: Angular dependence of the quadrupole coupling strength for |∆m| = 0, 1, 2. Shown are heatmap
plots of g(|∆m|)(θ, ϕ) for linearly polarized light (Eqs. 50–52). Angles θ and ϕ are defined in the main text.
The red region in the |∆m| = 2 panel highlights the geometry used in our experiment (θ = 90◦, ϕ = 90◦

- B⃗ ⊥ k⃗ ⊥ ϵ⃗), which maximize coupling to the ∆m = ±2 transitions while suppressing the remaining,
∆m = 0,±1 transitions.

5.2.5 Theoretical Estimate of the Rabi Frequency

As an example, we consider the quadrupole transition, 2S1/2

(
m = −1

2

)
↔2 D5/2

(
m′ = −5

2

)
, in 40Ca+. This

transition satisfies ∆m = +2, and we assume a laser geometry with θ = ϕ = 90◦ (i.e., propagation and
polarization both orthogonal to the magnetic field axis). In Table 1, we break Eq. 48 into its different
components and give their numerical values. We use these to estimate the Rabi frequency under realistic
lab conditions (see Appendix 8.3 for more details on the calculation). Our results demonstrate that Rabi
π-pulses in the 5 µs range are achievable with moderate laser power and beam sizes.

Table 1: Experimental parameters and Rabi frequency estimate for the 2S1/2 (m = −1/2) ↔
2D5/2 (m = −5/2) quadrupole transition in 40Ca+.

Parameter Value

Transition frequency (f0) 411042129776400.4 Hz [53]

Vacuum wavelength (λ0) 729.3472767939427 nm

Laser power (P ) 2 mW

Beam waist (w0) 45 µm

Electric field amplitude (E0 =
√

4P
πε0cw2

0
) 2.18× 104 V/m

Wavevector (k = 2π/λ) 8.61× 106 m−1

Reduced matrix element (e⟨S1/2

∥∥r2C(2)
∥∥D5/2⟩) 9.733 ea20 [54]

Wigner 3j (|Wj3|)
√
1/6

Geometric factor (|g(+2)(90◦, 90◦)|)
√
1/6

Calculated Rabi frequency (Ω0/2π) 103.0 kHz

π-pulse duration (tπ = π/Ω0) 4.85 µs

5.3 Zeeman Splitting in a Magnetic Field

In the presence of a weak external magnetic field B, the energy levels of the ion experience Zeeman splitting
due to the interaction between the spin and angular momentum of the valence electron and the field. The
first-order (linear) Zeeman shift for a fine-structure level |J,mJ⟩ is given by [55]:

∆E = µBgJmJB, (53)

where:

• µB is the Bohr magneton,

• gJ is the Landé g-factor for the level,
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• mJ is the magnetic quantum number,

• B is the magnitude of the magnetic field.

The Landé g-factor is computed as:

gJ ≈ 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
. (54)

For the relevant states in 40Ca+:

• 2S1/2: L = 0, S = 1/2, J = 1/2 ⇒ gS ≈ 2,

• 2D5/2: L = 2, S = 1/2, J = 5/2 ⇒ gD ≈ 6
5 .

Therefore, each magnetic sublevel, |J,mJ⟩, shifts linearly with the field strength, and the transition frequen-
cies between the 2S1/2 and the 2D5/2 levels split into ten distinct lines, depending on the combination of
mJ and mJ ′ .

The frequency shift of each transition is:

∆f =
1

h
µBB (gDmD − gSmS) , (55)

where gS and gD are the Landé factors for S1/2 and D5/2, respectively. These Zeeman patterns enable
resolved addressing of individual quantum states and serves as a sensitive probe of the magnetic field in the
location of the ion.

5.4 Rabi dynamics

When the frequency of the 729 nm laser is detuned close to resonance with one of the 2S1/2 ↔ 2D5/2

transitions, the system exhibits a characteristic coherent two-level dynamics. The key parameters governing
the behavior are the detuning ∆ = ωlaser − ω0, the Rabi frequency Ω, and the pulse duration, t:

Pe(t) =
Ω2

Ω2 +∆2
sin2

(
1

2

√
Ω2 +∆2 t

)
. (56)

The above expression shows that:

• The maximum excitation probability is reduced from unity to Ω2/(Ω2 +∆2).

• The Rabi oscillation frequency is increased to
√
Ω2 +∆2.

• For large detunings (|∆| ≫ Ω), the population remains mostly in the ground state.

The excitation rate as a function of detuning defines the resonance line shape. For a driven two-level
system, this is a Lorentzian [56]:

Pe(∆) ∝ Ω2

Ω2 +∆2
. (57)

5.4.1 Sideband Transitions and Rabi Dynamics in a Trapped-Ion System

In a trapped-ion system, the quantized motional modes of the ion couple to its internal electronic states.
When driven by a narrow-linewidth laser on a quadrupole transition such as S1/2 ↔ D5/2, the resulting
excitation spectrum exhibits a central carrier line and motional sidebands spaced by integer multiples of the
trapping mode’s frequency, ωtrap,

ωL = ω0 + k ωtrap, with k ∈ Z.

These features are a direct consequence of the interaction between light and an harmonically-bound quantum
system.

When the ion is initially in motional state n, the k-th sideband can drive transitions of the form:

|g, n⟩ → |e, n+ k⟩ .

In the more general case where the ion is in a thermal or mixed motional state, each sideband corresponds
to a sum over many such transitions |ni⟩ → |ni + k⟩, each weighted by the initial state’s population.
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Lamb–Dicke Parameter: The strength of the coupling between motion and light is governed by the
Lamb–Dicke parameter:

η =
2π

λ

√
ℏ

2mωtrap
,

which represents the ratio of the ion’s ground-state wavepacket size to the optical wavelength. When
ηn̄ ≪ 1, where n̄ is the mean motional occupation, the system is in the Lamb–Dicke regime, where
sideband transitions can be treated perturbatively and the carrier transition dominates.

Rabi Frequencies: The Rabi frequencies for motional transitions in the Lamb–Dicke regime depend
explicitly on the Lamb–Dicke parameter η and the motional quantum number n. They are given by:

• Carrier transition (k = 0):

Ωn,n = Ω0 e
−η2/2 L0

n(η
2),

where Lα
n is the generalized Laguerre polynomial. Expanding for η ≪ 1, using L0

n(η
2) ≈ 1 − nη2, we

find:

Ωn,n = Ω0

[
1− 1

2
η2(2n+ 1) +O(η4)

]
.

• Red sideband (k = −1):

Ωn,n−1 = Ω0 e
−η2/2 η L1

n−1(η
2)/

√
n,

which expands to (using L1
n(η

2) ≈ (n+ 1)(1− nη2/2)):

Ωn,n−1 = ηΩ0

√
n

[
1− 1

2
η2n+O(η4)

]
.

• Blue sideband (k = +1):

Ωn,n+1 = Ω0 e
−η2/2 η L1

n(η
2)/

√
n+ 1,

which expands to:

Ωn,n+1 = ηΩ0

√
n+ 1

[
1− 1

2
η2(n+ 1) +O(η4)

]
.

These expressions capture the leading-order behavior in η, which is typically small in the Lamb–Dicke
regime.

Transition Probability and Detuning Dependence: If the ion is in a non-Fock state with motional
populations {pn}, the total excitation probability is a weighted sum over contributions from each n → n+k
transition (compare to Eq. 56):

Pe(t; ∆k) =

∞∑
n=0

pn
Ω2
n,n+k

Ω2
n,n+k +∆2

k

sin2
(
1

2

√
Ω2
n,n+k +∆2

k t

)
,

where Ωn,n+k is the Rabi frequency for the specific transition and ∆k = ωL − (ω0 + kωtrap) is the laser
detuning from the k-th sideband. For a thermal distribution at mean occupation n̄, the population of state
n is [57]:

pn =
n̄n

(1 + n̄)n+1
.
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Applications: The sideband spectrum and its detuning-dependent lineshapes enable:

• Thermometry of the ion’s motion via sideband amplitude asymmetry and Rabi thermometry on the
carrier.

• Ground-state cooling by selectively driving red sidebands.

• Precise control of quantum logic gates through tailored Rabi dynamics.

• Spectroscopic determination of motional frequencies.

Understanding the full structure of sideband transitions and their Rabi dynamics is thus essential for
high-fidelity quantum control in trapped-ion systems.

28



6 Results - Coherent Manipulation of the 40Ca+ Quadrupole Transition

6.1 State Discrimination by Fluorescence Photon Counting

To determine whether the ion is in a bright (|S⟩)or dark (|D⟩) state , we measure the number of photons
scattered during a fixed detection, tdet = 1ms, window while illuminating the ion with resonant 397 nm light.
Photons are collected using a photomultiplier tube (PMT), and the signal is digitized as photon counts.

To calibrate the detection system and establish a reliable classification threshold, we acquire two reference
histograms:

• Bright histogram: 397 nm and 866 nm lights on during detection, simulating the ion in a fluorescing,
bright state.

• Dark histogram: 397 nm light on, however, 866 nm light off, simulating the absence of fluorescence
- dark state.

Each condition is repeated 10,000 times, and the resulting photon counts are recorded. These two distribu-
tions are then used to define a threshold, T , that best separates bright and dark outcomes. For n ≥ T , we
classify the ion as bright, while for n < T we classify the ion as dark.

Threshold Determination. We evaluate a range of candidate integer thresholds, T , and for each one
we compute:

• The Dark Error Fraction (DEF): fraction of dark events with n ≥ T , misclassified as bright.

• The Bright Error Fraction (BEF): fraction of bright events with n < T , misclassified as dark.

These rates are defined in terms of histogram counts:

DEF(T ) =
1

Ndark

∞∑
n=T

D(n), (58)

BEF(T ) =
1

Nbright

T−1∑
n=0

B(n), (59)

where D(n) and B(n) are the photon count histograms for the dark and bright calibration runs, and Ndark,
Nbright are the total number of events in each set.

The total classification error is then:

Error(T ) = DEF(T ) + BEF(T ), (60)

and the optimal threshold is chosen to minimize this error:

Topt = arg(minT [ Error(T )]). (61)

Figure 12 illustrates the result, we find the optimal threshold to be: Topt = 9. The left panel shows
the bright and dark photon count distributions. The right panel displays the dependence of error rates on
the threshold value, with the optimal threshold clearly marked. We observe that with tdet = 1ms we can
achieve detection error smaller than 0.005.
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Figure 12: Left: Photon count histograms for bright (blue) and dark (orange) conditions, each based on
10,000 trials with detection window of tdet = 1ms. Right: bright error fraction (blue), dark error fraction
(orange), and total classification error (gray dashed) as a function of threshold T . The optimal threshold
(T = 9, red vertical line) minimizes the total error (< 0.005) and separates the two distributions.

6.2 729 nm Spectroscopy of the 2S1/2 →2 D5/2 Transition

We have measured the spectrum of the electric quadrupole transition between the ground state, 2S1/2,
and the metastable state, 2D5/2, in a trapped 40Ca+ ion. The experimental sequence consists of three
main phases: cooling, excitation, and detection. The ion is first Doppler cooled using 397 nm light (both
near-resonance and red-detuned by ∼600MHz), together with 866 nm light to repump population from the
D3/2 level. A brief 854 nm pulse is also applied to depopulate the long-lived D5/2 state. After cooling, a
5ms excitation pulse at 729 nm is applied to probe the narrow electric quadrupole transition. Detection
follows immediately: both 397 nm and 866 nm beams are turned on, and fluorescence is collected via the
PMT. The first millisecond records signal photons from the ion (either bright or dark depending on the
spectroscopy), while the second millisecond measures the background level (dark ion) with the same detection
beam configuration (866 laser is off). A technical error during this sequence resulted in an unintended
activation of the red-detuned 397 nm beam during detection, which is marked in gray in Fig. 13.

Figure 13: Pulse sequence diagram for a single experimental cycle. Each horizontal row represents
a laser or detector channel, with time progressing from left to right in 1ms bins. The first two milliseconds
include Doppler cooling using 397 nm (red-detuned and near-resonant), 866 nm and an 854 nm repump and
restart pulses. This is followed by a 5ms excitation pulse at 729 nm targeting the qubit transition. The
detection phase begins at 7ms, where fluorescence from resonant 397 nm (866 nm is on) is counted using the
PMT (blue bar). The final 1ms (orange bar) measures background signal (397 nm is on but 866 nm is off).
A mistakenly applied 397 nm (−600MHz) pulse during detection is marked in gray.
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Since we were not certain on the spatial alignment of the laser with the ion, we used a relatively long
probe pulses (tpulse = 5ms instead of the estimated value - see Sec. 5.2.5). This long pulse enhances
sensitivity to weak excitations and results in major decoherence effects (see Sec. 5.4.1) that leads to an
approximately equal statistical population distribution between the S and D states. In addition, the ion’s
initial Zeeman substate was not prepared before each pulse. Assuming an equal statistical mixture of the
mS = ±1/2 Zeeman states, the maximum shelving probability is limited, under these conditions, to:

Pshelve,max ≈ 0.5× 0.5 = 0.25. (62)

Fig. 14 shows histograms of photon counts collected at two representative 729 frequency scan points. In
the left panel, the laser was tuned to resonance, and two distinct populations are clearly observed: the bright
state, corresponding to unshelved ions scattering photons, and the dark state, where the ion is shelved in
the metastable D5/2 level and only stray photon scattering are detected. In the right panel, the laser was
detuned far from resonance, resulting in a single distribution consistent with bright-state detection. This
contrast illustrates the efficiency of the shelving mechanism. The classification between bright and dark
states was performed using a photon-count threshold of 9, as discussed in Sec. 6.1.

Figure 14: Photon-count histograms at two scan points: on-resonance (left) showing bright and dark popu-
lations, and off-resonance (right) showing only the bright distribution. The AOM frequency is given in the
figure title. A threshold of 9 photons (black dashed line) was used to separate between the two states.

In Fig. 15, we present the measured excitation spectrum of the S1/2 → D5/2 transition. We observe a
series of spectrally resolved peaks with Lorentzian-like envelopes. These peaks do not originate from Zeeman
splitting. Instead, they result from motional sidebands induced by the ion-trap confinement. This effect
will be discussed in detail in the next section.

The highest shelving probability achieved during these measurements was Pmax
shelve ≈ 0.125. The observed

sub-maximal value suggests the presence of additional decoherence mechanisms, which we need to further
investigate. Two main candidates are the way-to-long pulse time of 5ms used in this experiment and the
possibility of uneven statistical mixture in the two Zeeman sublevels of the S1/2 state. Other possibilities
include:

• Motion-induced decoherence due to imperfect cooling above the Doppler limit,

• Magnetic-field-induced decoherence,

• Laser phase or amplitude noise.

These effects degrade the excitation efficiency and spectral contrast, setting a practical resolution limit under
the current experimental conditions.
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Figure 15: Measured excitation spectrum of the 2S1/2 →2 D5/2 transition in a single 40Ca+ ion. The data
is a composite of six sequential scans stitched together to span a wide frequency range. The horizontal
axis shows the AOM drive frequency; due to the double-pass AOM configuration, the effective frequency
shift applied to the laser is twice this value. The red shaded region denotes the expected AOM drive
frequency for the S1/2(ms = −1/2) → D5/2(md = −5/2) transition, calculated from a comb measurement
and corrected for the Zeeman shift under the estimated magnetic field (fAOM = 218.94 ± 0.12MHz - see
Sec. 8.2). The vertical axis shows the shelving probability, obtained by thresholding photon counts at 9
counts (see Sec. 6.1). A Lorentzian envelope (dashed red curve) fitted to the peak structure yields a center
frequency of x0 = 218.997± 0.050MHz and a full width at half maximum Γ = 4.2MHz. The multiple peak
structure within the envelope correspond to motional sidebands arising from the ion’s secular motion in the
trap.

6.2.1 Expected AOM Frequency for the S1/2(mS = −1/2) → D5/2(mD = −5/2) Transition

To guide the search for the quadrupole transition, we computed the expected AOM drive frequency for the
S1/2(mS = −1/2) → D5/2(mD = −5/2) transition. This estimate combines our frequency comb measure-
ment of the laser before the AOM with the known zero-field transition frequency and a correction for the
Zeeman shift due to the applied magnetic field.

Because the AOM is operated in a double-pass configuration, the applied optical frequency shift is twice
the AOM drive frequency. The measured optical offset and the calculated Zeeman correction (based on an
estimated magnetic field and known Landé g-factors - see Sec. 5.3) yield a final estimate:

fAOM = 218.941± 0.119 MHz . (63)

A full derivation, including the uncertainty analysis from current fluctuations and mechanical coil tolerances,
is provided in Appendix 8.2. While the estimation doesn’t indicates one specific peak as the carrier transition,
it does narrow down our potential candidates to only two. The discrepancy is most likely due to poor
estimation of the real magnetic field in the ion position.

To identify characteristic periodic modulations in the spectral signal, we performed a discrete Fourier
transform of the data. The resulting spectrum (shown in Fig. 16), plotted in inverse frequency units
(1/f), reveals clear peaks corresponding to temporal oscillations. The most significant peak is located at
f = 733.4± 40.1 kHz, which is in good agreement with the independently measured axial frequency of the
ion, ftickle = 718.0 ± 0.1 kHz using the “tickle” method. The deviation between the two is only ∼ 0.38 σ,
indicating that the repeating peaks in the spectrum are indeed motional sidebands. In addition to the
dominant resonance, several smaller peaks appear at lower frequencies in the 1/f domain. These features
likely reflect higher harmonics of the tarp resonance.
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Figure 16: Discrete Fourier transform of the dark-state probability. The spectrum is plotted as a function
of inverse frequency, 1/f , such that peaks correspond to characteristic time-domain periodicities in the
excitation signal. The labeled peaks correspond to the inverse of the detected frequencies and are annotated
at the center of each locally fitted Gaussian. Red dots mark the maxima of these Gaussian fits, and
the quoted uncertainties are derived from their fitted widths. The most prominent resonance occurs at
733.4 ± 40.1 kHz, with additional weaker components observed at 357.7 ± 12.2 kHz and 239.2 ± 7.9 kHz,
that can correspond to the second and third harmonics accordingly.

7 Discussion

This work demonstrates that laser-frequency stabilization based on injection locking and fiber-noise cancel-
lation can provide the spectral resolution needed to interrogate the narrow electric quadrupole transition
in a single trapped 40Ca+ ion. The system resolves Zeeman substructure and motional sidebands of the
2S1/2(m = −1/2) ↔ 2D5/2(m = −5/2) transition, suggesting that the phase stability of the laser and its
delivery path meet the requirements for coherent spectroscopy.

The main objective of this thesis was to implement a 729 nm laser system capable of addressing a single
ion with high spectral precision. Injection locking enabled robust frequency lock of a diode laser, and
the addition of an active fiber-noise-cancellation (FNC) loop suppressed environmentally induced phase
fluctuations over the 120m delivery fiber. The performance of the PLL was verified using out-of-loop
measurements of the phase noise power spectral density, which showed significant suppression up to ∼ 2 kHz.

In parallel, we characterized the injection locking behavior across various diode current and temperature
settings, as well as injected power. The observed relation between diode current and internal temperature
and locking range as a function of injected power confirmed the expected thermal tuning behavior. This
characterization supports reliable injection locking by offering a predictive map of laser behavior across
operating conditions. The consistency of this relation adds a practical tool for future automated or feedback-
based tuning schemes.

These results support the initial hypothesis that the combination of injection locking and active phase
noise cancellation is sufficient for high-resolution spectroscopy in trapped-ion systems. While we do not
directly compare our system to cavity- or comb-stabilized references, the measured linewidth and observed
spectrum are consistent with what is expected for such systems, and are compatible with the level of stability
required for spectroscopy-driven ion state control.

Future Developments. Much like Moses, who led his people to the edge of the Promised Land but did
not enter it himself, this thesis brings us to the threshold of a vast and exciting landscape of possibilities,
though it does not venture fully into them. The work presented here demonstrates that our system functions
reliably and can serve as a robust platform. However, this is merely the beginning. Having established the
core tools—namely, a stable and coherent laser system, effective state detection, and reliable ion control—we
are now equipped to explore more advanced applications. These include performing precision spectroscopy
on a single ion, ground-state cooling, and implementing quantum logic spectroscopy in conjunction with
molecular ions. Each of these avenues holds the potential for impactful scientific contributions, and they all
stem from the foundation laid in this work.

33



References

[1] M. A. Lombardi, T. P. Heavner, and S. R. Jefferts, “NIST primary frequency standards and the
realization of the si second”, NCSLI Measure 2, 74–89 (2007).

[2] J. I. Cirac and P. Zoller, “Quantum computations with cold trapped ions”, Phys. Rev. Lett. 74, 4091–
4094 (1995).

[3] N. Dimarcq et al., “Roadmap towards the redefinition of the second”, Metrologia 61, 10.1088/1681-
7575/ad17d2 (2024).

[4] C. R. Monroe and D. J. Wineland, “Quantum computing with ions”, Scientific American 299, 64–71
(2008).

[5] A. L. Schawlow and C. H. Townes, “Infrared and optical masers”, Phys. Rev. 112, 1940–1949 (1958).

[6] C. Hagemann, C. Grebing, C. Lisdat, S. Falke, T. Legero, U. Sterr, F. Riehle, M. J. Martin, and J. Ye,
“Ultrastable laser with average fractional frequency drift rate below 5× 10- 19/s”, Optics letters 39,
5102–5105 (2014).

[7] T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. Martin, L. Chen, and J. Ye,
“A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity”, Nature Photonics 6,
687–692 (2012).

[8] T. Manovitz, Y. Shapira, L. Gazit, N. Akerman, and R. Ozeri, “Trapped-ion quantum computer with
robust entangling gates and quantum coherent feedback”, PRX Quantum 3, 010347 (2022).

[9] M. C. Marshall et al., “High-Stability Single-Ion Clock with 5.5 × 10−19 Systematic Uncertainty”,
arXiv:2504.13071 [physics.atom-ph] (2025).

[10] A. Aeppli, K. Kim, W. Warfield, M. S. Safronova, and J. Ye, “Clock with 8 × 10−19 systematic
uncertainty”, Phys. Rev. Lett. 133, 023401 (2024).

[11] S. Lee, G. Moon, S. E. Park, H.-G. Hong, J. H. Lee, S. Seo, T. Y. Kwon, and S.-B. Lee, “Laser
frequency stabilization in the 10 −14 range via optimized modulation transfer spectroscopy on the
87Rb D2 line”, Opt. Lett. 48, 1020–1023 (2023).

[12] R. Santra, E. Arimondo, T. Ido, C. H. Greene, and J. Ye, “High-accuracy optical clock via three-level
coherence in neutral bosonic Sr 88”, Physical Review Letters 94, 173002 (2005).

[13] U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for
tunable frequency offset locking of two lasers”, Review of Scientific Instruments 70, 242–243 (1999).

[14] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of single trapped ions”,
Rev. Mod. Phys. 75, 281–324 (2003).

[15] C. Chou, A. L. Collopy, C. Kurz, Y. Lin, M. E. Harding, P. N. Plessow, T. Fortier, S. Diddams, D.
Leibfried, and D. R. Leibrandt, “Frequency-comb spectroscopy on pure quantum states of a single
molecular ion”, Science 367, 1458–1461 (2020).

[16] S. Patra, M. Germann, J.-P. Karr, M. Haidar, L. Hilico, V. Korobov, F. Cozijn, K. Eikema, W. Ubachs,
and J. Koelemeij, “Proton-electron mass ratio from laser spectroscopy of HD+ at the part-per-trillion
level”, Science 369, 1238–1241 (2020).

[17] M. Safronova, D. Budker, D. DeMille, D. F. J. Kimball, A. Derevianko, and C. W. Clark, “Search for
new physics with atoms and molecules”, Reviews of Modern Physics 90, 025008 (2018).

[18] P. Spano, S. Piazzolla, and M. Tamburrini, “Frequency and intensity noise in injection-locked semi-
conductor lasers: theory and experiments”, IEEE Journal of Quantum Electronics QE-22, 421–434
(1986).

[19] B. P. Dix-Matthews, S. W. Schediwy, D. R. Gozzard, E. Savalle, F.-X. Esnault, T. Lévèque, C. Grave-
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8 Appendix

8.1 Diode I − V relation

8.1.1 Extraction of I0 from the Diode Equation

Below the threshold current, the current-voltage relationship of a diode follows the well-known diode equa-
tion:

I = I0

(
eV/VT − 1

)
, (64)

where:

• I0 is the reverse current,

• VT = nkBT
q is the thermal voltage (≈ n25.8 mV at room temperature, with n an empirical coefficient),

• V is the applied voltage across the diode.

For very low currents (I ≪ Ith), the diode operates in the subthreshold region before lasing begins. By
measuring the I − V curve in this regime, we determine I0 experimentally by (see Fig. 17):

1. Measure the I − V curve in the subthreshold region (before lasing).

2. Fit the exponential region using:

ln I = ln I0 +
V

VT
.

Figure 17: Laser-diode (I − V ) curve at I ≪ Ith. Blue dots are measured diode current vs diode voltage,
red-dashed line is a linear fit (see text) from which we extract I0 = 98.4 nA and VT = 113mV.

8.1.2 Voltage Saturation in Laser Diodes

Above the lasing threshold current Ith, the voltage across a laser diode exhibits saturation behavior, deviating
from the exponential increase observed in conventional p-n junction diodes. In this regime, the total current
can be approximated as:

I = Ith +
V − Vth

Rs
+ Istim, (65)

where:

• Vth is the threshold voltage,

• Rs is the series resistance,

• Istim is the stimulated recombination current contributing to optical power,
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and accordingly:
V = RsI + V0. (66)

Since above threshold the majority of carriers contribute to stimulated emission rather than increasing the
junction voltage, V increases only slowly with current. The measured V − I characteristics in this region
confirm that differential resistance (dV/dI) decreases significantly, leading to a flattened voltage response
(see Fig. 18).

Figure 18: Laser-diode (V − I) curve at I > Ith. Blue dots are measured voltage vs. current characteristics
above threshold, red dashed line is a linear fit (see text) from which we extract, Rs = 8.76Ohm, and
V0 = 1.8V.

This effect is essential in thermal management and laser diode efficiency, as it limits excess electrical
power dissipation while ensuring a stable optical output.

8.2 Calculation of Zeeman Shift and AOM Frequency Uncertainty

To determine the expected AOM drive frequency for the S1/2(ms = −1/2) → D5/2(md = −5/2) transition,
we begin from the known optical frequency offset measured with the frequency comb:

∆f = fmeas − f0 = −445,358,937 Hz, (67)

where f0 is the zero-field transition frequency and fmeas is the comb-measured frequency after the fiber noise
cancellation (FNC) stage.

The AOM is operated in a double-pass configuration. Therefore, the required AOM drive frequency (half
the total frequency shift) is:

f
(0)
AOM =

|∆f |
2

= 222.679 MHz. (68)

Zeeman-Shift Correction

We apply a first-order Zeeman correction to account for the magnetic field:

∆fZeeman = µBB(gDmD − gSmS), (69)

with:

µB = 1.3996 MHz/G,

gD = 1.2003, mD = −5
2 ,

gS = 2.0023, mS = −1
2 ,

B = 1.95 A× 1.37 G/A = 2.67 G.

The magnetic-field coils response of 1.37 G/A was calculated based on the work of Oz Matoki in his summer
rotation project.

Evaluating:
∆(gm) = gDmD − gSmS = −3.00075 + 1.00115 = −1.9996, (70)
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∆fZeeman = µB ·B ·∆(gm) = 1.3996 · 2.67 · (−1.9996) ≈ −7.48 MHz. (71)

Thus, the corrected expected AOM frequency is:

fAOM = f
(0)
AOM +∆fZeeman/2 = 222.679− 7.48/2 = 218.941 MHz . (72)

Uncertainty Estimate

We now estimate the uncertainty in the AOM frequency due to uncertainties in the value of the magnetic
field in the trap.

Sources of Uncertainty:

• Mechanical tolerance in coil placement: ∆R = ±3 mm.

• Current source fluctuations: ∆I = ±0.03 A.

Magnetic Field Uncertainty: The current-to-field conversion is 1.37 G/A, giving:

δBmech ≈ ±0.075 G, (73)

δBcurr = 1.37 · 0.03 = 0.0411 G, (74)

δB =
√

(0.075)2 + (0.0411)2 ≈ 0.085 G . (75)

Propagation to AOM Frequency:

δfAOM =
µB · δB · |∆(gm)|

2
=

1.3996 · 0.085 · 1.9996
2

≈ 119 kHz . (76)

Final Result: The expected AOM drive frequency for the desired transition is therefore:

fAOM = 218.941± 0.119 MHz . (77)

8.3 Rabi Frequency Calculation for the Quadrupole Transition

We calculate the Rabi frequency for the electric quadrupole transition,

2S1/2(mJ = −1/2) ↔ 2D5/2(mJ = −5/2),

driven by a 729 nm laser beam of power, P , and waist, w0, under a geometry where the polarization and
wavevector are both orthogonal to the quantization axis (θ = ϕ = 90◦).

We can rewrite Eq. 48 from the main text as

Ω =

∣∣∣∣E0k

2ℏ
· e⟨S1/2

∥∥∥r2C(2)
∥∥∥D5/2⟩ · |Wj3| · |g(q)(θ, ϕ)|

∣∣∣∣ ,
where:

• E0 =
√

4P
πε0cw2

0
is the electric field amplitude,

• k = 2π
λ is the wavevector,

• e⟨S1/2∥r2C(2)∥D5/2⟩ = 9.733 ea20 is the reduced matrix element [54],

• |Wj3| =
√

1/6 is the Wigner 3j coefficient,

• |g(2)(θ = 90◦, ϕ = 90◦)| =
√
1/6 is the angular factor for this geometry.
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We use the following parameters in the calculation:

P = 2 mW, w0 = 45 µm,

λ = 729.347276793942 nm, ε0 = 8.8541878188(14)× 10−12 F/m,

c = 299, 792, 458 m/s, ℏ = 1.05457182× 10−34 J·s,

e = 1.60217663× 10−19 C, a0 = 5.29177210544(82)× 10−11 m.

From these values, we compute:

E0 = 2.18× 104 V/m,

k = 8.61× 106 m−1,

e⟨S1/2∥r2C(2)∥D5/2⟩ = 4.36× 10−39 C·m2,

Ω/2π ≈ 103.0 kHz ,

tπ = 4.85 µs .

This result is consistent with experimentally measured π-pulse durations on the 2S1/2 ↔ 2D5/2 transition
in trapped 40Ca+ ions.
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